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Abstract

In real world, almost all networks evolve over time. For example, in networks of
friendships and acquaintances, people continually create and delete friendship
relationship connections over time, thereby add and draw friends, and some people
become part of new social networks or leave their networks, changing the nodes in
the network. Recently, tracking communities encountering topological shifting
drawn significant attentions and many successive algorithms have been proposed to
model the problem. In general, evolutionary clustering can be defined as clustering
data over time wherein two concepts: shapshot quality and temporal smoothness
should be considered. Snapshot quality means that the clusters should be as precise
as possible during the current time step. Temporal smoothness, on the other hand,
means that the clusters should not changed dramatically between successive time
steps. In this paper, a multi-objective optimization model, based on internal
community density as snapshot metric, is proposed and compared with the state-of-
the-art modularity based model. Both models are then used to solve the community
tracking problem in dynamic social network. The problem, in both models, is stated
as a multi-objective optimization problem and the decomposition based multi-
objective evolutionary algorithm is used to solve the problem. Experimental results
reveals that the proposed model significantly outperforms the already existing model
in the ability of tracking more shifted communities.

Keywords: Evolutionary clustering; evolutionary network analysis; dynamic social
networks; graph partitioning; social network analysis.
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1. Introduction

Over the past few years, the application of dynamic social network has steadily grown interests. It
has become an important part in many disciplines that involve dynamic systems. Examples include,
but not limited to, social-communication networks, biological networks, World Wide Web, Face-book
and Twitter, etc. Evolutionary clustering of a dynamic network aims at mining evolving pattern of
membership of individuals (denoted as module, community, or simply, cluster) that has dense (intra-
connection) between them and sparse (inter-connection) with other patterns. From this perspective,
evolutionary clustering can emerge to find evolving communities over time. Evolutionary clustering
having temporal phenomenon is first introduced by Chakrabarti et al. [1]. They stated that
evolutionary clustering can be modeled while simultaneously optimizing two criteria: snapshot quality
(where a cluster should reflect accurate data membership at the current time) and, temporal
smoothness (where a cluster could shift, but smoothly, over time).

Mathematically, a network is modeled as graph of pairwise edges between its nodes. Consider a
social network V' of n individuals being modeled by G = (V,E). Let ¢ = {C, ..., Cx} be a candidate
partitioning of V. Let n; and m; = ¥, wec;,(v,w) be the degree and volume of C;, respectively.
Moreover, let in;(v) = Yec,(v,w) and out;(v) = Ywec,(v, w) be, respectively, the number of intra-
connections and inter-connections of node v which belongs to cluster C; (i.e. |l,| = in;(v) +
out;(v)). Figure-1 captures the evolution of a Kim and Han [2] social network, consisting of 128
nodes. The figure captures the network at 10 different time steps.

Figure 1- Evolution of Kim and Hans' 128-node network with 4 communities at ten time steps (from
left to right and from top to bottom).
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Chakrabarti et al. [1] proposed a two-fold evolutionary clustering framework to maintain both
snapshot cost (SC) and temporal cost (T'C) by simultaneously optimizing two conflicting criteria: the
accuracy of clustering at the current time step and the gradual drift from the most recent clustering
history. Maximizing both SC and TC reflects, as a result, the mild transition of nodes through
successive time steps. Inspired by the work of Chakrabarti et al., several heuristic and meta-heuristic
evolutionary clustering approaches have been proposed in the literature with paramount performance
for the multi-objective evolutionary algorithms (MOEAs). For example, a multi-objective evolutionary
based evolutionary clustering algorithm is recently proposed by Folino and Pizzuti [3] and [4], to
outperform most state-of-the-art methods. Snapshot quality is maintained by adopting the most
common measures used in the literature to capture the hidden structure of community. Snapshot cost,
SC, is measured using modularity [5], community score [4], conductance [6], or
normalized cut [7]. They demonstrated that MOEAs deserve the credit for providing additional
improvement on the accuracy of evolutionary clustering over other state-of-the-art methodologies.
Moreover, they proved that modularity based MOEA (Q) has the best performaance over other
MOEA's models.

