Jameel

Iraqi Journal of Science, 2023, Vol. 64, No. 2, pp: 643-652 DOI: 10.24996/ijs.2023.64.2.13

ISSN: 0067-2904

Transfer Factor of Radionuclides from Soil to Leafy Vegetables in Iraq Using Gamma Ray Spectroscopy

Athraa Naji Jameel

Physics Department, College of Education, Mustansiriyah University, Baghdad, Iraq

Received: 9/2/2022

Accepted: 12/6/2022

Published: 28/2/2023

Abstract:

The activity concentration of natural radioactivity levels, of artificial cesium and transfer factor from soil to plants in agricultural areas at Al- Yusiefya region were determined by using NaI (Tl) detector spectrometer. Ten species of leafy plants have been selected: Spinach, Parsley, Watercress, Lettuce, Rashad, Radish, Green onion, Turnip green, Green beet and Mint. The mean activity concentrations of ²³⁸U, ²³²Th, ⁴⁰K and ¹³⁷Cs in leafy vegetable samples were 12.4±3.8, 14.8±4.7, 283±93 and 1.06±0.99 Bg/kg, and in soil samples were 15.9±4.3, 16.1±5.2, 298.5±3.9, and 1.11±0.37 Bq/kg. The radiation hazard indices were evaluated (radium equivalent, external hazard index, annual effective dose, absorbed dose rate) were within the permissible values except for excess lifetime cancer risk. The mean transfer factor values of ²²⁶ Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs were 0.89±0.2, 0.9±0.2, 1.02±0.3, and 0.77±0.25. The leafy vegetable are safe for consumption and the studied area does not pose a considerable radiological threat .

Keywords: Natural radioactivity, Radiological hazards, leafy vegetables, Transfer factor.

عامل نقل النويدات المشعة من التربة إلى الخضروات الورقية في العراق باستخدام التحليل الطيفي بأشعة كاما

عذراء ناجي جميل

قسم الفيزياء ، كلية التربية ، الجامعة المستنصرية ، بغداد ، العراق

الخلاصة:

تم تحديد مستويات النشاط الإشعاعي الطبيعي والسيزيوم الاصطناعي وعامل الانتقال من التربة إلى النباتات في المناطق الزراعية بمنطقة اليوسفية باستخدام مطياف (IT) العشرة انواع من الخضروات الورقية : السبانخ، البقدونس، الجرجير، الخس، الرشاد، الفجل، البصل الأخضر ، اللغت الأخضر ، البنجر الورقية : السبانغ البقدونس، الجرجير، الخس، الرشاد، الفجل، البصل الأخضر ، اللغت الأخضر ، البنجر الأخضر والنعناع حيث كان متوسط تركيز النشاط , 23²⁸ له⁴⁰K وS³¹ في عينات الخضار الخضار الورقية الورقية 8.2±1.1، محيث كان متوسط تركيز النشاط , 2³⁸U به⁴⁰K و S³¹ في عينات الخضار الورقية 8.2±1.1، محيث كان متوسط تركيز النشاط , 2³⁸U به⁴⁰K به وكان تركيزها في عينات الخضار الورقية 8.2±1.1، محمد والنعناع حيث كان متوسط تركيز النشاط , 2³⁸U به محيل الملاحي وكان تركيزها في عينات الروقية 8.2±1.1، محمد ولا محمد ولا محمد والشعاع الورقية 8.2±1.1، محمد ولا محمد ولا محمد ولا محمد ولا محمد ولا الإشعاع المروقية 8.2±1.1، محمد ولا محمد ولا محمد ولا الإشعاع المروقية 8.2±1.1، محمد ولا محمد ولا محمد ولا الإشعاع المروقية 8.2±1.1، محمد ولا الإشعاع معينات المروقية 8.2±1.1، محمد ولا محمد ولا محمد ولا الإشعاع المروقية 8.2±1.1، محمد ولا محمد ولا الإشعاع المروقية 8.2±1.1، محمد ولا محمد ولا الإشعاع المراديوم ، مؤشر الخطر ، الجرعة الفعالة السنوية ، معدل الجرعة الممتصة) كانت ضمن الحدود العالمية الموصى بها باستثناء الاصابة بالسرطان مدى العمر. حيث كانت قيم معامل النقل المتوسطة ل

^{*}Email: <u>athraanaje@gmail.com</u>

232
Th, 4226 Ra و 137 Cs و 137 Cs و 137 Cs و 232 Th, 4226 Ra الدراسة تبين ان الخضروات الورقية والمنطقة المدروسة لا تشكل اي تهديد اشعاعي.

