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Abstract

One of the most interested problems that recently attracts many research
investigations in Protein-protein interactions (PPI) networks is complex detection
problem. Detecting natural divisions in such complex networks is proved to be
extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms
(EAs) reveals positive results. The contribution of this work is to introduce a
heuristic operator, called protein-complex attraction and repulsion, which is
especially tailored for the complex detection problem and to enable the EA to
improve its detection ability. The proposed heuristic operator is designed to fine-
grain the structure of a complex by dividing it into two more complexes, each being
distinguished with a core protein. Then, it is possible for each of the remaining
proteins associated with the original coarse-grained complex to repulse from one of
the new generated complexes while attracted by the core protein of the second
complex. The topology-based complex detection models presented in the literature
are adopted to inter-play with the proposed heuristic operator inside the EA general
framework. To assess the performance of the EA when coupled with the proposed
heuristic operator, the well known Saccaromycaes Cerevisiae yeast PPl network and
one reference set of benchmark complexes created from MIPS are used in the
experiments. The results prove the positive impact of the heuristic operator to
harness the strength of almost all adopted EA models.

Keywords: Complex detection, evolutionary algorithm, heuristic operator, PPI
networks.
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1. Introduction

Protein-protein interaction (PPI) networks have received much attention in the past few years. For
example, a large volume of experimented data is determined to reflect the proteins different structures
and their mutual interactions in protein-protein interaction (PPI) networks [1]. Figure-1 depicts an
example of a PPI network being represented as a graph where proteins act as nodes and interactions as
links. The prediction of protein complexes (or functional modules) is crucial and an important problem
in biological network analysis (BNA), giving a valuable guide in understanding the behavior of the
cell. This has triggered a race for new high performance clustering algorithms for discovering and

characterizing different complexes of PPI networks.

Figure 1- An example of a PPI network
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Many of the research studies proposed bottom-up strategies based on some cost optimization
function to find dense subgraphs from the whole PPI network. For example, Bader and Hogue [2]
proposed Molecular Complex Detection (MCODE) algorithm to detect densely connected regions as
molecular complexes in large PPl networks. MCODE consists of two main steps: network weighting
and complex detection. In network weighting, all vertices are assigned weights based on their local
network density This is followed by outward traversal from a locally dense seed protein to isolate the
dense regions.

King et al. [3] proposed restricted neighborhood search clustering algorithm (RNSC) that partition
the nodes of network throw clusters, based on low-cost clustering function (called homogeneity P
value). It starts with an initial random clusters and then randomly moving a protein from one cluster to
another satisfying a minimum deleterious of the cost function.

Altaf-Ul-Amin et al. [4] suggested a deterministic algorithm to select initial cluster as the seed
highest weighted node or highest degree node. The cluster then gradually grows by adding neighbor
nodes to the cluster one by one depending on neighbor priority. A cluster then continues to expand
until cluster density and/or cluster property violating the initial constraint, at which a new cluster starts
to born from the remaining nodes of the original graph.

Adamcsek et al. [5] proposed CFinder, an independent platform for locating overlapping group of
interconnecting nodes. This strategy merges up nodes into clusters. It uses the Clique Percolation
Method (CPM) of Palla et al. [6] to form the k — clique (for 4 < k < 6) percolation clusters of the
network.

Pizzuti and Rombo [7 — 9] proposed three local search co-clustering strategies (RANCoC, PINCoC,
and MF — PINCoC). The basic concept behind these co-clustering methods is to search for dense sub-
matrices in the adjacency matrix. The quality of sub-matrices differs from one strategy to another
depending on the contribution of the proteins to improve the quality function. Additionally, the same
authors, i.e. Pizzuti and Rombo, in 2014 [10] stated the complex detection problem in PPI networks as
a single-objective optimization problem and devised the methodology of evolutionary algorithms
(EAs) to solve the formulated problem. They formulated different topology-based quality functions
include community score (CS), conductance (CO), normalized cut (NC), Internal Density (ID),
Expansion (EX), and Cut Ratio (CR) as fitness models. Their investigations showed that EA has more
detection ability than the traditional complex detection algorithms.

