2-prime submodules of modules

Fatima Dhiyaa Jasem, Alaa A.Elewi
Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/2/2022 Accepted: 9/4/2022 Published: 30/8/2022

Abstract:
Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if rx ∈ H, for r ∈ R and x ∈ F implies that x ∈ H or r² ∈ [H:F], we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N_f(r)] is a 2-prime submodule of E, where f ∈ R. Also, we prove that if F is a non-zero multiplication module, then [K:F] ⊆ [H:F] for every submodule k of F such that H ⊆ K. Furthermore, we will study the basic properties of this kind of submodules.

Keywords: prime ideal, prime submodules, 2-prime ideal, primary submodule.

1. Introduction
Let R be a commutative ring with unity, an ideal P of a ring R is prime if for all elements a, b ∈ R, ab ∈ P implies that either a ∈ P or b ∈ P [1, Def (2.8), p4], as a generalization of the prime ideal, [2] introduced prime submodule where a proper submodule H of module F over a ring R is said to be prime if rx ∈ H, for r ∈ R, and x ∈ F, then either x ∈ H or r ∈ [H:F]. W.Messirdi introduced in [3] 2-prime ideals where a proper ideal I of a ring R is 2-prime ideal if for all x,y ∈ R such that xy ∈ I then either x² or y² lies in I. This paper is devoted to studying a generalization of 2-prime ideals. A proper submodule of H of module F over a ring R is said

*Email: alqaisyfatima@gmail.com
to be 2-prime submodule, if \(rx \in H \), where \(r \in R \), \(x \in F \) then either \(x \in H \) or \(r^2 \in [H:F] \). This definition appeared in [4] and it is called a 2-primary submodule, however, in our work, it is convenient to call it a 2-prime submodule. We prove many properties for this kind of submodules such as if \(H \) is a submodule of module \(F \) over a ring \(R \) then \(H \) is a 2-prime submodule if and only if \([N:F] \) is a 2-prime submodule of \(E \).

2. Basic result for a 2-prime submodule.

The concept of \(n \)-primary submodules was introduced by [4]. Let \(H \) be a proper submodule of an \(R \)-module \(F \) and \(n \in Z_+ \). \(H \) is called \(n \)-primary submodule, if whenever \(r \in R \), \(x \in F \), \(rx \in H \) implies \(x \in H \) or \(r^n \in [H:F] \) where \([H:F] = \{r \in R, rF \subseteq H\}\), we shall study the case when \(n=2 \) for this kind of submodules.

Definition (2.1): Let \(H \) be a proper submodule of an \(R \)-module \(F \), \(H \) is called 2-prime submodule, if whenever \(r \in R \), \(x \in F \), \(rx \in E \), implies \(x \in H \) or \(r^2 \in [H:F] \).