Introduction:

Natural radioactivity origin comes from the uranium and thorium series, from 40 K, and from cosmic radiation interacting with matter. The man-made radioactive sources include those used in the different applications in medicine, industry, consumer products, and nuclear weapons testing [1]. humans are inevitably exposed to radioactivity nuclides through day by day meals and water intake, inhalation, absorption, and then move it transport from plants, fodder animals and animal products to human in biological cycle, both through the polluted plants and animal products can be affected [2,3].

Since the decay chains of both uranium and thorium involve radioactive progeny, with radon invariably being released into the environment through the air, all life forms are continuously exposed to such radionuclides by inhalation or other means [4]. Plant contamination occurs through two ways: from radionuclides that fall on plants and absorbed by roots or from radionuclides accumulated directly on the plant from the atmosphere. As a result, food contamination with various radionuclides, whether from natural, industrial sources, or ambient radioactive pollution, account for the vast majority of radiation doses received by people [5,6]. Interactions between radionuclides and plants are very complicated and depend on many factors such as type and shape of plants, soil characteristics, behavior of radionuclides, climatic conditions, etc. [7]. The quantity of primordial radionuclides depends on the geological and geographical formations of naturally occurring radioactive materials [8,9]. One of the most essential parameters in environmental safety is the soil-to-plant transfer factor which is the ratio of plant radioactivity concentrations to that of the soil. This factor is used to evaluate the amount of radiation that has been released from the soil to the plant. Many studies have been done on transfer factor from soil to food crops which showed a considerable disparity in values [10,11]. The type of vegetation, soil qualities, climatic circumstances, and radionuclide type all influence the transfer factor [12].

The aim of this research is to assess radionuclides activity in plants and their transfer factor from soil to plants in Al-Yusiefya region in Baghdad ,Iraq.

Materials and methods

1-2Samples collection and preparation

Ten samples of different leafy vegetables and its soil were collected from the agricultural locations located in Al-Yusiefya districts. The leafy vegetables studied were spinach, parsley, watercress, lettuce, rashad, radish, green onion, turnip green, green beet and mint. Following collection, the leaves of the vegetables were washed to remove dust, dried at 80°Ccrushed and placed in Marinelli beakers for 30 days to reach radioactive equilibrium between parent and daughter radionuclides.

2.2 Radioactivity measurement

Radioactivity of the samples was measured with a $3"\times3"$ NaI (Tl) detector for gamma spectrometry. Made in USA, measurement. the detector exhibited a relative performance of 90% and energy resolution of 28.74 keV at ⁶⁰Co gamma ray energy of 1332 KeV. This analyzer can be controlled and changing the characteristics and number of channels through by a specific computer program (bMCA). It features a red light indicator for intermittent gamma-rays reaching the detector, and it coupled to a computer by USB cable to transmit the signal to bMCA program . The radionuclides with their corresponding energies are ²⁴¹Am (59.5 keV), ⁶⁰Co (1173.24 and 1332.50 keV), ¹³⁷Cs (661.66 keV). To measure the radiological background, the activity of ²³⁸U was given through the gamma line of its product decay of

 214 Bi(1764.5 keV). The activity of 232 Th was given by the product of 208 Tl (583.19 and 2614.5 keV, The 40 K(1460.8 keV) and 137 Cs (661.61 keV) Gamma lines of their energies were used to measure concentrations.

3. Calculations

3-1 Specific activity

The specific activity of 40 K, 226 Ra and 232 Th can be calculated in the fronds of palm samples [13,14]by the following relation:

$$\mathbf{A} (\mathbf{E}_{\gamma}) = \frac{N}{\varepsilon (\mathbf{E}_{\gamma}) \times I_{\gamma}(\mathbf{E}_{\gamma}) \times t \times m}$$
(1)

Where: N is the area under the image peaks, $\mathcal{E}(E_{\gamma})$ is the efficiency of energy detection at E_{γ} , $I(E_{\gamma})$ is the abundance of energy, m is the sample weight (kg) and t is the time of measurement (2 hour).

