

ISSN: 0067-2904

2-prime submodules of modules

Fatima Dhiyaa Jasem, Alaa A.Elewi
Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/2/2022
Accepted: 9/4/2022
Published: 30/8/2022

Abstract

: Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2prime ideal, where proper submodule H of module F over a ring R is said to be 2prime if $r x \in H$, for $r \in R$ and $x \in F$ implies that $x \in H$ or $r^{2} \in[H: F]$. we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if $\left[\mathrm{N}_{F}(r)\right]$ is a 2-prime submodule of E , where $\mathrm{r} \in \mathrm{R}$. Also, we prove that if F is a non-zero multiplication module, then $[\mathrm{K}$: $\mathrm{F}] \nsubseteq[\mathrm{H}: \mathrm{F}]$ for every submodule k of F such that $\mathrm{H} \subsetneq \mathrm{K}$. Furthermore, we will study the basic properties of this kind of submodules.

Keywords: prime ideal, prime submodules, 2-prime ideal, primary submodule.
المقاسات الجزئية شبه الاولية من النمط - r-

فاطمة ضياء جاسم , الاء عباس عليوي
قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق
الخلاصة:

$$
\begin{aligned}
& \text { لتكن Rلقه ابداليه ذات عنصر محايد وليكن Eمقاساً احادياً على R. هذا البحث يُعطي تعريف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مقاس جزئي اولي من النمط ب اذا وفقط اذا كان [}
\end{aligned}
$$

$$
\begin{aligned}
& \text { المقاس F بحيث ان KЭH كذلك درسنا الخصائص الرئيسة لهذا النوع من المقاسات الجزئية. }
\end{aligned}
$$

1. Introduction

Let R be a commutative ring with unity, an ideal P of a ring R is prime if for all elements $a, b \in \mathrm{R}, a b \in p$ implies that either $\mathrm{a} \in \mathrm{p}$ or $\mathrm{b} \in \mathrm{p}[1, \operatorname{Def}(2.8), \mathrm{p} 4]$, as a generalization of the prime ideal, [2] introduced prime submodule where a proper submodule H of module F over a ring R is said to be prime if $r x \in H$, for $r \in H$, and $x \in F$, then either $\mathrm{x} \in \mathrm{H}$ or $r \in[\mathrm{H}: \mathrm{F}]$
W.Messirdi introduced in [3] 2-prime ideals where a proper ideal I of a ring R is 2-prime ideal if for all $x, y \in R$ such that $x y \in I$ then either x^{2} or y^{2} lies in I. This paper is devoted to studying a generalization of 2-prime ideals. A proper submodule of H of module F over a ring R is said

[^0]to be 2-prime submodule, if $r x \in H$, where $r \in R$, $x \in F$ then either $x \in H$ or $r^{2} \in[H: F]$. This definition appeared in [4] and it is called a 2-primary submodule, however, in our work, it is convenient to call it a 2 -prime submodule. We prove many properties for this kind of submodules such as if H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [$\mathrm{N}_{F}(r)$] is a 2-prime submodule of E .

2. Basic result for a 2-prime submodule.

The concept of n-primary submodules was introduced by [4]. Let H be a proper submodule of an R -module F and $\mathrm{n} \in Z_{+}$. H is called n -primary submodule, if whenever $\mathrm{r} \in \mathrm{R}, \mathrm{x} \in \mathrm{F}, r x \in \mathrm{H}$ implies $\mathrm{x} \in \mathrm{H}$ or $r^{n} \in[\mathrm{H}: \mathrm{F}]$ where $[\mathrm{H}: \mathrm{F}]=\{\mathrm{r} \in \mathrm{R}, \mathrm{rF} \subseteq \mathrm{H}\}$, we shall study the case when $\mathrm{n}=2$ for this kind of submodules.
Definition (2.1): Let H be a proper submodule of an R-module F, H is called 2-prime submodule, if whenever $\mathrm{r} \in \mathrm{R}, \mathrm{x} \in \mathrm{F}, r x \in \mathrm{~F}$, implies $\mathrm{x} \in \mathrm{H}$ or $r^{2} \in[\mathrm{H}: \mathrm{F}]$.
Remarks and Examples (2.2):

1. Every prime submodule is a 2-prime submodule.

Proof: Let H be a prime submodule of an R-module F and let $\mathrm{r} \in \mathrm{R}$, $\mathrm{x} \in \mathrm{F}$ such that $r x \in \mathrm{H}$, since H is a prime submodule, either $x \in H$ or $r \in[H: F]$, hence $r^{2} \in[H: F]$ and therefore H is a 2-prime submodule.
2. The converse of (1) is not true in general for example the submodule 4 Z in Z -module Z is a 2-prime submodule, however, it is not prime submodule.
3. The converse of (1) is true, if $\left[N_{R}^{\dot{R}} F\right]$ is the semi-prime ideal of R which means if a submodule N of an R -module is 2-prime and $[N: F$]is semiprime ideal, then N is prime.
Proof: Let $r x \in N$, where $\in R, x \in F$. Since N is a 2-prime submodule then either $x \in N$ or $r^{2} \in[N: F]$, so $r \in \sqrt{[N: F]}$, but N is semiprime ideal. So $r \in[N: F]$, hence N is a prime submodule.
4. The Z -module $\mathrm{Z}_{\mathrm{P} \infty}$ has no 2-prime submodules.

