Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3605-3611 DOI: 10.24996/ijs.2022.63.8.34

2-prime submodules of modules

Fatima Dhiyaa Jasem, Alaa A.Elewi

Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/2/2022 Accepted: 9/4/2022 Published: 30/8/2022

Abstract:

Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if $rx \in H$, for $r\in R$ and $x\in F$ implies that $x \in H$ or $r^2 \in [H: F]$. we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if $[N_F(r)]$ is a 2-prime submodule of E, where $r\in R$. Also, we prove that if F is a non-zero multiplication module, then [K: F] \nsubseteq [H: F] for every submodule k of F such that $H \subsetneq K$. Furthermore, we will study the basic properties of this kind of submodules.

Keywords: prime ideal, prime submodules, 2-prime ideal, primary submodule.

المقاسات الجزئية شبه الاولية من النمط - ٢ -

فاطمة ضياء جاسم, الاء عباس عليوي

قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

الخلاصة:

لتكن Rحلقه ابداليه ذات عنصر محايد وليكن Aمقاساً احادياً على R. هذا البحث يُعطي تعريف مفهوم المقاسات الجزئية الاولية من النمط -7 كتعميم لمفهوم المثالي الاولي من النمط -7 حيث يقال مفهوم المقاسات الجزئية الاولية من النمط -7 كتعميم لمفهوم المثالي الاولي من النمط -7 حيث يقال للمقاس الجزئي H من المقاس F المعرف على الحلقة R أنه مقاس جزئي اولي من النمط ۲ اذا كان T = X من المقاس الجزئية, على من المقاس F المعرف على الحلقة R أنه مقاس جزئي اولي من النمط ۲ اذا كان المقاس الجزئية, على سبيل المثال : اذا كان H $e^{2} + F$ مقاس جزئي من المقاس E على الحلقم R أنه مقاس جزئي من المقاس لهذا النوع من المقاسات الجزئية, على سبيل المثال : اذا كان H مقاس جزئي من المقاس E على الحلقه R فأن H هو مقاس جزئي اولي من النمط ۲ اذا كان R مقاس جزئي من المقاس E ملي المقاس F مقاس جزئي المقاس E ملي المقاس F من المقاس F من المقاس F مقاس جزئي اولي من النمط ۲ اذا كان R مقاس جزئي من المقاس E ملي المثال : اذا كان R مقاس جزئي من المقاس E ملي المط ۲ حيث R قاس جزئي اولي من النمط ۲ اذا كان R مقاس جزئي وألي المقاس E من R من المقاس F من R مو R قال R مقاس جزئي اولي من النمط ۲ اذا كان R مقاس جزئي من المقاس E ملي المثال F من R مقاس جزئي من المقاس F من المقاس F من المقاس F من المقاس F من R مو R قال F مي من المقاس F من المقاس F من المقاس F ميث R قال مقاس جزئي اولي من النمط ۲ اذا كان R مقاس جزئي اولي من المقاس F من المقاس F من المقاس F من R قال جزئية.

1. Introduction

Let R be a commutative ring with unity, an ideal P of a ring R is prime if for all elements $a, b \in R$, $ab \in p$ implies that either $a \in p$ or $b \in p$ [1, Def (2.8), p4], as a generalization of the prime ideal, [2] introduced prime submodule where a proper submodule H of module F over a ring R is said to be prime if $rx \in H$, for $r \in H$, and $x \in F$, then either $x \in H$ or $r \in [H: F]$ W.Messirdi introduced in [3] 2-prime ideals where a proper ideal I of a ring R is 2-prime ideal if for all $x,y \in R$ such that $xy \in I$ then either x^2 or y^2 lies in I. This paper is devoted to studying a generalization of 2-prime ideals. A proper submodule of H of module F over a ring R is said

^{*}Email: alqaisyfatima@gmail.com

to be 2-prime submodule, if $rx \in H$, where $r \in R$, $x \in F$ then either $x \in H$ or $r^2 \in [H: F]$. This definition appeared in [4] and it is called a 2-primary submodule, however, in our work, it is convenient to call it a 2-prime submodule. We prove many properties for this kind of submodules such as if H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if $[N_F(r)]$ is a 2-prime submodule of E.