Remarks and Examples (2.2):
1. Every prime submodule is a 2-prime submodule.
 Proof: Let \(H \) be a prime submodule of an \(R \)-module \(F \) and let \(r \in R \), \(x \in E \) such that \(rx \in H \), since \(H \) is a prime submodule, either \(x \in H \) or \(r \in [H:F] \), hence \(r^2 \in [H:F] \) and therefore \(H \) is a 2-prime submodule.
2. The converse of (1) is not true in general for example the submodule \(4Z \) in \(Z \)-module \(Z \) is a 2-prime submodule, however, it is not prime submodule.
3. The converse of (1) is true, if \([N:F] \) is the semi-prime ideal of \(R \) which means if a submodule \(N \) of an \(R \)-module is 2-prime and \([N:F] \) is semiprime ideal, then \(N \) is prime.
 Proof: Let \(rx \in N \), where \(r \in R \), \(x \in F \). Since \(N \) is a 2-prime submodule then either \(x \in N \) or \(r^2 \in [N:F] \), so \(r \in \sqrt{[N:F]} \), but \(N \) is semiprime ideal. So \(r \in [N:F] \), hence \(N \) is a prime submodule.
4. The \(Z \)-module \(Z_{p\infty} \) has no 2-prime submodules.
 Proof: Every proper submodule in \(Z_{p\infty} \) is of the form \((\frac{1}{p^n} + Z)\) where \(n \in Z_+ \) and by [5] if \(k \) is a proper submodule of \(Z_{p\infty} \), then \([K:Z_{p\infty}] = (0)\). Now, let \(N \subseteq Z_{p\infty} \) and thus \(N = (\frac{1}{p^n} + Z) \), where \(i \in Z_+ \). It’s clear that \(p^{i+1} + Z = \frac{1}{p^{i+1}} + Z \notin N \) and \(p^2 \notin [N:Z_{p\infty}] = (0) \). Then, \(N \) is not a 2-prime submodule.
5. Every 2-prime submodule is a primary submodule where a proper submodule \(H \) of an \(R \)-module \(F \) is primary, whenever \(rx \in H \) for \(r \in R \) and \(x \in F \) then either \(x \in H \) or \(r^2 \in [H:F] \) for some \(n \in Z_+ \) [6].
6. The converse of (4) is not true as the following example shows: Consider \(Z \) as \(Z \)-module let \(H = 8Z \) is a submodule of \(Z \), \(H \) is primary, but \(2 \cdot 4 \in H \) and \(2^2 \notin [8Z:Z] = 8Z \). So that \(H \) is not a 2-prime submodule.
 Note: prime submodule \(\rightarrow \) 2-prime submodule \(\rightarrow \) primary submodule.
7. Let \(F \) be a module on integral domain \(R \). Then \(\tau(F) \) is a 2-prime submodule if \(\tau(F) \neq F \) where \(\tau(F) \) is called torsion submodule defined \(\tau(F) = \{x \in F: \exists r \in R, r \neq 0 \text{ such that } rx = 0\} [7] \).
 Proof: By [[8], remark and examples (1.2),P6] \(\tau(F) \) is prime when\(\tau(F) \neq F \).
 Thus, by (1) \(\tau(F) \) is a 2-prime submodule.
8. Let \(F \) be a torsion-free module over an integral domain \(R \). Then every pure submodule of \(F \) is 2-prime where module \(F \) over an integral domain \(R \) is torsion-free if \(\tau(F) = 0 \). And a submodule \(K \) of \(F \) is pure if \(IF \cap K = 1K \) for every ideal \(I \) of \(R \).
 Proof: clear from [[8], remark, and examples (1.2),P6], and by (1)

Proposition (2.3): If \(N \) is a 2-prime submodule of an \(R \)-module \(F \) then \([N:F] \) is the 2-prime ideal of \(R \).
Proof: Let \(a, b \in R \) such that \(ab \in [N:F] \), assume \(a \in [N:F] \) thus there exists \(x \in F \) and \(ax \notin N \) but \(ab \in [N:F] \), so \(abx \in N \), but \(N \) is 2-prime submodule and \(ax \notin N \) thus \(b^2 \in [N:F] \). Therefore, \([N:F] \) is the 2-prime ideal.

Remark (2.4): The converse of proposition (2.3) is not true in general for example: Let \(F = \mathbb{Z} \oplus \mathbb{Z} \) as \(Z \)-module and let \(N = (0) \oplus \mathbb{Z} \). Then \([N:F] = (0) \) which is 2-prime ideal. But, \(N \) is not a 2-prime submodule since \(2(0,4) \in N \), but \((0,4) \notin N \) and \(2^2 \notin [N:F] \).

Now, we give a characterization for 2-prime submodules.

Theorem (2.5): Let \(N \) be a proper submodule of an \(R \)-module \(F \). The following three statements are equivalent:

1. \(N \) is a 2-prime submodule,
2. \(a^2 \in [N_R,F], a \in R \) if and only if \(a^2 \in [N_F(c)] \) for every \(c \in F \).
3. \(a^2 \in [N_R,F], a \in R \) if and only if \(a^2 \in [N:K] \) for every submodule \(K \) of \(F \) such that \(N < K \).