Although Pizzuti and Rombo, in 2014 showed that EA has advantageous over other complex
detection algorithms, but they presented EA with its more general form. The main contribution of this
paper is to introduce a heuristic operator to be injected into the general framework of the EA to
improve its detection ability The remaining of this paper is organized into the following sections. Next
section presents essential background related to the topic. Section 3 presents the general characteristic
components of the proposed EA for tackling complex detection problem in PPI networks and the
proposed heuristic methodology. The followed section, then, presents the experimental results to
evaluate the performance of EA. The evaluation is reported with respect to different evaluation
metrics. Final section presents conclusion of the current work.

2. Background

Mathematically, a network is a graph of nodes and edges. A PPl network V' can be modeled as
undirected graph G = (P,E). The set of n proteins in V' is noted as the set of nodes or vertices
P(G) = {p1, 02, ---, Pn} While the mutual interaction between any pair of proteins in V' is noted as
edges (p;,pj). Normally, an undirected graph G can be represented by a symmetric n X n matrix
called adjacency or connection matrix A. Rows and columns of A are labeled with the proteins of P
with either 1 or 0 in entry (i, j) if protein p; has mutual interaction with protein p;, i.e. if (p;,p;) € E.
In list notation, matrix A can be represented by a set of n adjacency lists L = {l;, 15, ..., [,,}, one list [;
for each protein p; € Paggregating all 1 entries in row i. Thus, |[;| = ¥7-,(i,j) and [L| = Xi4|L].
Mathematically, n is said to be the cardinality of G, |l;| is the degree of vertex p;, while |L| denotes
the volume of G.

Graph co-clustering problem is a fundamental problem in computer science that is proved to be
NP-hard [11] Consider a data set matrix A consisting of n objects, each being characterized by n
features, i.e. A = [ai,j], i,j =1,...,n. Any clustering algorithm tries to partition the space of A4 into a
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partition set C of K clusters, i.e. C = {C,}X_,, according to the correlation among n objects. On the
other hand, co-clustering means simultaneous clustering of both objects and features of A into sub-
matrices, each of which consists of locally correlated objects under a subset of their features.

Given a graph G = (P, E), the main problem in graph co-clustering is to find the set of sub-graphs
G; = (P, E;) € G such that the number of inter-edges connecting vertices from two different sub-
graphs, usually known as cut size, is minimum [12]. Let G, = (P, E;) and G, = (P,, E;) be two sub-
graphs of G, the cut set and cut size of G; and G, can be expressed in Eg. 1 and 2, respectively.
cut(Gy, G;) = {(p1,p;) € E|p; € P Apj € P;} 1)
lcut(Gy, Go)| = ZpiEPl/\ijPz AL ) (2)

The second issue that should be carefully addressed in graph co-clustering problem is to group
individual nodes of the graph into disjoint sets of dense clusters. Each cluster should have intra-
contributions among its nodes as more as possible than its inter-contributions with other clusters. In
context of social networks, Radicchi et al. [13] semantically define a sub-graph G; = (P;,,E;) € G as a
community in a strong sense if for every node p belongs to G;, the intra-edge connections are larger
than inter-connections, i.e.

Vp € G; = Ywee; (W) > Lwee, (P, W) @)

However, if this intra-connections versus inter-connections relation only holds over the aggregation
of all G;'s nodes (see Eq. 4), then G; is said to be a community in a weak sense.

ZpEGi Zweci(P: w) > ZpEGi Zweci(P: w) (4)

3. Improving EA based complex detection models
Evolutionary algorithms (EAs) are heuristic search and optimization techniques that simulate the
process of natural evolution. The main idea of EAs is to evolve a population of candidate solutions
towards better and better solutions. A typical EA has three main operators (selection, crossover and
mutation) which are used collaboratively to improve the initial solutions set. Selection strategy selects
sub-set of best solutions depending on fitness value. Crossover strategy creates new solutions from the
existing solutions available in the mating pool after applying selection operator. This strategy
exchanges the gene information between the solutions in the mating pool. Mutation is the occasional
introduction of new features into the solution to maintain diversity in the population.
3.1 EA for complex detection problem

In this section, the characteristic components of the EA are presented and expressed in such a way
to handle complex detection problem in PPI networks. The first component to express is how to define
an individual solution in EA, i.e. chromosome. Here, the chromosome, I of the population P is defined
as a collection of protein-protein interaction genes. A single gene in I is defined by its locus and its
allele. Thus, in n loci chromosome, locus i identifies protein i in the PPl network, while its allele
value j corresponds to protein j that has an actual interaction with protein i in the PPI network.
Formally speaking, I: PPI — (S;)™, where S; is the set of all interacting proteins with protein i in the
network PPI. The decoding function §(1): € = {C}¥_, of individual I will outline different complexes
of the network.