2. Basic result for a 2-prime submodule.

The concept of n-primary submodules was introduced by [4]. Let H be a proper submodule of an R-module F and $n \in Z_+$. H is called n-primary submodule, if whenever $r \in R$, $x \in F$, $rx \in H$ implies $x \in H$ or $r^n \in [H: F]$ where $[H: F] = \{r \in R, rF \subseteq H\}$, we shall study the case when n=2 for this kind of submodules.

Definition (2.1): Let H be a proper submodule of an R-module F, H is called 2-prime submodule, if whenever $r \in R$, $x \in F$, $rx \in F$, implies $x \in H$ or $r^2 \in [H: F]$.

Remarks and Examples (2.2):

1. Every prime submodule is a 2-prime submodule.

Proof: Let H be a prime submodule of an R-module F and let $r \in R$, $x \in F$ such that $rx \in H$, since H is a prime submodule, either $x \in H$ or $r \in [H: F]$, hence $r^2 \in [H: F]$ and therefore H is a 2-prime submodule.

2. The converse of (1) is not true in general for example the submodule 4Z in Z-module Z is a 2-prime submodule, however, it is not prime submodule.

3. The converse of (1) is true, if $[N_RF]$ is the semi-prime ideal of R which means if a submodule N of an R-module is 2-prime and [N:F] is semiprime ideal, then N is prime.

Proof: Let $rx \in N$, where $\in R$, $x \in F$. Since N is a 2-prime submodule then either $x \in N$ or $r^2 \in [N: F]$, so $r \in \sqrt{[N: F]}$, but N is semiprime ideal. So $r \in [N: F]$, hence N is a prime submodule.

4. The Z-module $Z_{P\infty}$ has no 2-prime submodules.

Proof: Every proper submodule in $Z_{p\infty}$ is of the form $(\frac{1}{p^n} + Z)$ where $n \in Z_+$ and by [5] if k is a

proper submodule of $Z_{p\infty}$, then $[K: Z_{p\infty}] = (0)$. Now, let $N \subsetneq Z_{p\infty}$ and thus $N = \langle \frac{1}{p^i} + Z \rangle$, where $i \in Z_+$, It's clear that $p\frac{1}{p^{i+1}} + Z = \frac{1}{p^{i+1}} + Z \notin N$ and $p^2 \notin [N: Z_{p\infty}] = (0)$. Then, N is not a 2-prime submodule.

5. Every 2-prime submodule is a primary submodule where a proper submodule H of an R-module F is primary, whenever $rx \in H$ for $r \in R$ and $x \in F$ then either $x \in H$ or $r^n \in [H_R^+F]$ for some $n \in \mathbb{Z}_+$ [6].

6. The converse of (4) is not true as the following example shows: Consider Z as Z-module let H=8Z is a submodule of Z. H is primary, but $2 \cdot 4 \in H$ and $2^2 \notin [8Z: Z] = 8Z$. So that H is not a 2-prime submodule.

Note: prime submodule $\rightarrow_{\mathcal{H}}$ 2-prime submodule $\rightarrow_{\mathcal{H}}$ primary submodule.

7. Let F be a module on integral domain R. Then $\tau(F)$ is a 2-prime submodule if $\tau(F) \neq F$ where $\tau(F)$ is called torsion submodule defined $\tau(F) = \{x \in F : \exists r \in R, r \neq 0 \text{ such that } rx = 0\}[7].$

Proof: By [[8], remark and examples (1.2).P6] $\tau(F)$ is prime when $\tau(F) \neq F$.

Thus, by (1) $\tau(F)$ is a 2-prime submodule.