3-2Radiometric Parameters Radiation

3-2-1 Radium Equivalent Activity (Ra_{eq})

The Ra_{eq} is defined through the following equation [15]:

$$Ra_{eq} (Bq/kg) = A_{Ra} + 1.43A_{Th} + 0.077A_K$$
 (2)

Where: A_{Ra} , A_{Th} and A_k are the activity concentration of ²³⁸U, ²³²Th, and ⁴⁰K, respectively. **3-2-2** Absorbed Dose Rate (D_{γ})

The absorbed dose rate can be calculated using the following formula [16]:

 $D_{\gamma} (nGy/h) = 0.462A_{Ra} + 0.621A_{Th} + 0.0417A_{K}$ (3)

3--2-3 External Hazard Index(Hex)

The external hazard index is given as [17]:

$$H_{ex} = \frac{A_U}{370 \ Bq/kg} + \frac{A_{Th}}{259 \ Bq/kg} + \frac{A_K}{4810 \ Bq/kg}$$
(4)

3-2-4 Annual Effective Dose Equivalent (AEDE)

Annual effective dose equivalent is given by the following equation[18,19]: (AFDF) ($v_{\rm S}v_{\rm V}$) = D $\sim 10^{-6} \times 0.80 \times 8760$ h/m 0.7 Sv/Cv

(AEDE) (μ Sv/y) = D_y × 10⁻⁶ × 0.80 × 8760 h/y× 0.7 Sv/Gy (5)

3-2-5 Excess Life-time cancer risk (ELCR)

Radionuclides may be envisioned in terms of extra lifetime cancer risk. It is calculated by the following equation[20,21]:

$$ELCR = AEDE \times DL \times RF \tag{6}$$

Where AEDE is the annual effective dose equivalent, DL is the duration of life (70yrs), RF is the risk factor. For stochastic effects, ICRP 60 makes use of values of 0.05/Sv for the risk factor.

3-3Transfer Factor

The transfer factor is the ratio of plant radioactivity concentrations to the soil radioactivity concentrations. It is used in calculating radionuclide concentrations in agriculture crops in order to estimate dose intake by man [22,23]:

$$TF = \frac{Activity of radinuclides in plant(dry weight)}{Activity of radionuclides in soil (dry weight)}$$
(7)

RESULTS AND DISCUSSION

The results showed that (Table 1) natural activity concentrations of the leafy vegetable samples of spinach, parsley, watercress, lettuce, rashad, radish, green onion, turnip green,

green beet and mint. The activity concentrations of ²³⁸U ranged from 9.1 to 15.5 Bq/kg with mean value 12.4 ± 3.8 Bq/kg and from 11.1 to 19.4 Bq/kg with mean value 14.8 ± 4.7 Bq/kg for ²³²Th, and the activity concentrations of ⁴⁰K ranged from 214 to 393 Bq/kg with mean of 283±93Bq/kg, and 0.61 to 1.78 Bq/kg with mean value 1.06 ± 0.99 Bq/kg for ¹³⁷Cs in leafy vegetables samples. Table 2 shows the mean values for the activity concentrations for soil samples of ²³⁸U, ²²³Th, ⁴⁰K and ¹³⁷Cs which were 15.9 ± 4.3 , 16.1 ± 5.2 , 298.5 ± 3.9 and 1.11 ± 0.37 Bq/kg, respectively. From both tables, it can be seen that activity concentrations were lower than the allowable values proposed by UNSCEAR [24]. Figure 1 displays the specific activity for the different radioactive isotopes uptake in the leafy vegetables and the soil.

	leafy vegetables								
Sample	K ⁴⁰	Ra ²²⁶	²³⁸ U ²¹⁴ Pb	²¹⁴ Bi	Th ²³²	Cs ¹³⁷			
Spinach	323	13.2	6.96	11.2	13.4	0.83			
Parsley	214	9.1	5.20	10.3	11.1	0.61			
Watercress	240	12.4	9.071	11.5	14.4	1.03			
Lettuce	371	13.5	12.07	11.2	16.4	1.59			
Rashad	343	14.1	8.796	13.4	15.8	0.61			
Radish	393	15.5	6.409	16	19.4	1.15			
Green onion	324	9.7	7.123	11.3	15.1	0.10			
Turnip green	322	10.8	6.44	12.3	12.9	1.2			
Green beet	227	13.3	10.44	12.4	14.7	1.06			
Mint	234	12.3	5.03	13	13.2	1.78			
Average ± S.D	283± 93	12.4± 3.8	8.1± 1.28	11.1± 2.6	14.8± 4.7	1.06 ±0.99			
Limit UNSCEAR, 2010[24]	400		33		45	2			