Proof: (1) \(\Rightarrow \) (2) let \(c \in F \setminus N \) if \(a^2 \in [N:F] \) then it is clear that \(a^2 \in [N_R(c)] \) then \(a(ac) \in N \) since \(N \) is a 2-prime submodule. Then either \(ac \in N \) or \(a^2 \in [N:F] \). If \(a^2 \in [N:F] \), then there is nothing to do. If \(ac \in N \) as \(N \) is 2-prime submodule and \(c \notin N \), so \(a^2 \in [N:F] \), hence we get the result.

(2) \(\Rightarrow \) (3) If \(a^2 \in [H:F], then \) \(a^2 \in [N:K] \), if \(a^2 \in [N:K] \) where \(N \subseteq K \). Thus \(\alpha^2 K \subseteq N \). Since \(N \subseteq K \) and \(x \notin N \) and so \(a^2x \in N \), i.e. \(a^2 \in [N:F] \). It follows \(a^2 \in [N:F] \) (by condition 2).

(3) \(\Rightarrow \) (1) Let \(x \in \mathbb{N} \) and suppose \(m \notin \mathbb{N} \), put \(K = N + <m> \), so \(k \notin \mathbb{N} \). Then \(a^2 = a^2(N + <m>) \), \(a^2N + a^2 <m> \subseteq N \) therefore \(a^2 \in [N:K] \). Hence by condition (3), \(a^2 \in [N:F] \) and thus \(N \) is a 2-prime submodule.

By using proposition (2.5), we have the following result.

Corollary (2.6): Let \(F \) be an \(R \)-module and \(N \) is a proper submodule. The following statements are equivalent:-

1. \((0) \) is a 2-prime submodule,
2. \(a^2 \in \text{ann}(F), a \in R \) if and only if \(a^2 \in \text{ann}(c) \), where \(c \in F \),
3. \(a^2 \in \text{ann}(F), a \in R \) if and only if \(a^2 \in \text{ann}(c) \), where \(K \) is a submodule of \(F \) such that \(N \subseteq K \).

Proposition (2.7): Let \(H \) be a proper submodule of module \(F \) over a ring \(R \). Then \(H \) is a 2-prime submodule and if only if \([H_F(r)] \) is a 2-prime submodule for every \(r \in R \).

Proof: \((\Rightarrow) \) let \(ax \in [H_F(r)] \), so \(ax \in H \). Since \(H \) is a 2-prime submodule, Then either \(x \in H \) or \(a^2 \in [H:F] \). If \(x \notin H \), then \(x \in [H_F(r)] \) and if \(a^2 \in [H:F] \), hence \(a^2 \cap L \subseteq L \). Therefore \(a^2 \in [H:F] \). Thus, \([H_F(r)] \) is a 2-prime submodule.

(\(\Leftarrow\)) Now, let \(ax \in H, x \in F, a \in R \), so \(a \in H \) and if \(H \) is a 2-prime submodule, so \(x \in [H_F(r)] \) and \(a^2 \in [H:F] \). If \(x \in [H:F] \), take \(r = 1 \) then \(x \in H \) and if \(a^2 \in [H:F] \), \(a^2 \in [H:F] \) therefore, \(H \) is a 2-prime submodule.

Proposition (2.8): Let \(F, \hat{F} \) be \(R \)-modules and \(\theta: F \rightarrow \hat{F} \) be an epimorphism and \(L \) is a submodule of \(F \) such that \(\ker \theta \leq L \). If \(N \) is a 2-prime submodule of \(F \) such that \(L \leq N \), then \(\theta(N) \) is a 2-prime submodule of \(\hat{F} \) such that \(\theta(L) \leq \theta(N) \).