8. Let F be a torsion-free module over an integral domain R. Then every pure submodule of F is 2-prime where module F over an integral domain R is torsion-free if $\tau(F) = 0$. And a submodule K of F is pure if IF \cap K = IK for every ideal I of R.

Proof: clear from [[8], remark, and examples (1.2), P6], and by (1)]

Proposition (2.3): If N is a 2-prime submodule of an R-module F then [N: F] is the 2-prime ideal of R.

Proof: Let $a, b \in R$ such that $ab \in [N: F]$, assume $a \notin [N: F]$ thus there exists $x \in F$ and $ax \notin N$ but $ab \in [N: F]$, so $abx \in N$, but N is 2-prime submodule and $ax \notin N$ thus $b^2 \in [N: F]$ Therefore, [N: F] is the 2-prime ideal.

Remark (2.4): The converse of proposition (2.3) is not true in general for example: Let $F = Z \bigoplus Z$ as Z-module and let $N = (0) \bigoplus 8Z$. Then [N: F] = (0) which is 2-prime ideal. But, N is not a 2-prime submodule since $2(0,4) \in N$, but $(0, 4) \notin N$ and $2^2 \notin [N: F] = (0)$ Now, we give a characterization for 2-prime submodules.

Theorem (2.5): Let N be a proper submodule of an R-module F. The following three statements are equivalent:

1. N is a 2-prime submodule,

2. $a^2 \in [N_R F]$, $a \in R$ if and only if $a^2 \in [N_R(c)]$ for every $c \in F$.

3. $a^2 \in [N_R; F]$, $a \in R$ if and only if $a^2 \in [N; K]$ for every submodule K of F such that N<K.

Proof: (1) \Rightarrow (2) let $c \in F \setminus N$ if $a^2 \in [N: F]$ then it is clear that $a^2 \in [N_R(c)]$ then $a(ac) \in N$ Since N is a 2-prime submodule. Then either $ac \in N$ or $a^2 \in [N: F]$. If $a^2 \in [N: F]$, then there is nothing to do. If $ac \in N$. as N is 2-prime submodule and $c \notin N$, so $a^2 \in [N: F]$, hence we get the result.

(2) \Rightarrow (3) If $a^2 \in [H: F]$, then $a^2 \in [N: K]$, if $a^2 \in [N: K]$ where $N \subsetneq K$. Thus $a^2 K \subseteq N$. Since $N \subsetneq K$ and $x \notin N$ and so $a^2 x \in N$, i.e. $a^2 \in [N: (x)]$. it follows $a^2 \in [N: F]$ (by condition 2).

(3) ⇒(1) let am∈N and suppose m∉N, put K=N+<m>, so k⊋N. Then $a^2 = a^2$ (N+<m>) = $a^2N+a^2<m>⊆N$ therefore $a^2 \in [N:K]$. Hence by condition (3), $a^2 \in [N:F]$ and thus N is a 2-prime submodule.

By using theorem (2.5), we have the following result.

Corollary (2.6): Let F be an R-module and N is a proper submodule. The following statements are equivalent:-

1. (0) is a 2-prime submodule,

2. $a^2 \in \operatorname{ann} \overline{F} a \in \mathbb{R}$ if and only if $a^2 \in \operatorname{ann}(c)$, Where $c \notin \mathbb{N}$,

3. $a^2 \in annF$, $a \in R$ if and only if $a^2 \in ann(c)$, where K is a submodule of F such that $N \subseteq K$.

Proposition (2.7): Let H be a proper submodule of module F over a ring R. Then H is a 2-prime submodule if and only if $[H_F(r)]$ is a 2-prime submodule for every $r \in R$.