Modularity, Q [5], awards a partition solution C = {Cj, ..., Cx} according to the fraction of intra-
connections inside {Cy, ..., Cx} (Eq. 1). In Eqg. 1, two contradictory objectives are handled. The first
term in Eq. 1 biases towards a solution € with a densely intra-connected modules. On the other hand,
the second term expresses that the expected value of the same edge density in € with the same
community structure {C, ..., Cx} but fall at random between the vertices should be small. Q will
approach its minimum at 0 if the number of within-community edges is no better than random. On the
other hand, values approaching Q = 1, which is the maximum, indicate strong community structure.

m; ZVECillv|)2] (1)

max Q(ct) = {(=1 [m - 2|L|

On the other hand, temporal cost, TC, (using Normalized Mutual Information — NMI [6])
measures how similar the community structure of a time step t to that at time ¢t — 1. NMI between
two partitions Ct and ¢t~ of a network N of n nodes at times ¢t and t — 1, respectively, is the
normalization of the mutual information (MI) score between Ct and Gt~ being scaled between 0 (no
mutual information) and 1.0 (perfect correlation). Consider the confusion matrix ¢ = [cij], i=
1,..,Kerand j =1, ..., Kpe-1, Where c;; be the number of nodes of community i of C! that are also in
community j of ¢t~1. Then,

Kot Kot-1
=232 Xjoy  cijlog(eijxm/cicy)
o garsery )
2=y citog(ei/m+X;2;  cjlog(cj/m)
where ¢; and ¢; are the sum of elements of community i in C* and community j in C*~*, respectively.
Note that when t = 1, temporal cost, TC, will be neglected from the whole formula and the problem
will be stated as single objective community detection problem.

In terms of snapshot cost function (SC), however, some of other well known community detection
models are still uninvestigated in the literature of MOEA based evolutionary clustering algorithms.
These includes Internal Density (ID) and Expansion (EX) [7], and Cut Ratio (CR) [8]. The
contribution of this paper is to formulate evolutionary clustering problem as a multi-objective
optimization problem, based on Internal Density (ID). Section 2 briefly review basic concepts of
multi-objective evolutionary algorithms. This is followed by the proposed MOEA based formulation
for the multi-objective evolutionary clustering problem. Section 4, then, evaluate the performance of
the proposed evolutionary clustering model against Folino and Pizzuti's model [4]. The final section
presents major conclusions and recommendation of this work.

2 Multi-objective evolutionary algorithms (MOEA)

Instead of single optimal or near-optimal solution, a set of non-dominated solutions can
simultaneously be obtained to solve different real world problems as multi-objective optimization
problems (MOPs). Consider a MOP of n decision variables X € R™ = [xq, x5, ..., x,]7, and k
objective functions F(X) = [f;(X), F,(X), ..., f,(X)]7, i.e. F: R" - Rk, F(X) is optimized (in terms
of domination) towards finding Pareto-optimal set of solutions (also called Pareto set, PS), each of
which is said to be a non-dominated or a non-inferior solution, denoted as X* = [x], x5, ..., x5 ]7| X* €
X. To define domination, consider two vectors U and V from the solution space R™ = Q(X), i.e.

NMI(ct,et ) =
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U € X and V € X. Then, solution U is said to dominate V if and only if the following two conditions
hold [9]:
1. Solution U is no worse than V in all objectives, or formally, vi,1 <i < k: ff;(U) » £;(V). For

example in maximization, the word "no worse" means f;(U) > f;(V).

2. The solution U is strictly better than V in at least one objective, or formally, f;(U) < f;(V) in at
least one objective f;, i € {1,2, ..., k}. For maximization, the word "strictly better" means f;(U) >

ff; (V).