Given that EA is population-based optimization algorithm, then a population P is a set of N
solutions and can be represented as: P = {I;, 1, ..., Iy}.

The iterative structure of the adopted EA can be defined as W(P;) = P¢,,, Where P, and P, , are
the population of chromosome solutions at generation t and t + 1, respectively. The population starts
with an initial random population P, and continues until a maximum number of iterations max; has
been reached.

Uniform crossover and mutation operators are used with probability p. and p,,, respectively.
Consider two chromosomes I; and I, to be the two participating parents in the crossover. Under p,
control, a child I' can be generated by uniformly mixing allele values of I; and I, together. This is
formally defined by, Vi, 1 <i < n:

, Il,i lf r<0.5
I = {Iz,l- otherwise

()
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where r~[0,1] is a uniform random number. For the mutation operator, the allele of the mutated gene
I; can be altered to any value j providing that protein /; and j has an interaction in the PPI (i.e.

A, j) = 1).

3.2 EA based complex detection models

Some of the recent and successful efforts for tackling complex detection problem in PPI networks
are based on evolutionary algorithms (EAs). In [10], Pizzuti and Rombo addressed the problem as
single-objective optimization functions. They projected different quality, i.e. fitness, functions used to
solve community detection in complex networks as fitness functions. These include modularity,
community score (CS), conductance (C0O), normalized cut (NC), Internal Density (ID),
Expansion (EX), and Cut Ratio (CR). Before formulating these models, let us express some
mathematical notations [10]. Consider a network ' of n individuals being modeled by G = (V,E).
Let C = {C,, ..., Cx} be a candidate partitioning of " with K complexes. Le fort 1 < k <K, n; and
my = Yy wec,(v,w) be the degree and volume of Cy, respectively. Moreover, let ing(v) =
Ywec, (v, w) and outy (v) = Yy ec, (v, w) be, respectively, the number of intra-connections and inter-
connections of node v which belongs to cluster Cy, (i.e. |1,| = in,(v) + out, (v)).

Modularity, Q, awards a clustering solution ¢ = {Cj, ..., Cx} according to the fraction of intra-
connections inside {C;, ..., Cx} (see Eqg. 6). In Eqg. 6, two contradictory objectives are handled. The
first term in Eq. 6 biases towards a solution C with a densely intra-connected modules. On the other
hand, the second term expresses that the expected value of the same edge density in C with the same
community structure {Cj, ..., Cx} but fall at random between the vertices should be small. Q will
approach its minimum at 0 if the number of within-community edges is no better than random. On the
other hand, values approaching Q = 1, which is the maximum, indicate strong community structure.
max Q(C) = Th_, [ — (Esciy?] ©)

Community score, CS in Eq. 7 is considered as a global quality measure of ¢ = {C, ..., Cx},
allowing the detection of the maximal and dense partitions. Conductance, CO and Normalized cut
in Eq. 8 and Eq. 9, respectively, measure the fraction of inter-connections of a clustering solution
C ={Cy, ..., Cx}. Internal density, ID, qualifies a partitioning solution according to the internal edge
density, while Expansion, EX, and Cut ratio, CR, qualify the solution based on the number of inter-
edges per node (refer to Eq. 10, Eq. 11, and Eqg. 12, respectively).

v ing(w
max CS(C) = YK_, Zveck(zeclil—kk())z X 2,% (7
Yvec; outy(v)

min CO(C) = Y- 2yt Tvec,, Outic(v) ©
min NC(C) = II§=1 Zveclgr‘::ti(”) 2(|L|—§::)C-il-{£ltci:;)utk(v) (9)
minID(C) = Ty 1~ ot 10
min EX(C) = ¥X_, Z%:tk(v) (1)
min CR(C) = I;§=1M (12)

ng(n—-ng)

These studies showed that EA based methods deserve the credits as a powerful and competitive
computational technique to cope with complex detection problem. However despite their success on
this problem, the characteristic components of the adopted methods are still in their more or less
traditional forms. They provide single-objective community detection being modeled with the very
general form of EA. In other words, they didn't exploit any possible heuristic to harness the strength of
the adopted models. In the next section a heuristic operator is introduced to improve the quality of the
solutions provided by the state-of-the-art EA based models.
3.3 The proposed protein-complex attraction and repulsion strategy