Proof: (⇒)let ax∈ [H[:]_F(r)], so axr∈H. Since H is a 2-prime submodule, Then either xr∈H or $a^2 \in [H: F]$. If xr∈H, then x∈ [H[:]_F(r)] and if $a^2 \in [H: F]$, hence $a^2F \subseteq H$. So $a^2Fr \subseteq Hr \subseteq H$. i.e. $a^2Fr\subseteq N$, so $a^2F \subseteq [H^:_F(r): F]$. Thus, [H[:]_F(r)] is a 2-prime submodule.

(⇐)Now, let $ax \in H, x \in F, a \in R$, so $axr \in Hr \subseteq H$ and thus $axr \in H$. Therefore $ax \in [N_F(r)]$ but $[H_F(r)]$ is a 2-prime submodule, so either $x \in [H_F(r)]$ or $a^2 \in [H:(r))$: F]. If $x \in [H:(r)]$ take r=1 then $x \in H$ and if $a^2 \in [(H:(1)): F] = [a^2: F]$ therefore, H is a 2-prime submodule.

Proposition (2.8): Let F, F be R-modules and $\theta: F \to F$ be an epimorphism and L is a submodule of F such that ker $\theta \leq L$. If N is a 2-prime submodule of F such that $L \leq N$, then $\theta(N)$ is a 2-prime submodule of F such that $\theta(L) \leq \theta(N)$.

Proof: First we claim that $\theta(N)$ is a proper submodule of F. If not i.e. $\theta(N) = F$, thus for every $a \in F$ there exists $n \in N$ such that $\theta(n) = \theta(a)$ so $a - n \in \ker \theta \le L \subseteq N$, hence $a \in N$ therefore, N=F, but this is a contradiction. Thus, $\theta(n) \le F$

Now, let $r \in R$ and $\dot{x} \in \dot{F}$ such that $r\dot{x} \in \theta(N)$, but θ is an epimorphism and thus there exists $x \in F$ such that $\theta(x) = \dot{x}$. So $r\dot{x} = r\theta(x) = \theta(rx) \in \theta(n)$ then there exists $y \in N$ such that $\theta(y) = \theta(rx)$. i.e. $rx - y \in \ker \theta \subseteq L \leq N$, so $rx \in N$ but N is a 2-prime submodule of F and thus either $x \in N$ orr² $\in [N: F]$ and therefore either $\theta(x) = \dot{x} \in \theta(N)$ or $r^2 \in [\theta(N): \dot{F}]$, hence $\theta(n)$ is the 2-prime submodule of \dot{F} . It's clear that $\theta(L) \leq \theta(N)$.

Corollary (2.9): Let N, H be submodules of an R-module F such that $H \le N$ and N is 2-prime of F, $\frac{N}{H}$ is a 2-prime submodule of $\frac{F}{H}$.

Proof: Let $\pi: F \longrightarrow \frac{F}{H}$ be an R-homomorphism since N is 2-prime of F then by proposition (2.8), $\pi(N)$ is a 2-prime submodule of, $\frac{F}{H}$.

Corollary (2.10): Let F be an R-module and $H \le N \le L \le F$ such that $\frac{L}{H}$ is a 2-prime submodule of $\frac{F}{H}$, then $\frac{L}{N}$ is a 2-prime submodule of $\frac{F}{N}$.

Proof: $\theta: \frac{F}{H} \longrightarrow \frac{F}{N}$ be the map defined by $\theta(x + H) = x + N$, $\forall x \in F$. Clear that θ is an epimorphism, since $\frac{L}{H}$ is a 2-prime submodule of $\frac{F}{H}$ then $\theta(\frac{L}{H})$ is 2-prime in $\frac{F}{H}$. That means $\frac{L}{N}$ is a 2-prime submodule of $\frac{F}{H}$.

Corollary (2.11): If T, Y are two submodules of module F such that T is 2-prime of F then T is 2-prime in Y.

Proof: Let $r \in R$, $a \in Y$ such that $ra \in T$ since T is 2-prime in F. Then either $a \in X$ or $r^2 \in [T: F]$ i.e. $r^2 F \subseteq T$ since $Y \subseteq F$. Then $r^2 \in [T: Y]$ therefore, T is 2-prime in Y.