Hence, a non-dominated set can be defined as: among a set of solutions Q(X), the non-dominated
solutions set Q(X) c Q(X) are subset of solutions which are not dominated by any other solution in
Q(X). Among the famous population based multi-objective evolutionary algorithms (MOEAs) being
successfully applied to many real-world problems is the decomposition based multi-objective
evolutionary algorithm (MOEA/D) of Zhang and Li [10]. Consider MOP with k objective functions:
min F(X) = [1(X), LX), ..., i (X)]" @)
subjectto X € Q
Also, consider a reference point Z* = (z7, ..., 2 ) to hold the best value obtained so far by MOEA/D
for each of the k objective functions, formally speaking: Vi € {1, ..., k}

z; = iX" € QX)) AX € AX)| f;(X) > fi(X) (4)
where )l c Q

In MOEA/D, a population P = {Py,P,, ..., Ppopsize} Of parent solutions is used to represent
PopSize scalar optimization sub-problems. In other terms, MOP is decomposed by MOEA/D into
PopSize sub-problems. Each individual P;, 1 < i < PopSize is associated with one weight vector 4;
of length k out of a set of PopSize even spread weight vectors W = {44, 4, ..., Apopsize}. Recall that
there are k objective functions for the MOP, then each P; has weight vector
Ai = (s Aizs s Aige), S £. X5 1 A ; = 1 . Moreover, each individual P;, 1 < i < PopSize is evolved
using information gathered only from its s neighbor solutions. Neighbor solutions to P;, denoted by
g ={9i1,9i2, - 9is} are those with the closest distance (using Euclidean distance) weight vectors
to A;. Formally, vj € {1, ..., s}

Pj Egiie A /11 € Wl Zalg:l(li,x - Aj,x)z > Zalg:l(/li,x - Al,x)z (5)

In MOEA/D, the problem of approaching close the Pareto Front, PF, of a general MOP defined in
Eqg. (3) can be decomposed into PopSize scalar optimization sub-problems using Tchebycheff
approach being formulated as: Vi € {1, ..., PopSize} A Vj € {1,...,k}
9t (P2, %) = ming i {A; 1f;(P) — Zf|} (6)

In terms of minimization, MOEA/D minimizes all these gf¢ scalar objective functions
simultaneously in a single run. During evolution, MOEA/D maintains an exterior population EP, for
archiving non-dominated solutions found during the search. At each generation, MOEA/D performs
four main operations while generating new PopSize solutions {P;’, P,', ..., Ppopsize'}:

e First, for each parent individual P; € P, a new offspring solution P;" is generated, using problem-

specific genetic operators (e.g., crossover and mutation), from only its neighbors g;.

e Second, if necessary it updates the reference points z* = (33, ..., 3x). Vj € {1, ..., k}, if, in case of

minimization, z; > f;(P;") , then it sets z; = f;(P;").

e Third, it updates the neighbors of P;: Vj € {1,...,s}, if g{*(P/|4;,5") < g%(gi;14;, 7). then it
sets 9ij = Pi, and lF(gl,]) = IF(PLI)
e Finally, it updates EP by removing from it all solutions Y where F(P;") < F(Y) and insert P;’ into

EPif AY € EP - F(Y) < F(P,).
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Algorithm 1 outlines the general steps of MOEA/D.

Algorithm 1. The general outline of MOEA/D

Input:
e Multi-objective minimization problem f(x) = (f1(X), f2(X), ..., fm (X))
o Number of sub-problems to be evolved, i.e. population size, N
e Uniform spread of N weight vectors: A;, 4,, ..., Ay suchthat A; = (4;1,4;2, ..., Aim)
o Neighborhood size of each weight vector, T
o Maximum number of generations, max;
o Probability of crossover, p,
e  Probability of mutation, p,,
Output: External archive of Pareto set of non-dominated solutions, EP.
Step 0 - Setup:
e EP=¢
e t=0
Step 1 — Initialization
e Uniformly, generate an initial population, Py = {IP;, P5, ..., Py }.
e Evaluate fitness vector f(P;) = (fi(P;), fL(P)), ..., fm(P)), Vi =1,2,...,N.
e Initialize ideal vector z* = (21,35, ..., 2;,)T by a problem-specific method.
e Compute Euclidean distance between weight vectors 14, 4, ..., Ayand assign the T
closest vectors A}, 2%, ..., ATto each A;. Vi = 1,2, ..., N, set B(i) = {iy, ip,...,ir}.
Step 2 — Evolve cycle: Fori = 1,2, ...,N
« Randomly select two indices k, [from B(i), and generate a new solution Y from P,
and IP; using crossover and mutation operators.
« Updatez*,vj =1,..,m,if z;7 > f; (Y), thensetz; =f; (V).
- Update neighboring solutions: For each index j € B(i), if g*¢(Y|4;,z*) <
g'¢(P;|4;,z%), then setP; = Y and f; = £ (Y).
« Update EP: Remove from EP all vectors dominated by f(Y).
Insertf (Y) to EP if no vector in EP dominate f(Y).
Step 3 — Termination rule
o Ift =ty then stop and output EP,
elset = t + 1, goto Step 2.
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3 The proposed MOEA based evolutionary clustering model