	Fable 1: The activities	of ²³⁸ U. Th ²³² .	K^{40} and K^{137} Cs in	(Bg/kg) for the leaf	v vegetables
--	--------------------------------	--	------------------------------	----------------------	--------------

Table 2: The activities of 238 U, Th 232 , K 40 and 137 Cs in (Bq/kg) for the soil of leafy vegetables

	Soil								
Sample	K^{40}		²³⁸ U	Th ²³²	Cs ¹³⁷				
		Ra ²²⁶	²¹⁴ Pb	²¹⁴ Bi					
Spinach	310	17.7	8.16	13.5	14	0.93			
Parsley	215.3	10	6.20	12.3	14.3	0.81			
Watercress	251.4	14.5	6.1	13.5	16.6	1.25			
Lettuce	362	17.2	13.27	17	17	1.85			
Rashad	273.6	12.3	9.6	11.3	16	0.89			
Radish	343	17	7.409	14.4	20.8	1.3			
Green onion	332	9.9	6.3	10.3	16.8	0.7			
Turnip green	341.2	11.3	8.34	12.4	13.7	1.32			
Green beet	222	15.3	9.44	13.3	16.41	1.2			
Mint	213	12.1	6.31	13.1	15.2	1.89			
Average ± S.D	298.5± 3.9	15.9± 4.3	9.2± 1.4	13.3± 5.3	16.1± 2.3	1.11± ±0.37			
Limit UNSCEAR 2010[24]	400		33		45	2			

Figure 1: The mean specific activity of the leafy vegetable samples and its soil.

Table 3 shows the radiometric parameters (radium equivalent, externa hazard index, annual effective dose equivalent, absorbed dose rate and extra life-time cancer factor) for the leafy vegetable which are less than the permissible limits recommended by UNSCEAR, only the ELCR values were slightly higher than the permissible limit.

The maximum value of Ra_{eq} was 65.519 Bq/kg in lettuce and the minimum value of Ra_{eq} was 41.451Bq/kg in parsley with an average of 56.4±25.7 Bq/kg. These values are less than the 370 Bq/kg recommended by UNSCEAR[24] as shown in Figure 2. The maximum value of D_{γ} was 31.058 nGy/h in lettuce and the minimum value was 20.021 nGy/h in parsley with an average of 27.3±8.9 nGy/h. This value is less that recommended by the UNSCEAR, as shown in Figure 3.

The highest values for H_{ex} , AEDE and ELCR, were 0.1, 152.2 μ /Svy, and 0.56, with an average value of 0.091±0.02, 133.5±0.04 μ /Svy and 0.27.2±0.5 for H_{ex} , AEDE and ELCR, respectively. These average values are lower than the recommended values of UNSCEAR, 2008 [25]. Figures 4, 5 and 6 show the radiological hazard parameters(external hazard index, annual effective dose equivalent, and excess lifetime cancer risk) for the investigated leafy vegetables.

Sample	Ra _{eq} (Bq/Kg)	D _y (nGy/h)	H _{ex}	AEDE (μSv/y)	ELCR ×10 ⁻³
Spinach	57.233	27.889	0.08	136.8	0.47
Parsley	41.451	20.021	0.068	98.2	0.34
Watercress	51.472	24.679	0.089	121.06	0.42
Lettuce	65.519	31.058	0.1	152.2	0.56
Rashad	63.105	30.629	0.099	150	0.52
Radish	56.105	26.329	0.087	143.3	0.47

Table 3: Radiometric parameters for the leafy vegetables

Green onion	56.241	27.369	0.085	134.6	0.45
Turnip green	54.041	26.428	0.079	135	0.42
Green beet	51.8	24.739	0.093	121.6	0.43
Mint	42.8	20.6	0.017	105.7	0.41
Average ± S.D	56.4±25.7	27.3±8.9	0.091±0.02	133.5±0.04	0.47.2±0.5
Limit UNSCEAR, 2010[24].	Limit (SCEAR, 370 55 010[24].		1	290 UNSCEAR, 2008[25].	0.29×10^{-3}

Figure 2: Radium equivalent activity of the leafy vegetable samples.