Proof: Every proper submodule in $\mathrm{Z}_{\mathrm{p} \infty}$ is of the form $\left\langle\frac{1}{\mathrm{p}^{n}}+\mathrm{Z}\right\rangle$ where $\mathrm{n} \in \mathrm{Z}_{+}$and by [5] if k is a proper submodule of $Z_{p \infty}$, then $\left[K: Z_{p \infty}\right]=(0)$. Now, let $N \subsetneq Z_{p \infty}$ and thus $N=\left\langle\frac{1}{p^{i}}+Z\right\rangle$, where $i \in \mathrm{Z}_{+}$, It's clear that $\mathrm{p} \frac{1}{\mathrm{p}^{\mathrm{i}+1}}+\mathrm{Z}=\frac{1}{\mathrm{p}^{i+1}}+\mathrm{Z} \notin \mathrm{N}$ and $\mathrm{p}^{2} \notin\left[\mathrm{~N}: \mathrm{Z}_{\mathrm{p} \infty}\right]=(0)$. Then, N is not a 2prime submodule.
5. Every 2-prime submodule is a primary submodule where a proper submodule H of an Rmodule F is primary, whenever $r x \in H$ for $r \in R$ and $x \in F$ then either $x \in H$ or $r^{n} \in\left[H_{R}^{\dot{*}} F\right]$ for some $n \in Z_{+}^{[6]}$.
6. The converse of (4) is not true as the following example shows: Consider Z as Z -module let $\mathrm{H}=8 \mathrm{Z}$ is a submodule of Z . H is primary, but $2 \cdot 4 \in \mathrm{H}$ and $2^{2} \notin[8 \mathrm{Z}: \mathrm{Z}]=8 \mathrm{Z}$. So that H is not a 2-prime submodule.
Note: prime submodule $\underset{\leftrightarrow}{\rightarrow}$ 2-prime submodule $\underset{\nless}{\rightarrow}$ primary submodule.
7. Let F be a module on integral domain R. Then $\tau(F)$ is a 2-prime submodule if $\tau(F) \neq F$ where $\tau(F)$ is called torsion submodule defined $\tau(F)=\{x \in F: \exists r \in R, r \neq 0$ such that $r x=$ $0\}[7]$.
Proof: By [[8], remark and examples (1.2).P6] $\tau(F)$ is prime when $\tau(F) \neq F$.
Thus, by (1) $\tau(F)$ is a 2-prime submodule.
8. Let F be a torsion-free module over an integral domain R . Then every pure submodule of F is 2-prime where module F over an integral domain R is torsion-free if $\tau(F)=0$. And a submodule K of F is pure if $I F \cap K=I K$ for every ideal I of R.
Proof: clear from [[8], remark, and examples (1.2), P6], and by (1)]
Proposition (2.3): If N is a 2-prime submodule of an R-module F then $[\mathrm{N}: \mathrm{F}]$ is the 2-prime ideal of R .

Proof: Let $a, b \in R$ such that $a b \in[N: F]$, assume $a \notin[N: F]$ thus there exists $x \in F$ and $a x \notin N$ but $a b \in[N: F]$, so $a b x \in N$, but N is 2-prime submodule and $a x \notin N$ thus $b^{2} \in[N: F]$ Therefore, $[\mathrm{N}: \mathrm{F}]$ is the 2-prime ideal.
Remark (2.4): The converse of proposition (2.3) is not true in general for example: Let $\mathrm{F}=\mathrm{Z} \oplus \mathrm{Z}$ as Z -module and let $\mathrm{N}=(0) \oplus 8 \mathrm{Z}$. Then $[\mathrm{N}: \mathrm{F}]=(0)$ which is 2-prime ideal. But, N is not a 2-prime submodule since $2(0,4) \in N$, but $(0,4) \notin N$ and $2^{2} \notin[N: F]=(0)$
Now, we give a characterization for 2-prime submodules.
Theorem (2.5): Let N be a proper submodule of an R-module F. The following three statements are equivalent:

1. N is a 2-prime submodule,
2. $a^{2} \in\left[N_{R} ; F\right], a \in R$ if and only if $a^{2} \in\left[N_{R}(c)\right]$ for every $c \in F$.
3. $a^{2} \in\left[N_{R} \dot{F}\right], a \in R$ if and only if $a^{2} \in[N: K]$ for every submodule K of F such that $\mathrm{N}<\mathrm{K}$.
Proof: (1) \Rightarrow (2) let $c \in F \backslash N$ if $a^{2} \in[N: F]$ then it is clear that $a^{2} \in\left[N_{R}^{\prime}(c)\right]$ then $a(a c) \in N$ Since N is a 2-prime submodule. Then either ac $\in \mathrm{N}$ or $a^{2} \in[\mathrm{~N}: \mathrm{F}]$. If $a^{2} \in[\mathrm{~N}: \mathrm{F}]$, then there is nothing to do. If ac $\in \mathrm{N}$. as N is 2-prime submodule and $c \notin \mathrm{~N}$, so $a^{2} \in[\mathrm{~N}: \mathrm{F}]$, hence we get the result.
(2) \Rightarrow (3) If $a^{2} \in[\mathrm{H}: \mathrm{F}]$, then $a^{2} \in[\mathrm{~N}: \mathrm{K}]$, if $a^{2} \in[\mathrm{~N}: \mathrm{K}]$ where $\mathrm{N} \subsetneq \mathrm{K}$. Thus $a^{2} K \subseteq N$. Since $\mathrm{N} \subset \mathrm{K}$ and $\mathrm{x} \notin \mathrm{N}$ and so $a^{2} x \in \mathrm{~N}$, i.e. $a^{2} \in[\mathrm{~N}:(\mathrm{x})]$. it follows $a^{2} \in[\mathrm{~N}: \mathrm{F}]$ (by condition 2).
(3) \Rightarrow (1) let $a m \in N$ and suppose $m \notin N$, put $K=N+\left\langle m>\right.$, so $k \supsetneq N$. Then $a^{2}=a^{2}(N+\langle m>)$ $=\mathrm{a}^{2} \mathrm{~N}+\mathrm{a}^{2}<\mathrm{m}>\subseteq \mathrm{N}$ therefore $a^{2} \in[N: K]$. Hence by condition (3), $a^{2} \in[N: F]$ and thus N is a 2-prime submodule.
By using theorem (2.5), we have the following result.
Corollary (2.6): Let F be an R -module and N is a proper submodule. The following statements are equivalent:-
4. (0) is a 2 -prime submodule,
5. $a^{2} \in \operatorname{annF} a \in R$ if and only if $a^{2} \in \operatorname{ann}(c)$, Where $c \notin N$,
6. $a^{2} \in \operatorname{annF}, a \in R$ if and only if $a^{2} \in \operatorname{ann}(c)$, where K is a submodule of F such that $\mathrm{N} \subset \mathrm{K}$.
Proposition (2.7): Let H be a proper submodule of module F over a ring R . Then H is a 2prime submodule if and only if $\left[\mathrm{H}_{\mathrm{F}}(\mathrm{r})\right]$ is a 2-prime submodule for every $\mathrm{r} \in \mathrm{R}$.
Proof: (\Rightarrow) let ax $\in\left[H_{F}^{\circ}(r)\right]$, so axr $\in H$. Since H is a 2-prime submodule, Then either $x r \in H$ or $a^{2} \in[H: F]$. If $x r \in H$, then $x \in\left[H_{F}^{\dot{\circ}}(r)\right]$ and if $a^{2} \in[H: F]$, hence $a^{2} F \subseteq H$. So $a^{2} F r \subseteq H r \subseteq H$. i.e. $a^{2} \mathrm{Fr} \subseteq \mathrm{N}$, so $\mathrm{a}^{2} \mathrm{~F} \subseteq\left[\mathrm{H}_{\mathrm{F}}^{\dot{\circ}}(\mathrm{r}): \mathrm{F}\right]$. Thus, $\left[\mathrm{H}_{\mathrm{F}}^{\dot{\circ}}(\mathrm{r})\right]$ is a 2-prime submodule.
(\Leftarrow) Now, let $\mathrm{ax} \in \mathrm{H}, \mathrm{x} \in \mathrm{F}, \mathrm{a} \in \mathrm{R}$, so $\operatorname{axr} \in \mathrm{Hr} \subseteq \mathrm{H}$ and thus axr $\in \mathrm{H}$. Therefore $a x \in\left[\mathrm{~N}_{\mathrm{F}}(\mathrm{r})\right]$ but $\left[\mathrm{H}_{\mathrm{F}}(\mathrm{r})\right]$ is a 2-prime submodule, so either $\mathrm{x} \in\left[\mathrm{H}_{\mathrm{F}}(\mathrm{r})\right]$ or $\left.\mathrm{a}^{2} \in[\mathrm{H}:(\mathrm{r})): \mathrm{F}\right]$. If $\mathrm{x} \in[\mathrm{H}:(\mathrm{r})]$ take $r=1$ then $x \in H$ and if $a^{2} \in[(H:(1)): F]=\left[a^{2}: F\right]$ therefore, H is a 2-prime submodule.
Proposition (2.8): Let F, \hat{F} be R-modules and $\theta: F \rightarrow \hat{F}$ be an epimorphism and L is a submodule of F such that $\operatorname{ker} \theta \leq \mathrm{L}$. If N is a 2-prime submodule of F such that $L \leq \mathrm{N}$, then $\theta(\mathrm{N})$ is a 2-prime submodule of F such that $\theta(\mathrm{L}) \leq \theta(\mathrm{N})$.
Proof: First we claim that $\theta(\mathrm{N})$ is a proper submodule of F . If not i.e. $\theta(\mathrm{N})=$ F́, thus for every $a \in F$ there exists $n \in N$ such that $\theta(n)=\theta$ (a) so $a-n \in \operatorname{ker} \theta \leq L \subseteq N$, hence $a \in N$ therefore, $\mathrm{N}=\mathrm{F}$, but this is a contradiction. Thus, $\theta(\mathrm{n}) \leq \mathrm{F}$
Now, let $r \in R$ and $x \in \mathcal{F}$ such that $r x \in \theta(N)$, but θ is an epimorphism and thus there exists $x \in F$ such that $\theta(x)=x$. So $r \dot{x}=r \theta(x)=\theta(r x) \in \theta(n)$ then there exists $y \in N$ such that $\theta(y)=$ $\theta(r x)$. i.e. $r x-y \in \operatorname{ker} \theta \subseteq L \leq N$, so $r x \in N$ but N is a 2 -prime submodule of F and thus either $x \in N \operatorname{orr}^{2} \in[N: F]$ and therefore either $\theta(x)=x \in \theta(N)$ or $r^{2} \in[\theta(N)$: F́], hence $\theta(n)$ is the 2-prime submodule of ' \mathbf{F}. It's clear that $\theta(\mathrm{L}) \leq \theta(\mathrm{N})$.