To improve the performance of any evolutionary algorithm, one should design some problem-
specific operators. In this paper, we propose a heuristic perturbation h: I — I' operator that is tailored
for the complex detection problem in PPl networks. The proposed h, called protein-complex
attraction and repulsion operator, is designed to fulfill the topological properties at the complex level.
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The main guidelines on the design of h operator is to fine-grain the structure of a complex by releasing
its sparse interactions and delimiting its boundary as close as possible towards a core protein (e.g.
many complexes in nature are very small composed of only two or three proteins). How to fix the
boundary of a complex depends on our perspective towards utilizing topological features of proteins
complexes. In each complex Cy, two distinct proteins are identified, these are, core protein (Eqg. 13)
and odd protein (Eg. 14). Core protein corey, is protein v which belong to €, and satisfies, in terms of
distance closeness centrality (CC), the closest protein with respect to all other proteins of C,. Odd
protein odd,, on the other hand, represents the furthest away protein with respect to all other proteins
of Cy.

__argmin Zyec, dis(v,w)

Corek - v E Ck Nk (13)
_argmax Xy.ec, dis(v,w)

oddy = oo, — (14)

Note that the distance between two proteins v and w in C, dis(v,w), is computed by considering
Dijkstra shortest path between v and w.

Based on the above considerations, complex Cy, then, is allowed to be divided into two more
complexes, one complex is structured to attract proteins close to core; while the second complex is
centered around oddj,. Here, we simply claim that there should be a strong relation among proteins, so
that proteins with small distance to either core or odd protein should form together unique function.
Thus, one relaxed or coarse-grained complex can be divided further into two more compact
complexes. Let us assume that Cy core and Cyoqq are the two complexes derived from Cj after
identifying core and odd,,, then, the association of the remaining proteins of Cy, t0 Cy core and Cy oqq
can be specified by attraction operation following Eqg. 15 and by repulsion operator following Eq. 16,
respectively.

Vv € Ck:
Cr.core = {v|dis(v, corey) < dis(v, oddy)} (15)
Croaa = {v|dis(v,0ddy) < dis(v, corey)} (16)

Moreover, we can repeatedly fine-grained over-sized complexes until a certain minimum size is
reached. Note that very coarse-grained condition is satisfied if the size of the complex exceeds the
maximum size of a true or reference complex taken from the golden ttrue reference set. We suggest to
apply complex division at every generation t, however, enlarged, or coarse-grained, complexes are
considered for further divisions after every t,,,, of generations. Algorithm 1 outlines the main steps of
the proposed protein-complex attraction and repulsion operator.

4. Experimental results

In the performance evaluations, yeast Saccharomyces cerevisiae PPl network is used. Yeast is
proven to be highly effective PP1 network of model organism for mammalian biological functions and
diseases. PPI_D1 network was prepared by Gavin et al. [14] and filtered by Zaki et al. [15]. The
filtered version of this network contains 990 proteins with 4687 interactions.
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Algorithm 1: Protein-complex attraction and repulsion operator (I;; I;')

Input: [;|i € {1,2,..., N}
Output: I;'| i € {1,2, ..., N}

1:  Decode I; to a partition set C = {Cy, ..., Cx}

2 for k< 1to K

3: [ ny < |Ck| /I degree of C

4 /I find out core and odd proteins in Cj,

I/ 1. find closeness centrality CC for each protein

Zweck dis(v,w)

Vv € Cy: CC, <
Nk
/' 2. find core protein having closest centrality

argmin ..

core « ¢, CCv

// 3. find odd protein having furthest centrality

argmax
odd, « vec, CCv
5: /I divide C,, into two complexes centered at core;, and odd,

/1. Initialize complexes to empty
Cr,core = D
Croaa = 9
/12. Re-assign proteins of Cy, t0 Cy, core OF Ck pqq
Vv € Cy: if (dis(v,corey) < dis(v,o0dd}))
Cr,core=Cr,core UV
Else
Cr,0aa=Ck,0da Y V

End

6: end

To validate the quality of the predicted complexes, a reference set, denoted as Cmplx_D1, drawn
from the Munich Information Center for Protein Sequence (MIPS) catalog is used in the experiments
[16]. Cmplx_D1 contains 81 complexes of sizes ranges from 6 and 38. Mathematically, these can be
expressed as S* = {Sy, S, .., Sk}, [S¥] = Ks = 81 and V¢ g5+ 6 < n; < 38.