Figure 3: Absorbed dose rate of leafy vegetable samples.

Figure 4: External hazard index of leafy vegetable samples.

Figure 6: Excess life-time cancer risk of leafy vegetable samples.

From Table 4 and Figure 7, the average transfer factor values for the radionuclides (226 Ra, 232 Th, 40 K and 137 Cs) were 0.89±0.2, 0.9±0.2,1.02±0.3 and 0.77±0.25, respectively for the leafy vegetables. According to the results, the mint sample had transfer factor of uranium at its maximum rate of 0.93. Furthermore, the highest transfer factor for thorium was 0.98 in rashad sample, while the highest transfer factor for potassium was 1.09 in the mint. These values are comparable to those reported elsewhere. There was a considerable difference in radionuclide transfer factors, which could be attributable to the phosphate fertilizers utilized.

C I	Transfer factor								
Sample	⁴⁰ K	²²⁶ Ra	²³² Th	¹³⁷ Cs					
Spinach	1.04	0.74	0.95	0.89					
Parsley	0.99	0.91	0.77	0.75					
Watercress	0.95	0.85	0.867	0.824					
Lettuce	1.08	0.76	0.964	0.85					
Rashad	1.2	1.14	0.98	0.68					
Radish	1.05	0.90	0.93	0.88					
Green onion	0.944	0.90	0.93	0.14					
Turnip green	0.943	0.95	0.941	0.90					
Green beet	1.02	0.86	0.89	0.88					
Mint	1.09	0.93	0.86	0.94					
Average± S.D	1.02±0.3	0.89±0.2	0.9±0.2	0.77±0.25					

Table 4: '	Transfer	factor fo	r natural	and	artificial	radionu	clides	in	the	leafy	vegetable	samples
------------	----------	-----------	-----------	-----	------------	---------	--------	----	-----	-------	-----------	---------

Figure 7: Transfer factor for the leafy vegetable samples.

Conclusions

The activity concentrations ²³⁸U, ²³⁸Ra, ⁴⁰K and ¹³⁷Cs and radiometric factors were less than the allowable limits for the leafy vegetable samples in spinach, parsley, watercress, lettuce, rashad, radish, green onion, turnip green, green beet and mint but the excess lifetime cancer risk were slightly higher than the permissible limits. While the transfer factors of ²²⁶Ra,⁴⁰K and ¹³⁷Cs from soil to leafy vegetable were found to be higher in mint but the transfer factors of ²³²Th were found to be the highest in Rashad sample. The Analytics established that the samples under investigation do not have any harmful radiological impacts.

References:

- [1] M. Abu Shayeb, T. Alharbi, M. A. Baloch, O. A. Abdul Rahman, "Transfer factors for natural radioactivity into date palm pits," *Journal of Environmental Radioactivity*, vol. 167, pp. 75-79, 2017.
- [2] M. Eisenbud, T. Gesell, "Environmental radioactivity from natural, industrial and military sources". New York, Academic Press. 1997.
- [3] M. U. Khandaker, N. L. M. Nasir, Kh. Asaduzzaman, M. A. Olatunji, Y. M. Amin, H. Abou Kassim, D. A. Bradley, P.J. Jojo, T. Alrefae, "Evaluation of radionuclides transfer from soil-to-edible flora and estimation of radiological dose to the Malaysian populace" *Chemosphere*, vol. 154, pp. 528–536, 2016.
- [4] A. N. Jameel, "Evaluation of the radiological hazard in some dried fruit and grain samples in Iraqi Markets by Using of gamma ray Spectroscopy," *Journal of Physics: Conference Series*, vol. 1879, no. 3, p. 032056, 2021.
- [5] A. N. Jameel, N. F. Kadhim, A. Ridha, "Radiation Hazards Indices of Silhouette Plants in Spring and Summer Seasons," *plant*, vol.19, no. 3, pp. 25-32, 2019.
- [6] S. Harb, A. E. B. Abbady, A. E. El-Kamel, I. I. Saleh, A. I. Abd El-Mageed, "Natural radioactivity and their radiological effects for different types of rocks from Egypt". *Radiat. Phys. Chem*, vol. 81, no. 3, pp. 221-225, 2012.
- [7] S. Golmakani, M. V. Moghaddam and, and T. Hosseini, "Factors Affecting the Transfer of Radionuclides from the Environment to Plants," *Radiation Protection Dosimetry*, vol. 130, no. 3, pp. 368-375, 2008.
- [8] S. Dragovic, L. Jankovic-Mandic, R. Dragovic, M. Drodevic, M. Dokic, and J. Korvacevic, "Lithogenic radionuclides in surface soils of Serbia: spatial distribution and relation to geological formations," *J. Geochem. Explor*, vol. 142, pp. 4-10, 2014.