Corollary (2.9): Let N, H be submodules of an R -module F such that $H \leq N$ and N is 2prime of $F, \frac{N}{H}$ is a 2-prime submodule of $\frac{F}{H}$.
Proof: Let $\pi: F \rightarrow \frac{\mathrm{~F}}{\mathrm{H}}$ be an R-homomorphism since N is 2-prime of F then by proposition $(2.8), \pi(\mathrm{N})$ is a 2-prime submodule of, $\frac{\mathrm{F}}{\mathrm{H}}$.
Corollary (2.10): Let F be an R-module and $H \leq N \leq L \leq F$ such that $\frac{L}{H}$ is a 2-prime submodule of $\frac{F}{H}$, then $\frac{L}{N}$ is a 2-prime submodule of $\frac{F}{N}$.
Proof: $\theta: \frac{\mathrm{F}}{\mathrm{H}} \rightarrow \frac{\mathrm{F}}{\mathrm{N}}$ be the map defined by $\theta(\mathrm{x}+\mathrm{H})=\mathrm{x}+\mathrm{N}, \forall \mathrm{x} \in \mathrm{F}$. Clear that θ is an epimorphism, since $\frac{\mathrm{L}}{\mathrm{H}}$ is a 2-prime submodule of $\frac{\mathrm{F}}{\mathrm{H}}$ then $\theta\left(\frac{\mathrm{L}}{\mathrm{H}}\right)$ is 2-prime in $\frac{\mathrm{F}}{\mathrm{H}}$. That means $\frac{\mathrm{L}}{\mathrm{N}}$ is a 2-prime submodule of $\frac{\mathrm{F}}{\mathrm{H}}$.
Corollary (2.11): If T, Y are two submodules of module F such that T is 2-prime of F then T is 2-prime in Y .
Proof: Letr $\in R, a \in Y$ such that $r a \in T$ since T is 2 -prime in F. Then either $a \in X$ or $r^{2} \in[T: F]$ i.e. $r^{2} F \subseteq T$ since $Y \subseteq F$. Then $r^{2} \in[T: Y]$ therefore, T is 2-prime in Y.