Corollary (2.12): Let F be an R-module and H < N < F. If N is a direct summand of F and H is a 2-prime submodule of F. Then H is a 2-prime submodule of N.

Proof: since N is the direct summand of F, $N \oplus L = F$ for L<F but H is a 2-prime submodule of F, then $H \oplus (0)$ is 2-prime of $N \oplus L = F$ by (proposition 3.12).

Thus, H is a 2-prime submodule of N.

Remark (2.13): If T and Y are two submodules such that $T \le Y$ and Y is a 2-prime submodule of module F, then T is not 2-prime of F, for example: Consider Z_{12} as a Z-module and $T = \{\overline{0}, \overline{6}\}, Y = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$. Y is a 2-prime submodule of Z_{12} since $\overline{2} \cdot \overline{3} = \overline{6} \in Y, \overline{3} \in Y$, but $2^2 \notin [Y: Z_{12}] = 3Z$.but T is not a 2-prime of Z_{12} since $\overline{2} \cdot \overline{3} \in T, \overline{2}, \overline{3} \notin T$, and $2^2, 3^2 \notin [T: Z_{12}]$.

Remark (2.14): The 2-prime submodule is not transitive which means if $H \le N \le F$ and H is a 2-prime submodule of N and N is a 2-prime submodule, then H does not a 2-prime submodule of F, as the example in Remark (2.12) in the Z-module Z_{12} and $\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ is a 2-prime submodule of Z_{12} , however, $\{\overline{0}, \overline{6}\}$ is not 2-prime submodule of Z_{12}

3 The other result about 2-prime submodules.

In this section, we give the relation between 2-prime submodules and maximal submodule, primary. Also, we study the 2-prime submodules in the module of fractions.

Definition (3.1) [9]: Let F be an R-module and H be a proper submodule of F. H is called maximal if for every submodule L of F such that $L \subseteq H$ then either H=L or F=L.

Lemma (3.2) [10]: If H is a maximal submodule of F, then [H_R F] is maximal ideal in R.

Proposition (3.3) [10]: Let H a submodule of F, if [H: F] maximal ideal in R, then H is prime submodule in F.

Corollary (3.4): Let H be a submodule of F. If [H: F] maximal ideal in R, then H is a 2-prime submodule of F.

Proof: By Proposition 3.3 and by Remarks and Examples (2.2) (1).

Corollary (3.5): If K is a proper submodule of an R-module F such that $H \subseteq K$ and the ideal [H: F] is maximal in R then K is a 2-prime submodule of F.

Proof: It's clear that $[H: F] \subseteq [K: F]$ since $H \subseteq K$. But [K: F] is proper in R and K is proper submodule in F. Also, [H: F] is maximal in R then [K: F] = [H: F] and by corollary (3.4) then K is 2-prime submodule of F.

Corollary (3.6): Every maximal submodule is a 2-prime submodule.

Proof: By [8, corollary (2.5), P14] and by remarks and examples (2.2) (1).

Corollary (3.7): Let F is an R-module and I is maximal ideal if $F \neq IF$, then IF is a 2-prime submodule of F.

Proof: By [8, cor. (2.6), p14], IF is prime and by Remarks and Examples (2.2) (1), IF is a 2prime submodule.

Proposition (3.8): Let H be a proper submodule of module F over Ring R such that $[K: F] \subseteq [H: F]$ for every submodule K of F with $H \subsetneq K$. Then H is 2-prime of F if and only if the ideal [H: F] is 2-prime ideal in R.