- [9] A. N. Jameel, "Radiological Risk Assessment and Radioactivity Concentration in Sediment of Tigris River of the Medical City/Bab Al Muadham," *Ibn AL-Haitham Journal For Pure and Applied Sciences*, vol. 35, no. 1, pp. 28-38, 2022.
- [10] M. S. Al-Masri, B. Al-Akel, A. Nashawani, Amin, K. H. Khalifa, F. Al-Ain, "Transfer of ⁴⁰ K, ²³⁸U, ²¹⁰Pb, and ²¹⁰Po from soil to plant in various locations in south of Syria, *J Environ Radioact*, vol. 99, no. 2, pp. 322–331, 2008.
- [11] H. Noordijk, K. E. van Bergeijk, J. Lembrechts, M. J. Frissel, "Impact of ageing and weather conditions on soil-to-plant transfer of radio cesium and radio strontium," *J Environ Radioact*, vol. 15, no. 3, pp.277–286, 1992.
- [12] R. Djingova, and I. Kuleff, "Concentration of caesium-137, cobalt-60 and potassium-40 in some wild and edible plants around the nuclear power plant in Bulgaria," *J Environ Radioact*, vol. 59, no. 1, pp. 61–73, 2002.
- [13] P. K. Vayalill, "Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae," *J. Agri. Food Chem.* vol. 50, no. 3, pp. 610-617, 2002.
- [14] R. Al-Yahyai, and L. Al-Kharusi, "Physical and chemical quality attributes of freeze-stored dates," *Int*. J. Agric. Biol, vol. 14, no. 1, pp. 97-100, 2012.
- [15] J. A. Santos Jr., J. J. R. F. Cardoso, C. M. Silva, S. V. Silveira, and R. D. S. Amaral, "Analysis of the ⁴⁰K levels in soil using gamma spectrometry," *Brazilian Archives of Biology and technology*, vol. 48, pp. 221-228, 2005.
- [16] K. Saenboonruang, E. Phonchanthuek, & K. Prasandee, "Determination Using Gamma Spectroscopy of Natural Radionuclide Activity Concentrations and Annual Committed Effective Doses in Selected Thai Medicinal Plants," *Chiang Mai J. Sci.*, vol. 45, no. 2, pp. 821-31, 2018.
- [17] S. I. Kafala, T. D. MacMahon, "Comparison of neutron activation analysis methods," *Journal of Radioanalytical and Nuclear Chemistry*, vol. 271, no. 2, pp. 507-516, 2007.
- [18] X. Lu, "Natural radioactivity in some building materials of Xi'an, China," *Radiation Measurements*, vol. 40, no. 1, pp. 94–97, 2005.
- [19] [19] A. A. Ridha, A. N. Jameel, and N. F. Kadhim, "Transfer factor of natural radionuclides from soil to silhouette plants using gamma spectroscopy," *AIP Conference Proceeding*, vol. 2213, no. 1, p. 020124, 2020.
- [20] ICRP, (ICRP Publication 103). "The Recommendations of the International Commission on Radiological Protection 37. 2007.
- [21] K. M. Thabayneh and M. M. Jazzar, "Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem Province-Palestine," *Open Journal of Soil Science*, vol. 2, no. 1, pp. 7-16, 2012.
- [22] UNSCEAR, "United Nations Scientific Com-mittee on the Effects of Atomic Radiation". *Sources and effects of ionizing radiation*, 1, New York, United Nations Publication, 2000.
- [23] F. W. Whicker, T. G. Hinton, K. A. Orlandini, S. B. Clark, "Uptake of natural and anthropogenic actinides in vegetable crops grown on a contaminated lake bed". *Journal of Environmental Radioactivity*, vol. 45, no. 1, pp. 1-12., 1999.
- [24] UNSCEAR, "Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes United Nations, New York.1. 2010.
- [25] UNSCEAR, "United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, New York. 2008.