Corollary (2.12): Let F be an R-module and $H<N<F$. If N is a direct summand of F and H is a 2-prime submodule of F . Then H is a 2-prime submodule of N .
Proof: since N is the direct summand of $\mathrm{F}, \mathrm{N} \oplus \mathrm{L}=\mathrm{F}$ for $\mathrm{L}<\mathrm{F}$ but H is a 2-prime submodule of F , then $\mathrm{H} \oplus(0)$ is 2-prime of $\mathrm{N} \oplus \mathrm{L}=\mathrm{F}$ by (proposition 3.12).
Thus, H is a 2-prime submodule of N .
Remark (2.13): If T and Y are two submodules such that $\mathrm{T} \leq \mathrm{Y}$ and Y is a 2-prime submodule of module F , then T is not 2-prime of F , for example: Consider Z_{12} as a Z -module and $\mathrm{T}=\{\overline{0}, \overline{6}\}, \mathrm{Y}=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$. Y is a 2 -prime submodule of Z_{12} since $\overline{2} \cdot \overline{3}=\overline{6} \in \mathrm{Y}, \overline{3} \in \mathrm{Y}$, but $2^{2} \notin\left[\mathrm{Y}: \mathrm{Z}_{12}\right]=3 \mathrm{Z}$.but T is not a 2 -prime of Z_{12} since $\overline{2} \cdot \overline{3} \in \mathrm{~T}, \overline{2}, \overline{3} \notin \mathrm{~T}$, and $2^{2}, 3^{2} \notin$ [T: Z_{12}].
Remark (2.14): The 2-prime submodule is not transitive which means if $\mathrm{H} \leq \mathrm{N} \leq \mathrm{F}$ and H is a 2-prime submodule of N and N is a 2-prime submodule, then H does not a 2-prime submodule of F , as the example in Remark (2.12) in the Z -module Z_{12} and $\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ is a 2prime submodule of Z_{12}, however, $\{\overline{0}, \overline{6}\}$ is not 2-prime submodule of Z_{12}

3 The other result about 2-prime submodules.

In this section, we give the relation between 2-prime submodules and maximal submodule, primary. Also, we study the 2-prime submodules in the module of fractions.
Definition (3.1) [9]: Let F be an R-module and H be a proper submodule of F. H is called maximal if for every submodule L of F such that $\mathrm{L} \subseteq \mathrm{H}$ then either $\mathrm{H}=\mathrm{L}$ or $\mathrm{F}=\mathrm{L}$.
Lemma (3.2) [10]: If H is a maximal submodule of F, then $\left[H_{R}{ }^{\dot{R}} \mathrm{~F}\right]$ is maximal ideal in R.
Proposition (3.3) [10]: Let H a submodule of F , if [H: F] maximal ideal in R , then H is prime submodule in F .
Corollary (3.4): Let H be a submodule of F . If [$\mathrm{H}: \mathrm{F}$] maximal ideal in R , then H is a 2-prime submodule of F .
Proof: By Proposition 3.3 and by Remarks and Examples (2.2) (1).
Corollary (3.5): If K is a proper submodule of an R -module F such that $\mathrm{H} \subseteq \mathrm{K}$ and the ideal [$\mathrm{H}: \mathrm{F}$] is maximal in R then K is a 2-prime submodule of F .
Proof: It's clear that $[\mathrm{H}: \mathrm{F}] \subseteq[\mathrm{K}: \mathrm{F}]$ since $\mathrm{H} \subseteq \mathrm{K}$. But $[\mathrm{K}: \mathrm{F}]$ is proper in R and K is proper submodule in F . Also, $[\mathrm{H}: \mathrm{F}]$ is maximal in R then $[\mathrm{K}: \mathrm{F}]=[\mathrm{H}: \mathrm{F}]$ and by corollary (3.4) then K is 2-prime submodule of F .
Corollary (3.6): Every maximal submodule is a 2 -prime submodule.
Proof: By [8, corollary (2.5), P14] and by remarks and examples (2.2) (1).