Proof:(\Leftarrow) suppose [H: F] is 2-prime ideal in R and let $rx \in H$ where $r \in R, x \in F$ and $x \notin$ H. $H + \langle x \rangle = L$ Contain H properly, thus $[L: F] \not\subseteq [H: F]$ therefore there exists $t \in$ [L: F] and t \notin [H: F]. Hence, tF \subseteq L and tF \notin H. But, rtF \subseteq H i. e rt \in [H: F]. Since [H: F] is the 2-prime ideal of R and $t \in [H; F]$. Thus, $r^2 \in [H; F]$ therefore, H is a 2-prime submodule of F.

 (\Rightarrow) (By proposition 2.3).

Remark (3.9): [8, Remark (2.15), P18] If $E \neq 0$ is multiplication module and N is a proper submodule of E, then $[K: E] \not\subseteq [H: E]$ for every submodule K of E such that $H \subseteq K$.

Corollary (3.10): Let H be a proper submodule of a multiplication module E, then H is a 2prime in E if and only if the ideal [H: E] is 2-prime in R.

Proof: It's obvious from Proposition (3.9) and Remark (3.10)

Proposition (3.11): Let E_1 and E_2 be two R-modules. Then N_1 and N_2 are 2-prime submodules of E_1 and E_2 , respectively if and only if $N_1 \oplus N_2$ is 2-prime submodule $E_1 \oplus E_2$.

Proof: (\Longrightarrow) Let $r \in \mathbb{R}$ and $x = (x_1, x_2) \in \mathbb{E}_1 \oplus \mathbb{E}_2$ where $x_1 \in \mathbb{E}_1$ and $x_2 \in \mathbb{E}_2$ such that $rx \in \mathbb{E}_2$ $N_1 \bigoplus N_2$. Thus $(rx_1, rx_2) = (n_1, n_2)$ for some $n_1 \in N_1, n_2 \in N_2$ this implies that $rx_1 = n_1 \in N_1$ and $rx_2 = n_2 \in N_2$. But each of N_1 and N_2 is 2-prime submodules of E_1 and E_2 respectively.

And therefore either $x_1 \in N_1$ or $r^2 \in [N_1: E_1]$ and either $x_2 \in N_2$ or $r^2 \in [N_2: E_1]$. Hence either $x=(x_1, x_2) \in N_2 \oplus N_2$ or $r^2 \in [N_1 + N_2: E_1 + E_2]$

 (\Leftarrow) Let $\rho_1: E_1 \oplus E_2 \to E_1$ be the natural projection and suppose that H is the 2-prime submodule of E. By proposition (2.8) $\rho_1(H)$ is the 2-prime submodule of E₁, i.e. H₁ is a 2prime submodule of E_1 . Similarly, H_2 is a 2-prime submodule of E_2 .

Proposition (3.12): Let N be a 2-prime submodule of an R-module E such that $S^{-1}(N) \neq I$ S⁻¹(E). Then S⁻¹N is a 2-prime submodule of, S⁻¹E [where S⁻¹E = { $\frac{x}{s}$: where x \in E and s \in S} (S is a multiplicative subset of R)].

Proof: First, notice that $S^{-1}(N)$ is proper of $S^{-1}(E)$. Now, let $r \in R$ and $\frac{r}{r} \in S^{-1}(R)$ and $\frac{m}{s} \in S^{-1}(E) \text{ such that } \frac{r}{s} \cdot \frac{m}{s} \in S^{-1}(N) \text{ and thus } \exists n \in N \text{ and } t \in S \text{ such that } \frac{rm}{ss} = \frac{n}{t} \text{ this means}$ that $\exists w \in S$ such that wtrm $\in N$. So $r(wtm) \in N$. But N is a 2-prime submodule. Then, either wtm $\in N$ or $r^2 \in [N: E]$. Thus, $\frac{wtm}{wts} \in N_s$ but $\frac{wtm}{wts} = \frac{m}{s} \in N_s : r^2 \in [N: E]$ then $\frac{r^2}{s} \in [S^{-1}(N): S^{-1}(E)] \text{ then } \frac{1}{s} \cdot \frac{r^2}{s} = \frac{r^2}{s^2} \in [S^{-1}(N): S^{-1}(E)].$ **Proposition (3.13):** Let E be an R-module, S multiplicative subset of R, if W is 2-prime

submodule in $S^{-1}(E)$, then $\varphi^{-1}(W)$ is a 2-prime submodule of E.