Mathematically, a network is modeled as graph of pair-wise edges between its nodes. Assuming,
for example, a friendship graph G modeling a social network V", the pairwise friendship connections
between individual entities of V" can be modeled by the pair (V, E). The set of n individuals or entities
in V' is denoted as the set of nodes or vertices V = {v,, v, ..., v, } in G while the friendship connection
between any pair of individuals in V" is denoted as edge (v;, v;) INE, ie. E = {(v;, v)|1 <i,j<n A
i #j}. Normally, any undirected graph G can be represented by an adjacency matrix A. Rows and
columns of A are labeled with the vertices of V and the entry (i,j) is 1 if vertex v; is adjacent to
vertex vj, i.e. if (v;, v;) € E. In list notation, matrix A can be represented by a set of n adjacency lists
L={l,1, .., 1.} one list [; for each vertex v; € V aggregating all 1 entries in row i. Thus, |/;| =
Z?zl(i,j) and L] = X’ ,1l;|. Mathematically denoted, n is said to be the cardinality of G, |[;] is said
to be the degree of vertex v;, while |L] is said to be the volume of G.

The proposed multi-objective evolutionary clustering algorithm, MOEC, is based on MOEA/D
[10]. Assume that G = {G!,G?,...,GT}, be a network captured at T time steps. The first decision step
is to select a proper and efficient chromosome representation. The adopted representation is the locus-
based adjacency representation being proposed by Park and Song [11]. In locus-based representation,
each chromosome P! = (Pf, Pzt,...,P,th) € P! is represented as a fixed-length vector of n' genes
where nt is the total number of nodes in the network at time step t (i.e. nt is the cardinality of G¢).
The genotype-phenotype decoding function & of individual P* will outline the community structure of
the network G at time step ¢, i.e. §(P?): ¢t = {C}K,.

Given that MOEA/D is population-based optimization algorithm, the next step, then, is to create an
initial population P* of PopSize chromosomes, i.e. Pt = {Pf,Ps, ...,Pﬁopsl-ze}. The traditional
approach to create an initial population is to randomly distribute initial chromosomes in the search
space. The next step is to formulate the objective functions. The formulation is suggested to be based
on ID as the first objective function (Eq. 7), while the second objective (Eq. 8) is formulated as the
inverse of NMI.

Fl=minID(C) =YK 1- W 0

F2 = min(1 — NMI) (8)

The whole process of MOEA/D for the multi-objective evolutionary clustering problem (MOEC)
of G at time step t can be described as an iterative evolution function W¢: {Pt, EP'} - {P'', EP''},
where W' is a compositional generation-wise operator combining a sequence of genetic-like
operations including parent selection, crossover, mutation or heuristic migration, and maintaining of
near-Pareto archive. The population and external archive at time step t starts with an initial random
population P§ and empty archive, EP{ = {}, and continue evolution until a maximum number of
iterations iten,,, has been reached. Uniform crossover and mutation operators are used with
probability p. and p,,, respectively. Consider two individuals Pf and P{ to be the two participating
parents in the crossover. A child P/’ can be formally generated by: V1 <j <n

L ifr<
By = ©
P; ; otherwise

where r~[0,1] is a uniform random number. For the mutation operator, the value of the mutated gene
Pf; can be selected to be any value v belongs to its neighbors, i.e. A(P;,v) = 1.