A predicted cluster C; is said to match a gold standard complex S; if their proteins are overlapped
or intersected with overlapping score, OS equals or larger than a specific threshold o, [17].

_ lans[*
0S(Cy,S;) = il 17)
match(Ci,Sj) = {1 if OS(Ci; Sj) = 0ps (18)
0 otherwise

where |-| is the number of proteins common to both a predicted cluster and a gold standard complex.
Based on matching expressed in Eq. 18, the notions of recall, precision, and cumulative F score are
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defined. Recall refers to the fraction of gold standard complexes that are matched to any predicted
cluster. As match function returns either 0 or 1, then maxcjecmatch(si, Cj) in the numerator of Eq.

19 will be computed to 1 if a given gold standard complex S; has one or more matches with the
predicted clusters. Precision, on the other hand, refers to the fraction of predicted clusters that are
matched to any gold standard complex (Eg. 20). A harmonic mean of both recall and precision is
reflected by F score (Eq. 21).

|Silsies*AIC;ecomatch(S;,C))|

recall = (19)
Ks
.. C;|C;€ECA3S;ES* tch(Ci,Si
precision = leilc: j&"omateh(Cy;)| (20)
Ke
— 2xrecall*precision (21)

recall+precision
As recall and precision evaluate the cumulative quality of the prediction at the complex level,
recally and precisiony (EQ. 22 and Eq. 23, respectively) can similarly estimate the accuracy of the
prediction, however, at the protein level [15]. For these two measurements, we formulate an Fy score
(Eqg. 24) to imitate F score, but at the protein level.

K
Y Imyl
recally = =5— (22)
TS Il
where |m;| = maxc ec|match(S;, G;).
Ke 1m;
precisiony = Zl;é# (23)
T |cil
where |m;| = aijES*|match(Ci, Sj).
2srecally*precision
N = " ~ (24)

recally+precisiony
In the experiments, the seven single EA based models presented in Eq. 6 — Eq. 12 are annotated as
CO, Q, EX, CR, NC, ID, and CS. In the simulation runs, population size, PopSize, and maximum
number of generations, itery,,,, are set to 100, probabilities of crossover and mutation are set to 0.8
and 0.2, respectively, and ty4q4, = 10. The objective of the experiments is to test the impact of the
proposed heuristic operator on the final prediction power of all EA models. The results present the
performance of the tested models operating with no heuristic and when there exists collaboration
between the model and the proposed heuristic operator. Here, performance evaluation is reported in
terms of F and Fy scores evaluation metrics presented in Eq. 21 and Eq. 24. Moreover, the threshold
0ps 1S assumed to vary from 0.1 to 0.5 in steps of 0.05. Figures-2, 3, 4, 5, 6, 7 and 8 report the
performance evaluations in terms of F and Fy, scores for the seven tested complex detection models.
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Figure 2- Performance evaluation of conductance model (F (top) and Fy (bottom) with no heuristic

(left bar), and in heuristic version (right bar).
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Figure 3- Performance evaluation of Q model (F (top) and Fy(bottom) with no heuristic (left bar), and
in heuristic version (right bar).
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Figure 5 - Performance evaluation of cut ratio model (F (top) and Fy (bottom) with no heuristic (left
bar), and in heuristic version (right bar).
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Figure 6 - Performance evaluation of normalized cut model (F (top) and F (bottom) with no heuristic
(left bar), and in heuristic version (right bar).
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Figure 7 - Performance evaluation of internal density model (F (top) and Fy(bottom) with no heuristic

(left bar), and in heuristic version (right bar).
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Figure 8 - Performance evaluation of community score model (F (top) and Fy (bottom) with no
heuristic (left bar), and in heuristic version (right bar).

The introduction of the heuristic operator is supposed (due to its mechanism) to improve the
prediction power of the EA based complex detection model. The results reported in Figures- 2 and 8
reveal that conductance Figure-2, cut ratio Figure-5, normalized cut Figure-6, and internal density
Figure-7 models have positive collaboration with the proposed heuristic operator to improve their
detection ratio in terms of F and Fy scores. For modularity, one can see that the proposed heuristic
operator is beneficial in terms of F and in almost all results of Fy score. The performance of
community score model, however, is generally bewildered by the introduction of the heuristic operator
(compare left bars against right bars in Figure-8).
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