Proof: since $W \neq S^{-1}(E)$ so $S \cap [\phi^{-1}(W): E] = \Phi \Rightarrow \phi^{-1}(W) = E$. Let $r \in R, m \in E$ such that $rm \in \varphi^{-1}(W) \Rightarrow \varphi(rm) = r\varphi(m) = rm \in W$ but W is 2-prime in S⁻¹(E) then either $\frac{m}{1} \in W \text{ or } \frac{r^2}{1} \in [W: S^{-1}(E)] \text{ then } \varphi^{-1}(m) = m \in W \text{ orr}^2 \in [\varphi^{-1}(W): E] \therefore \varphi^{-1}(W) \text{ is 2-prime}$ ideal in E.

Definition (3.14): An R-module M is called Noetherian if the set of all sub-modules of M is Noetherian. [7].

Definition (3.15): An R-module E is faithful if its annihilator is zero [7].

Definition (3.16): An R-module E is called multiplication, if for every submodule H of E, H = (H: E)E where $(H: E) = \{r \in R: rE \subseteq H\}$ [11]

Proposition (3.17): Let F be a faithful multiplication Noetherian R-module. Then, F satisfies d.c.c on 2-prime submodules.

Proof: Let $H_1 \supseteq H_2 \supseteq \cdots$ be descending chain of 2-prime submodules of F. Then, $[H_1:F] \supseteq [H_2:F] \supseteq \cdots (1)$.

On the other hand, by proposition (2.3), for each $i \in Z_+[H_i: F]$ is the 2-prime ideal of R, hence (1) is a descending of 2-prime ideals of R. But F is a faithful multiplication Noetherian Rmodule, so R is a Noetherian [6, 5.3, P.767], hence R satisfies d.c.c on 2-prime, it follows that $\exists k \in Z_+$ such that $[H_k: F] = [H_{k+1}: F] = \cdots$. Therefore,

 $[H_k: F]F = [H_{k+1}: F]F = \cdots$. Thus, $H_k = H_{k+1} = \cdots$.

We will give the difference between our work and the work in [4] and we give a conclusion for each of them.

The difference between the work in [4] and our work is that every prime submodule is a 1-primary, hence it is an n-primary submodule, [for each $n \in Z_+$]. It makes a difference when n = 1, n = 2.

Now, we will summarize the main result of [4] as follows:

1. Every n-primary submodule is a primary submodule.

2. If N is an n-primary submodule of an R-module F, then N is an n+1-primary submodule.

3. It is clear every prime submodule is a 1-primary, and hence it is an n-primary submodule, for each $n \in Z_+$.

4. If N is a 2-prime submodule of an R-module F, then it is not necessary that N is an nprimary submodule as the following example shows; Let F be the Z module Z. Let N =125Z. It is easy to show that N is a 3-primary submodule of F. However N is not 2-primary since $125=5.25\in\mathbb{N}$, but $25\notin\mathbb{N}$ and $5^2 = 25 \notin (N:Z)$.

5. If N is an n-primary submodule of an R-module F, then (N: F) is an n-primary ideal of R.

6. The converse of (5) is not true as the following example; Let F be the Z-module $Z \oplus Z$, let N=0 \oplus 8Z then [N: M] = (0), which is an n-primary ideal, for each $n \in Z_+$. However, N is not an n-primary submodule, for any $n \in Z_+$, since 2(0, 4) \in N, but (0, 4) \notin N and $2^n \notin$ (N: F) = (0), for any $n \in Z_+$.

7. Let N submodule of an R-module F, such that for each submodule K of F, $K \supset N$ and [K: F] $\not\subset$ [N: F]. Then N is n-primary submodule if and only if [N: F] is an n-primary ideal of R.