Proof: First we claim that \(\theta(N) \) is a proper submodule of \(\hat{F} \). If not i.e. \(\theta(N) = \hat{F} \), thus for every \(a \in F \) there exists \(n \in N \) such that \(\theta(n) = \theta(a) \) so \(a - n \in \ker \theta \leq L \subseteq N \), hence \(a \in N \) therefore, \(N = F \), but this is a contradiction. Thus, \(\theta(N) \leq \hat{F} \).

Now, let \(r \in R \) and \(x \in \hat{F} \) such that \(rx \in \theta(N) \), but \(\theta \) is an epimorphism and thus there exists \(x \in F \) such that \(\theta(x) = x \). So \(rx = r\theta(x) = \theta(rx) \in \theta(N) \) then there exists \(y \in N \) such that \(\theta(y) = \theta(rx) \). i.e. \(rx - y \in \ker \theta \leq L \leq N \), so \(rx \notin N \) but \(N \) is a 2-prime submodule of \(F \) and thus \(x \in N \) or \(r^2 \in [\theta(N):\hat{F}] \), hence \(\theta(N) \) is the 2-prime submodule of \(\hat{F} \). It’s clear that \(\theta(L) \leq \theta(N) \).
Corollary (2.9): Let N, H be submodules of an R-module F such that $H \leq N$ and N is 2-prime of F, $\frac{N}{H}$ is a 2-prime submodule of $\frac{F}{H}$.

Proof: Let $\pi : F \rightarrow \frac{F}{H}$ be an R-homomorphism since N is 2-prime of F then by proposition (2.8), $\pi(N)$ is a 2-prime submodule of $\frac{F}{H}$.

Corollary (2.10): Let F be an R-module and $H \leq N \leq L \leq F$ such that $\frac{L}{H}$ is a 2-prime submodule of $\frac{F}{H}$, then $\frac{L}{N}$ is a 2-prime submodule of $\frac{F}{N}$.

Proof: $\theta : \frac{F}{H} \rightarrow \frac{F}{N}$ be the map defined by $\theta(x + H) = x + N$, $\forall x \in F$. Clear that θ is an epimorphism, since $\frac{L}{H}$ is a 2-prime submodule of $\frac{F}{H}$ then $\theta(\frac{L}{H})$ is 2-prime in $\frac{F}{H}$. That means $\frac{L}{N}$ is a 2-prime submodule of $\frac{F}{N}$.

Corollary (2.11): If T, Y are two submodules of module F such that T is 2-prime of F then T is 2-prime in Y.

Proof: Let $\tau \in R$, $a \in Y$ such that $ra \in T$ since T is 2-prime in F. Then either $a \in X$ or $r^2 \in [T : F]$ i.e. $r^2F \subseteq T$ since $Y \subseteq F$. Then $r^2 \in [T : Y]$ therefore, T is 2-prime in Y.

Corollary (2.12): Let F be an R-module and $H < N < F$. If N is a direct summand of F and H is a 2-prime submodule of F. Then H is a 2-prime submodule of N.

Proof: since N is the direct summand of F, $N \oplus L = F$ for $L < F$ but H is a 2-prime submodule of F, then $H \oplus (0)$ is 2-prime of $N \oplus L = F$ by (proposition 3.12).

Thus, H is a 2-prime submodule of N.

Remark (2.13): If T and Y are two submodules such that $T \leq Y$ and Y is a 2-prime submodule of module F, then T is not 2-prime of F, for example: Consider Z_{12} as a Z-module and $T= \{0,6\}$, $Y= \{0,3,6,9\}$. Y is a 2-prime submodule of Z_{12} since $2^2 \cdot 3 = 6 \in Y$ but $2^2 \notin [Y : Z_{12}] = 3Z$. but T is not a 2-prime of Z_{12} since $2^2 \cdot 3 \in T$ and $2^2 \cdot 3 \notin [T : Z_{12}]$.