Corollary (3.7): Let F is an R -module and I is maximal ideal if $\mathrm{F} \neq \mathrm{IF}$, then IF is a 2-prime submodule of F .
Proof: By [8, cor. (2.6), p14], IF is prime and by Remarks and Examples (2.2) (1), IF is a 2prime submodule.
Proposition (3.8): Let H be a proper submodule of module F over Ring R such that $[\mathrm{K}: \mathrm{F}] \subseteq[\mathrm{H}: \mathrm{F}]$ for every submodule K of F with $\mathrm{H} \subsetneq \mathrm{K}$. Then H is 2-prime of F if and only if the ideal [$\mathrm{H}: \mathrm{F}]$ is 2-prime ideal in R .
Proof: (\Longleftarrow) suppose $[\mathrm{H}: \mathrm{F}]$ is 2-prime ideal in R and let $r x \in H$ where $r \in R, x \in F$ and $x \notin$ H. $\mathrm{H}+\langle\mathrm{x}\rangle=\mathrm{L}$ Contain H properly, thus $[\mathrm{L}: \mathrm{F}] \nsubseteq[\mathrm{H}: \mathrm{F}]$ therefore there existst \in $[\mathrm{L}: \mathrm{F}]$ and $\mathrm{t} \notin[\mathrm{H}: \mathrm{F}]$. Hence, $\mathrm{tF} \subseteq \mathrm{L}$ and $\mathrm{tF} \nsubseteq \mathrm{H}$. But, $\mathrm{rtF} \subseteq \mathrm{H}$ i.e rt $\in[\mathrm{H}: \mathrm{F}]$. Since $[\mathrm{H}: \mathrm{F}]$ is the 2-prime ideal of R and $t \in[H: F]$. Thus, $r^{2} \in[H: F]$ therefore, H is a 2-prime submodule of F.
(\Rightarrow) (By proposition 2.3).
Remark (3.9): [8, Remark (2.15), P18] If $\mathrm{E} \neq 0$ is multiplication module and N is a proper submodule of E , then $[K: E] \nsubseteq[H: E]$ for every submodule K of E such that $\mathrm{H} \subset \mathrm{K}$.
Corollary (3.10): Let H be a proper submodule of a multiplication module E , then H is a 2prime in E if and only if the ideal $[\mathrm{H}: \mathrm{E}]$ is 2-prime in R .
Proof: It's obvious from Proposition (3.9) and Remark (3.10)
Proposition (3.11): Let E_{1} and E_{2} be two R-modules. Then N_{1} and N_{2} are 2-prime submodules of E_{1} and E_{2}, respectively if and only if $N_{1} \oplus N_{2}$ is 2-prime submodule $E_{1} \oplus E_{2}$.
Proof: (\Rightarrow) Let $r \in R$ and $x=\left(x_{1}, x_{2}\right) \in E_{1} \oplus E_{2}$ wherex $x_{1} \in E_{1}$ and $x_{2} \in E_{2}$ such that $r x \in$ $N_{1} \oplus N_{2}$. Thus ($\mathrm{rx}{ }_{1}, \mathrm{rx} 2$) $=\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ for somen $_{1} \in \mathrm{~N}_{1}, \mathrm{n}_{2} \in \mathrm{~N}_{2}$ this implies that $\mathrm{rx}_{1}=\mathrm{n}_{1} \in \mathrm{~N}_{1}$ and $\mathrm{rx}_{2}=\mathrm{n}_{2} \in \mathrm{~N}_{2}$. But each of N_{1} and N_{2} is 2-prime submodules of E_{1} and E_{2} respectively.
And therefore either $x_{1} \in N_{1}$ or $r^{2} \in\left[N_{1}: E_{1}\right]$ and eitherx ${ }_{2} \in N_{2}$ or $r^{2} \in\left[N_{2}: E_{1}\right]$. Hence either $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{N}_{2} \oplus \mathrm{~N}_{2}$ or $\mathrm{r}^{2} \in\left[\mathrm{~N}_{1}+\mathrm{N}_{2}: \mathrm{E}_{1}+\mathrm{E}_{2}\right]$
(\Longleftarrow) Let $\rho_{1}: \mathrm{E}_{1} \oplus \mathrm{E}_{2} \rightarrow \mathrm{E}_{1}$ be the natural projection and suppose that H is the 2-prime submodule of E . By proposition (2.8) $\rho_{1}(H)$ is the 2-prime submodule of E_{1}, i.e. H_{1} is a 2prime submodule of E_{1}. Similarly, H_{2} is a 2-prime submodule of E_{2}.
Proposition (3.12): Let N be a 2 -prime submodule of an R-module E such thatS ${ }^{-1}(\mathrm{~N}) \neq$ $S^{-1}(E)$. Then $S^{-1} N$ is a 2-prime submodule of, $S^{-1} E \quad\left[\right.$ where $S^{-1} E=\left\{\frac{x}{s}\right.$: where $x \in E$ and $s \in$ $\mathrm{S}\}$ (S is a multiplicative subset of R)].
Proof: First, notice that $S^{-1}(N)$ is proper of $S^{-1}(E)$. Now, let $r \in R$ and $\frac{\mathrm{r}}{\mathrm{s}} \in \mathrm{S}^{-1}(\mathrm{R})$ and $\frac{m}{s} \in S^{-1}(E)$ such that $\frac{r}{s} \cdot \frac{m}{s} \in S^{-1}(N)$ and thus $\exists n \in N$ and $t \in S$ such that $\frac{r^{s}}{s^{s}}=\frac{n}{t}$ this means that $\exists w \in S$ such that wtrm $\in N$. Sor $(w t m) \in N$. But N is a 2 -prime submodule. Then, either $w t m \in N$ or $r^{2} \in[N: E]$. Thus, $\frac{w t m}{w t s} \in N_{s}$ but $\frac{w t m}{w t s}=\frac{m}{\dot{s}} \in N_{s} \because r^{2} \in[N: E]$ then $\frac{r^{2}}{s} \in\left[S^{-1}(N): S^{-1}(E)\right]$ then $\frac{1}{s} \cdot \frac{r^{2}}{s}=\frac{r^{2}}{s^{2}} \in\left[S^{-1}(N): S^{-1}(E)\right]$.
Proposition (3.13): Let E be an R-module, S multiplicative subset of R, if W is 2-prime submodule in $\mathrm{S}^{-1}(\mathrm{E})$, then $\varphi^{-1}(\mathrm{~W})$ is a 2-prime submodule of E .
Proof: since $W \neq S^{-1}(E)$ so $S \cap\left[\varphi^{-1}(W): E\right]=\Phi \Rightarrow \varphi^{-1}(W)=E$. Let $r \in R, m \in E$ such that $\mathrm{rm} \in \varphi^{-1}(\mathrm{~W}) \Rightarrow \varphi(\mathrm{rm})=\mathrm{r} \varphi(\mathrm{m})=\mathrm{rm} \in \mathrm{W}$ but W is 2-prime in $\mathrm{S}^{-1}(\mathrm{E})$ then either $\frac{\mathrm{m}}{1} \in \mathrm{~W}$ or $\frac{\mathrm{r}^{2}}{1} \in\left[\mathrm{~W}: \mathrm{S}^{-1}(\mathrm{E})\right]$ then $\varphi^{-1}(\mathrm{~m})=\mathrm{m} \in \mathrm{W}$ orr $^{2} \in\left[\varphi^{-1}(\mathrm{~W}): \mathrm{E}\right] \therefore \varphi^{-1}(\mathrm{~W})$ is 2-prime ideal in E .
Definition (3.14): An R-module M is called Noetherian if the set of all sub-modules of M is Noetherian. [7].
Definition (3.15): An R-module E is faithful if its annihilator is zero [7].
Definition (3.16): An R-module E is called multiplication, if for every submodule H of E , $H=(H: E) E$ where $(H: E)=\{r \in R: r E \subseteq H\}[11]$