8. Let F be a multiplication R-module, N a submodule of F and $n \in Z_+$. Then N is an n-primary submodule of F if and only if [N: F] is an n-primary ideal of R.

9. Let N be a primary submodule of an R-module F, let $n \in Z_+$. Then, N is the n-primary submodule of F if and only if [N: F] is an n-primary ideal of R.

10. Let F be a multiplication R-module, and let I be an n-primary ideal of R. Then, IF is an n-primary submodule of F.

Conclusions

1. If N is a 2-prime submodule of an R-module F, Then [N: F] is the 2-prime ideal of R.

2. The converse of (1) is not true in general for example: Let $F = Z \oplus Z$ as Z-module and let $N = (0) \oplus 8Z$. Then [N: F] = (0) which is 2-prime ideal. But N is not a 2-prime submodule since $2(0,4) \in N$, but $(0, 4) \notin N$ and $2^2 \notin [N: F] = (0)$.

3. Let H be a proper submodule of module F over a ring R. Then H is a 2-prime submodule if and only if $[H_F(r)]$ is a 2-prime submodule, for every $r \in R$.

4. Let F, F be an R-modules and $\theta: F \to F$ be an epimorphism and L is a submodule of F such that ker $\theta \leq L$. If N is a 2-prime submodule of F such that $L \leq N$ then $\theta(N)$ is a 2-prime submodule of F such that $\theta(L) \leq \theta(N)$.

5. If T, Y two submodules such that $T \le Y$ and Y is a 2-prime submodule of a module F. Then T not necessary to be 2-prime of F, for example: Consider Z_{12} as a Z-module and $T = \{\overline{0}, \overline{6}\}, Y = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$. Y is a 2-prime submodule of Z_{12} since $\overline{2} \cdot \overline{3} = \overline{6} \in Y, \overline{3} \in \mathbb{C}$ Y but $2^2 \notin [Y: Z_{12}] = 3Z$. but T is not a 2-prime of Z_{12} , since $\overline{2} \cdot \overline{3} \in T$, $\overline{2}$, $\overline{3} \notin T$, and 2^2 , $3^2 \notin [T: Z_{12}]$.

References

- [1] M.D. Larsen and P. J. Mccarlthy, Multiplicative theory of ideals, Academic Press, New York, 1971.
- [2] S.A. Saymach, On Prime Submodules, University Noc. Tucumare Ser.A, vol. 29, 121-136, 1979.
- [3] W. Messirdi and C. Beddani, 2-prime ideals and their multiplications, *Journal of Algebra Taibah Univ. Dep. of Math. Madinah, Kingdom of Saudi Arabia* (2015), No. (6806/1436).
- [4] M. A.Hadi, *n-primary Submodules-Basic Results, Journal of College of Education, Al-Mustansiriya University*, vol.3, pp.103-108, 2005.
- [5] C.P.Lu, Spectra of modules, *Comm. In Algebra*, vol. 23, 3741-3752, 1995.
- [6] Lu. C.P, M-radicals of submodules in modules, *Comment. Math. Japon.*, vol. 34, pp. 211-219, 1989.
- [7] Wisbaur R. "Foundation of module and Ring theory, Gordon and Breach, Philadelphia, (1991).
- [8] Eman Ali Athab, *prime and semiprime submodules*, MS.C Thesis, College of Science, University of Baghdad, Iraq (1996).
- [9] Abdul-Rahman A.Ahmed, *on submodules of multiplication modules*, M.Sc. Thesis. University of Baghdad, Iraq (1992).
- [10] C.P.Lu, Prime Submodules of Modules, comment. Malti. Univ. St. Paul., vol. 33, pp.61-69, 1984.
- [11] Z.A.EL-Bast &P. F.Smith, Multiplication modules, *Comma. In Algebra*, vol. 16, pp. 755-779, 1989.