Remark (2.14): The 2-prime submodule is not transitive which means if $H \leq N \leq F$ and H is a 2-prime submodule of N and N is a 2-prime submodule, then H does not a 2-prime submodule of F, as the example in Remark (2.12) in the Z-module Z_{12} and $\{0,3,6,9\}$ is a 2-prime submodule of Z_{12}, however, $\{0,6\}$ is not 2-prime submodule of Z_{12}.

3 The other result about 2-prime submodules.

In this section, we give the relation between 2-prime submodules and maximal submodule, primary. Also, we study the 2-prime submodules in the module of fractions.

Definition (3.1) [9]: Let F be an R-module and H be a proper submodule of F. H is called maximal if for every submodule L of F such that $L \subseteq H$ then either $H=L$ or $F=L$.

Lemma (3.2) [10]: If H is a maximal submodule of F, then [H : R] is maximal ideal in R.

Proposition (3.3) [10]: Let H a submodule of F, if $[H : F]$ maximal ideal in R, then H is prime submodule in F.

Corollary (3.4): Let H be a submodule of F. If $[H : F]$ maximal ideal in R, then H is a 2-prime submodule of F.

Proof: By Proposition 3.3 and by Remarks and Examples (2.2) (1).

Corollary (3.5): If K is a proper submodule of an R-module F such that $H \subseteq K$ and the ideal $[H : F]$ is maximal in R then K is a 2-prime submodule of F.

Proof: It’s clear that $[H : F] \subseteq [K : F]$ since $H \subseteq K$. But $[K : F]$ is proper in R and K is proper submodule in F. Also, $[H : F]$ is maximal in R then $[K : F] = [H : F]$ and by corollary (3.4) then K is 2-prime submodule of F.

Corollary (3.6): Every maximal submodule is a 2-prime submodule.

Proof: By [8, corollary (2.5), P14] and by remarks and examples (2.2) (1).
Corollary (3.7): Let F is an R-module and I is maximal ideal if F ≠ IF, then IF is a 2-prime submodule of F.

Proof: By [8, cor. (2.6), p14], IF is prime and by Remarks and Examples (2.2) (1), IF is a 2-prime submodule.

Proposition (3.8): Let H be a proper submodule of module F over Ring R such that [K: F] ⊆ [H: F] for every submodule K of F with H ⊆ K. Then H is 2-prime of F if and only if the ideal [H: F] is 2-prime ideal in R.

Proof: (⇐) suppose [H: F] is 2-prime ideal in R and let rx ∈ H where r ∈ R, x ∈ F and x ∉ H. Hence, tx ∈ [H: F] for every submodule K of F with H ⊆ K. Thus, by Proposition (3.10), H is 2-prime of F if and only if the ideal [H: F] is 2-prime in R.

(⇒) (By proposition 2.3).

Remark (3.9): [8, Remark (2.15), P18] If E ≠ 0 is multiplication module and N is a proper submodule of E, then [K: E] ⊆ [H: E] for every submodule K of E such that H ⊆ K.

Corollary (3.10): Let H be a proper submodule of a multiplication module E, then H is a 2-prime in E if and only if the ideal [H: E] is 2-prime in R.

Proof: It’s obvious from Proposition (3.9) and Remark (3.10).

Proposition (3.11): Let E1 and E2 be two R-modules. Then N1 and N2 are 2-prime submodules of E1 and E2, respectively if and only if N1 ⊕ N2 is 2-prime submodule of E1 ⊕ E2.