Proposition (3.17): Let F be a faithful multiplication Noetherian R-module. Then, F satisfies d.c.c on 2-prime submodules.

Proof: Let $\mathrm{H}_{1} \supseteq \mathrm{H}_{2} \supseteq \cdots$ be descending chain of 2-prime submodules of F . Then, $\left[\mathrm{H}_{1}: \mathrm{F}\right] \supseteq$ $\left[\mathrm{H}_{2}: \mathrm{F}\right] \supseteq \cdots(1)$.
On the other hand, by proposition (2.3), for each $i \in Z_{+}\left[H_{i}: F\right]$ is the 2-prime ideal of R, hence (1) is a descending of 2-prime ideals of R. But F is a faithful multiplication Noetherian Rmodule, so R is a Noetherian [6, 5.3, P.767], hence R satisfies d.c.c on 2-prime, it follows that $\exists \mathrm{k} \in \mathrm{Z}_{+}$such that
$\left[H_{k}: F\right]=\left[H_{k+1}: F\right]=\cdots$.Therefore, $\left[H_{k}: F\right] F=\left[H_{k+1}: F\right] F=\cdots$.Thus, $H_{k}=H_{k+1}=\cdots$.
We will give the difference between our work and the work in [4] and we give a conclusion for each of them.
The difference between the work in [4] and our work is that every prime submodule is a 1 primary, hence it is an n-primary submodule, [for each $n \in Z_{+}$]. It makes a difference when $n=1, n=2$.
Now, we will summarize the main result of [4] as follows:

1. Every n-primary submodule is a primary submodule.
2. If N is an n -primary submodule of an R -module F , then N is an $\mathrm{n}+1$-primary submodule.
3. It is clear every prime submodule is a 1-primary, and hence it is an n-primary submodule, for each $n \in Z_{+}$.
4. If N is a 2-prime submodule of an R -module F , then it is not necessary that N is an n primary submodule as the following example shows; Let F be the Z module Z . Let $\mathrm{N}=125 \mathrm{Z}$. It is easy to show that N is a 3-primary submodule of F . However N is not 2-primary since $125=5.25 \in \mathrm{~N}$, but $25 \notin \mathrm{~N}$ and $5^{2}=25 \notin(N: Z)$.
5. If N is an n-primary submodule of an R-module F, then $(N: F)$ is an n-primary ideal of R.
6. The converse of (5) is not true as the following example; Let F be the Z -module $Z \oplus Z$, let $\mathrm{N}=0 \oplus 8 \mathrm{Z}$ then $[\mathrm{N}: \mathrm{M}]=(0)$, which is an n -primary ideal, for each $\mathrm{n} \in Z_{+}$. However, N is not an n-primary submodule, for any $n \in Z_{+}$, since $2(0,4) \in N$, but $(0,4) \notin \mathrm{N}$ and $2^{n} \notin(N: F)=(0)$, for any $\mathrm{n} \in Z_{+}$.
7. Let N submodule of an R -module F , such that for each submodule K of $\mathrm{F}, \mathrm{K} \supset \mathrm{N}$ and $[\mathrm{K}: \mathrm{F}]$ $\not \subset[\mathrm{N}: \mathrm{F}]$. Then N is n-primary submodule if and only if [N: F] is an n-primary ideal of R.
8. Let F be a multiplication R-module, N a submodule of F and $\mathrm{n} \in Z_{+}$. Then N is an n primary submodule of F if and only if $[\mathrm{N}: \mathrm{F}]$ is an n-primary ideal of R .
9. Let N be a primary submodule of an R -module F , let $\mathrm{n} \in Z_{+}$. Then, N is the n-primary submodule of F if and only if $[\mathrm{N}: \mathrm{F}]$ is an n-primary ideal of R .
10. Let F be a multiplication R-module, and let I be an n-primary ideal of R. Then, IF is an n -primary submodule of F .