Additionally, the heuristic migration operator proposed in [12] with probability of occurrence py, is
also adopted in this work to replace mutation operator. This operator is proposed to act as a heuristic
partition generator that can exploit information from the neighborhood relations between nodes of the
network. For an individual P} and under the control of py,, the heuristic migration operator will change
the community belongingness of node j, i.e. Pl-f]- if it appears to be either weakly- or neutrally-
neighborhood node with all other nodes belong to the same community. If Pl-fj is seem to be a weakly-
neighborhood node in community C, then the migration operator will migrate it to another community
that would satisfy with its nodes the highest strongly-neighborhood relation. Otherwise if Pl-fj is a
neutrally-neighborhood node in community C, then the migration operator will either leave the node
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inside its community or migrate it to another community that would also satisfy inside it an equal
neighborhood relation.
4 Experimental results

In this section, we will test the performance of the proposed MOEC framework (denoted in the
results by its snapshot function /D) against Folino and Pizzuti's model MOEC framework (denoted as
Q) [3]. The characteristic components of MOEA/D are quantified to the following.PopSize = 100,
s =15, iter,,, = 100, and p. = 0.8. Also, the results showed the impact of the heuristic migration
operator on the final performance of the competent MOEC models. Either mutation operator with
Pm = 0.2 or heuristic migration operator with p, = 0.5 is used. The performance of the competent
models is evaluated in terms of convergence reliability, where average NMI over ten different runs for
each network and at each time step t (denoted as NMI(C;,C;)).

To make a controlled check of how well the proposed model performs against other state-of-the-art
MOEC models, it will be wise to experiment them with a set of computer generated networks of
different complexity levels. In this study, the benchmarks of Kim and Han [10] are used. Two
benchmarks composed of a fixed humber of communities and two other benchmarks are divided into a
variable number of communities. Each benchmark has 10 time steps to evolve its original network.
The first two benchmarks have 128 nodes divided into 4 communities with 32 nodes per community.
Each node has connection density equals to 16 and shares A (equals to 3 or 5) inter-connections.

These networks are denoted as Netpx, = {N etﬁxatll <t< 10} and Netpx, = {N et;chStll <

t< 10}. The second two benchmarks are obtained by modifying the generation method of Netp;x to

introduce the forming and dissolving of communities and the attaching and detaching of nodes. The
initial network contains 256 nodes, divided into 4 communities and 64 nodes per community. From
each community, 8 nodes are selected randomly and a new community is generated from the selected
32 nodes. This is repeated for 5 timestamps, then the nodes return back to their original communities.
The average degree of each node in a cluster is set to the half of the size of this cluster. Furthermore, at
each time step 16 nodes are randomly deleted and 16 new nodes are added to the network. The
networks are denoted, respectively, by Netysr, and Nety,g,. Table-1 and 2 report the comparison
results of these networks. The result corresponding to the winner model is given in bold at each time
step. Moreover, Figure 2 — 5 qualitatively depict performance comparison. The results reported in the
tables and figures clearly reflect the ability of the proposed MOEC (based on ID) to beat modularity
based MOEC in almost all test cases, except in one case see Figure- 5 right graph. The success of the
proposed MOEC model over Folino and Pizzuti's MOEC model can be noticed at almost all time steps,
including the first time step. This says that the proposed model has the ability to satisfy a two-fold
goal. The first goal is to get a more accurate detection in the structure of the communities of a static
network (refer to the results of the networks at time step t = 1). Here, one can see that /D model
outperforms Q model in the accuracy of detection. The second goal is that the proposed model has the
ability to track the changes in the structure of the communities (refer to the results of the networks at
time step t > 1) more accurate than Folino and Pizzuti's model MOEC. In other words, one can say
that both ID and NMI has a better collaboration activity than both Q and NMI. For Figure-5 (right
graph), one can say that the collaboration between Folino and Pizzuti's model and the heuristic
operator got more clear and advantageous than the collaboration with 1D model
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Table 1- Performance comparison of MOEC based on modularity model against our model on
Kim and Han [10] networks. Both models are tested with no heuristic, i.e. only traditional mutation
with p,,, = 0.2 is used.