Proof: (⇒) Let r∈R and x=(x1, x2)∈E1 ⊕ E2 where x1 ∈ E1 and x2 ∈ E2 such that rx ∈ N1 ⊕ N2. Thus (rx1, rx2) = (n1, n2) for some n1 ∈ N1 and n2 ∈ N2, this implies that rx1 = n1 ∈ N1 and rx2 = n2 ∈ N2. But each of N1 and N2 is 2-prime submodules of E1 and E2 respectively. And therefore either x1 ∈ N1 or r2 ∈ [N1: E1] and either x2 ∈ N2 or r2 ∈ [N2: E1]. Hence either x=(x1, x2) ∈ N1 ⊕ N2 or r2 ∈ [N1 + N2: E1 + E2]

(⇐) Let ρ1:E1 ⊕ E2 → E1 be the natural projection and suppose that H is the 2-prime submodule of E. By proposition (2.8) ρ1(H) is the 2-prime submodule of E1, i.e. H1 is a 2-prime submodule of E1. Similarly, H2 is a 2-prime submodule of E2.

Proposition (3.12): Let N be a 2-prime submodule of an R-module E such that S⁻¹(N) ≠ S⁻¹(E). Then S⁻¹N is a 2-prime submodule of, S⁻¹E [where S⁻¹E = {s⁻¹ : s ∈ S} (S is a multiplicative subset of R)].

Proof: First, notice that S⁻¹(N) is proper of S⁻¹(E). Now, let r ∈ R and r.s ∈ S⁻¹(R) and r₂.s ∈ S⁻¹(E) such that r.s,r₂.s ∈ S⁻¹(N) and thus ∃ n ∈ N and t ∈ S such that r.s.n = r₂.n = t this means that ∃ w ∈ S such thatwtm ∈ N. So r(wtm) ∈ N. But N is a 2-prime submodule. Then, either wt ∈ N or r² ∈ [N: E]. Thus, S⁻¹N is a 2-prime submodule of, S⁻¹E [where S⁻¹E = {s⁻¹ : s ∈ S} (S is a multiplicative subset of R)] then r².s = r².s ∈ S⁻¹(N) then r².s ∈ S⁻¹(E) then 1.s.r².s = r².s ∈ S⁻¹(N) then r².s ∈ S⁻¹(E).

Proposition (3.13): Let E be an R-module, S multiplicative subset of R, if W is a 2-prime submodule in S⁻¹(E), then φ⁻¹(W) is a 2-prime submodule of E.

Proof: since W ≠ S⁻¹(E) so S ∩ φ⁻¹(W) = φ ∩ φ⁻¹(W) = E. Let r ∈ R, m ∈ E such that rm ∈ φ⁻¹(W) ⇒ φ(rm) = rm ∈ W but W is 2-prime in S⁻¹(E) then either m ∈ W or r² ∈ [W: S⁻¹(E)] then φ⁻¹(m) = m ∈ W or r² ∈ [φ⁻¹(W): E] = φ⁻¹(W) is 2-prime ideal in E.

Definition (3.14): An R-module M is called Noetherian if the set of all sub-modules of M is Noetherian. [7].

Definition (3.15): An R-module E is faithful if its annihilator is zero [7].

Proposition (3.17): Let F be a faithful multiplication Noetherian R-module. Then, F satisfies d.c.c on 2-prime submodules.

Proof: Let $H_1 \supseteq H_2 \supseteq \cdots$ be descending chain of 2-prime submodules of F. Then, $[H_1 : F] \supseteq [H_2 : F] \supseteq \cdots \ (1)$.

On the other hand, by proposition (2.3), for each $i \in Z_+[H_i : F]$ is the 2-prime ideal of R, hence (1) is a descending of 2-prime ideals of R. But F is a faithful multiplication Noetherian R-module, so R is a Noetherian [6, 5.3, P.767], hence R satisfies d.c.c on 2-prime, it follows that $\exists k \in Z_+$ such that $[H_k : F] = [H_{k+1} : F] = \cdots$. Therefore, $[H_k : F]F = [H_{k+1} : F]F = \cdots$. Thus, $H_k = H_{k+1} = \cdots$.

We will give the difference between our work and the work in [4] and we give a conclusion for each of them.

The difference between the work in [4] and our work is that every prime submodule is a 1-primary, hence it is an n-primary submodule, [for each $n \in Z_+$]. It makes a difference when $n = 1$, $n = 2$.