Conclusions

1. If N is a 2-prime submodule of an R -module F , Then $[\mathrm{N}: \mathrm{F}]$ is the 2-prime ideal of R .
2. The converse of (1) is not true in general for example: Let $\mathrm{F}=\mathrm{Z} \oplus \mathrm{Z}$ as Z -module and let $\mathrm{N}=(0) \oplus 8 \mathrm{Z}$.Then $[\mathrm{N}: \mathrm{F}]=(0)$ which is 2-prime ideal. But N is not a 2-prime submodule since $2(0,4) \in N$, but $(0,4) \notin N$ and $2^{2} \notin[N: F]=(0)$.
3. Let H be a proper submodule of module F over a ring R . Then H is a 2 -prime submodule if and only $i f\left[\mathrm{H}_{\mathrm{F}}(\mathrm{r})\right]$ is a 2-prime submodule, for every $\mathrm{r} \in \mathrm{R}$.
4. Let F, F be an R -modules and $\theta: \mathrm{F} \rightarrow \hat{\mathrm{F}}$ be an epimorphism and L is a submodule of F such that $\operatorname{ker} \theta \leq L$. If N is a 2-prime submodule of F such that $L \leq N$ then $\theta(N)$ is a 2-prime submodule of \mathfrak{F} such that $\theta(\mathrm{L}) \leq \theta(\mathrm{N})$.
5. If T, Y two submodules such that $\mathrm{T} \leq \mathrm{Y}$ and Y is a 2-prime submodule of a module F . Then T not necessary to be 2-prime of F, for example: Consider Z_{12} as a Z-module and $\mathrm{T}=\{\overline{0}, \overline{6}\}, \mathrm{Y}=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\} . \mathrm{Y}$ is a 2 -prime submodule of Z_{12} since $\overline{2} \cdot \overline{3}=\overline{6} \in \mathrm{Y}, \overline{3} \in$

Y but $2^{2} \notin\left[Y: Z_{12}\right]=3 Z$. but T is not a 2 -prime of Z_{12}, since $\overline{2} \cdot \overline{3} \in T, \overline{2}, \overline{3} \notin \mathrm{~T}$, and $2^{2}, 3^{2} \notin$ [$\mathrm{T}: \mathrm{Z}_{12}$].

References

[1] M.D. Larsen and P. J. Mccarlthy, Multiplicative theory of ideals, Academic Press, New York, 1971.
[2] S.A. Saymach, On Prime Submodules, University Noc. Tucumare Ser.A, vol. 29, 121-136, 1979.
[3] W. Messirdi and C. Beddani, 2-prime ideals and their multiplications, Journal of Algebra Taibah Univ. Dep. of Math. Madinah, Kingdom of Saudi Arabia (2015), No. (6806/1436).
[4] M. A.Hadi, n-primary Submodules-Basic Results, Journal of College of Education, AlMustansiriya University, vol.3, pp.103-108, 2005.
[5] C.P.Lu, Spectra of modules, Comm. In Algebra, vol. 23, 3741-3752, 1995.
[6] Lu. C.P, M-radicals of submodules in modules, Comment. Math. Japon., vol. 34, pp. 211-219, 1989.
[7] Wisbaur R. " Foundation of module and Ring theory, Gordon and Breach, Philadelphia, (1991).
[8] Eman Ali Athab, prime and semiprime submodules, MS.C Thesis, College of Science, University of Baghdad, Iraq (1996).
[9] Abdul-Rahman A.Ahmed, on submodules of multiplication modules, M.Sc. Thesis. University of Baghdad, Iraq (1992).
[10] C.P.Lu, Prime Submodules of Modules, comment. Malti. Univ. St. Paul., vol. 33, pp.61-69, 1984.
[11] Z.A.EL-Bast \&P. F.Smith, Multiplication modules, Comma. In Algebra, vol. 16, pp. 755-779, 1989.

[^0]: *Email: alqaisyfatima@gmail.com