Network t 1 2 3 4 5 6 7 8 9 10
Q 0.0219 0.1192 0.247 0.398 0.4803 0.476 0.4763  0.48529 0511 0.51713
Net FIX_3
ID | 0.3611 0.5141 0.6049 0.668 0.694 0.744 07166  0.73276 0.744 0.7555
Q 0.0074 0.0773 0.1187 0.2204 0.222 0.271 0.2897 0.2638 0.276 0.3323
Net_FIX_5
ID | 0.1573 0.2236 0.3114 0.3453 0.312 0.354 0.339%4 0.3575 0.361 0.3781
Q 0.6213 0.6296 0.5928 0.606 0.508 0.588 0.7019 0.7074 0.744 0.7760
Net VAR_3
ID | 0.6549 0.7703 0.7999 0.7991 0.704 0.743 0.8186 0.8484 0.898 0.9330
Net VAR_ | @Q 0.5908 0.561 0.5354 0.5117 0.393 0.398 0.5123 0.5326 0.557 0.5881
5 ID | 0.5831 0.6027 0.5942 0.5586 0.453 0474 05714 0.5865 0.603 0.6388

Table 2- Performance comparison of MOEC based on modularity model against our model on
Kim and Han [10] networks. Both models are tested with heuristic migration operator undrer p, =

0.5.
Network| t 1 2 3 4 5 6 7 8 9 10
0.75 0.85
Q 0 0.423 0.621 0.712 0.747 0.767 0.775 0.856
6 3
Net_FIX_]
0.97 0.96
ID| 0.299 0.842 0.899  0.947 0.972 0.968 0.972 0.977
4 4
0.08 0.20
Q 0 0.024 0.037 0.050 0.067 0.131 0.155 0.279
Net_FIX_ 5 4
5 0.62 0.64
ID| 0.188 0.340 0.543 0.636 0.4300 0.621 0.670 0.674
0 6
0.85 0.97
Q | 0.836 0.936 0.932 0.920 0.859 0.931 0.951 0.979
3 1
Net_VAR|
0.94 0.99
ID| 0.655 0.930 0.964 0.987 0.940 0.999 0.996 0.995
4 7
0.77 0.90
Q | 0.588 0.937 0.875 0.859 0.776 0.854 0.888 0.947
Net VAR | 4 3
5 0.67 0.87
ID| 0.562 0.622 0.666  0.687 0.609 0.805 0.853 0.917
2 0
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Figure 2- Performance comparison of MOEC based on modularity (line with filled circle) model
against our model (line with unfilled circle) on Net_FIX_ 3 (left: with no heuristic, i.e. p,, = 0.2),

(right: with heuristic, i.e. p, = 0.5).
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Figure 3- Performance comparison of MOEC based on modularity (line with filled circle) model
against our model (line with unfilled circle) on Net_FIX_5 (left: with no heuristic, i.e. p,, = 0.2),

(right: with heuristic, i.e. p, = 0.5).
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Figure 4- Performance comparison of MOEC based on modularity (line with filled circle) model
against our model (line with unfilled circle) on Net_VAR_3 (left: with no heuristic, i.e. p,,, = 0.2),

(right: with heuristic, i.e. py, = 0.5).

0.7

L L I L

ol

7

\ /
\ /
I I
5 6

2 3 4
Time step

8

Figure 5- Performance comparison of MOEC based on modularity (line withﬂaersﬁpilled circle) model
against our model (line with filled circle) on Net_VAR_5 (left: with no heuristic, i.e. p,, = 0.2),

(right: with heuristic, i.e. p;, = 0.5).
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5 Conclusions

In fact, the detection of the community structure in the complex networks that have dynamic
behavior encounters many challenges. Community detection in dynamic networks is normally known
in literature as evolutionary clustering. In evolutionary clustering, both snapshot cost and temporal
cost should be considered to tackle the problem. In this paper, a new snapshot cost, based on internal
density of the community, is formulated and together with the temporal cost (being signified by NMI)
are utilized to form a multi-objective evolutionary clustering framework. By comparing the
performance of the proposed model with the state-of-the-art modularity based model, the results reveal
more accurate results. Another ramification to the current work could be stated by investigating other
temporal cost alternatives or formulations.
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