Now, we will summarize the main result of [4] as follows:

1. Every n-primary submodule is a primary submodule.
2. If N is an n-primary submodule of an R-module F, then N is an n+1-primary submodule.
3. It is clear every prime submodule is a 1-primary, and hence it is an n-primary submodule, for each $n \in Z_+$.
4. If N is a 2-primary submodule of an R-module F, then it is not necessary that N is an n-primary submodule as the following example shows; Let F be the Z module Z. Let $N = 125\mathbb{Z}$. It is easy to show that N is a 3-primary submodule of F. However N is not 2-primary since $125 \cdot 5 = 25 \in \mathbb{N}$ and $25^2 = 625 \in N : (N : Z)$.
5. If N is an n-primary submodule of an R-module F, then $(N : F)$ is an n-primary ideal of R.
6. The converse of (5) is not true as the following example; Let F be the Z-module $\mathbb{Z} \oplus \mathbb{Z}$, let $N = 0 \oplus 8\mathbb{Z}$ then $[N : M] = (0)$, which is an n-primary ideal, for each $n \in Z_+$. However, N is not an n-primary submodule, for each $n \in Z_+$, since $2(0, 4) \in N$, but $(0, 4) \in N$ and $2^n \in (N : F) = (0)$, for any $n \in Z_+$.
7. Let N submodule of an R-module F, such that for each submodule K of F, $K \supseteq N$ and $[K : F] \not\in [N : F]$. Then N is n-primary submodule if and only if $[N : F]$ is an n-primary ideal of R.
8. Let F be a multiplication R-module, N a submodule of F and $n \in Z_+$. Then N is an n-primary submodule of F if and only if $N \subseteq N : (N : F)$ is a 2-primary submodule, for every $r \in R$.
9. Let N be a primary submodule of an R-module F, let $n \in Z_+$. Then, N is the n-primary submodule of F if and only if $N : F$ is an n-primary ideal of R.
10. Let F be a multiplication R-module, and let I be an n-primary ideal of R. Then, IF is an n-primary submodule of F.

Conclusions

1. If N is a 2-prime submodule of an R-module F, Then $[N : F]$ is the 2-prime ideal of R.
2. The converse of (1) is not true in general for example: Let $F = \mathbb{Z} \oplus \mathbb{Z}$ as Z-module and let $N = (0) \oplus 8\mathbb{Z}$. Then $[N : F] = (0)$ which is 2-prime ideal. But N is not a 2-prime submodule since $2(0, 4) \in N$, but $(0, 4) \in N$ and $2^2 \notin (N : F) = (0)$.
3. Let H be a proper submodule of module F over a ring R. Then H is a 2-prime submodule if and only if $H : (H : \mathbb{R})$ is a 2-prime submodule, for every $r \in R$.
4. Let F, \hat{F} be an R-modules and $\theta : F \to \hat{F}$ be an epimorphism and L is a submodule of F such that $\ker \theta \leq L$. If N is a 2-prime submodule of F such that $L \leq N$ then $\theta(N)$ is a 2-prime submodule of \hat{F} such that $\theta(L) \leq \theta(N)$.
5. If T, Y two submodules such that $T \leq Y$ and Y is a 2-prime submodule of a module F. Then T not necessary to be 2-prime of F, for example: Consider Z_{12} as a Z-module and $T = \{0, 6\}, Y = \{0, 3, 6, 9\}$, Y is a 2-prime submodule of Z_{12} since $2 \cdot 3 = 6 \in Y, 3 \in$
Y but $2^2 \not\in [Y: \mathbb{Z}_{12}] = 3\mathbb{Z}$. but T is not a 2-prime of \mathbb{Z}_{12}, since $\overline{2} \cdot \overline{3} \in T$, $\overline{2}, \overline{3} \not\in T$, and $2^2, 3^2 \not\in [T: \mathbb{Z}_{12}]$.

References