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Abstract 

     One of the most interested problems that recently attracts many research 

investigations in Protein-protein interactions (PPI) networks is complex detection 

problem. Detecting natural divisions in such complex networks is proved to be 

extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms 

(EAs) reveals positive results. The contribution of this work is to introduce a 

heuristic operator, called protein-complex attraction and repulsion, which is 

especially tailored for the complex detection problem and to enable the EA to 

improve its detection ability. The proposed heuristic operator is designed to fine-

grain the structure of a complex by dividing it into two more complexes, each being 

distinguished with a core protein.  Then, it is possible for each of the remaining 

proteins associated with the original coarse-grained complex to repulse from one of 

the new generated complexes while attracted by the core protein of the second 

complex. The topology-based complex detection models presented in the literature 

are adopted to inter-play with the proposed heuristic operator inside the EA general 

framework. To assess the performance of the EA when coupled with the proposed 

heuristic operator, the well known Saccaromycaes Cerevisiae yeast PPI network and 

one reference set of benchmark complexes created from MIPS are used in the 

experiments. The results prove the positive impact of the heuristic operator to 

harness the strength of almost all adopted EA models. 

 

Keywords: Complex detection, evolutionary algorithm, heuristic operator, PPI 

networks. 
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واحدة من أىم المشاكل والتي جذبت حديثا العديد من الابحاث في مجال الشبكات البروتينية التفاعمية      
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 أو صقل غرض تصفيةلالعامل الارشادي المقترح صمم . يةالاكتشاف لتحسين قدرتو EAخوارزمية ال  تمكين
منيا عن كل واحد يميز  البروتينية، الى اثنين من المركبات وذلك بمحاولة شطره البروتيني ىيكمية المركب

غير المصقول، كل  وعمى ىذا الأساس يتم أعادة توزيع بقية بروتينات المركب الأصمي جوىري.بروتين طريق 
تم في ىذا البحث . من البروتينات الجوىرية المستخمصة وتنافره من الآخر أحدىبروتين حسب تجاذبو مع 

في  والموجودةات البروتينية اكتشاف المركبب الخاصةمخوارزمية التطورية و الرياضية ل نماذجالأيضا أعتماد 
(. EAداخل الاطار العام التابع الى )بالعامل الارشادي المقترح بينيا وبين متبادل التعاون التوضيف و الادبيات 

قترح، مع استخدام العامل الارشادي المب أرتباطياتقييم اداء الخوارزمية التطورية عندما وعمى ىذا الأساس تم 
( ومصدر واحد لممركبات تم اناشاؤه من Saccaromycaes Cerevisiae yeastالتفاعمية  ) شبكة البروتين

النماذج أغمب ( في التجارب. النتائج اثبتت التاثير الايجابي لمعامل الارشادي لاضيار قوة MIPSقبل )
 مخوارزمية التطورية.الرياضية ل

 
1. Introduction 

     Protein-protein interaction (PPI) networks have received much attention in the past few years. For 

example, a large volume of experimented data is determined to reflect the proteins different structures 

and their mutual interactions in protein-protein interaction (PPI) networks [1]. Figure-1 depicts an 

example of a PPI network being represented as a graph where proteins act as nodes and interactions as 

links. The prediction of protein complexes (or functional modules) is crucial and an important problem 

in biological network analysis (BNA), giving a valuable guide in understanding the behavior of the 

cell. This has triggered a race for new high performance clustering algorithms for discovering and 

characterizing different complexes of PPI networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- An example of a PPI network 
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     Many of the research studies proposed bottom-up strategies based on some cost optimization 

function to find dense subgraphs from the whole PPI network. For example, Bader and Hogue [2] 

proposed Molecular Complex Detection (MCODE) algorithm to detect densely connected regions as 

molecular complexes in large PPI networks. MCODE consists of two main steps: network weighting 

and complex detection.  In network weighting, all vertices are assigned weights based on their local 

network density This is followed by outward traversal from a locally dense seed protein to isolate the 

dense regions. 

     King et al. [3] proposed restricted neighborhood search clustering algorithm (    ) that partition 

the nodes of network throw clusters, based on low-cost clustering function (called homogeneity   

value). It starts with an initial random clusters and then randomly moving a protein from one cluster to 

another satisfying a minimum deleterious of the cost function. 

     Altaf-Ul-Amin et al. [4] suggested a deterministic algorithm to select initial cluster as the seed 

highest weighted node or highest degree node. The cluster then gradually grows by adding neighbor 

nodes to the cluster one by one depending on neighbor priority.  A cluster then continues to expand 

until cluster density and/or cluster property violating the initial constraint, at which a new cluster starts 

to born from the remaining nodes of the original graph. 

    Adamcsek et al. [5] proposed        , an independent platform for locating overlapping group of 

interconnecting nodes. This strategy merges up nodes into clusters. It uses the Clique Percolation 

Method (   ) of Palla et al. [6] to form the          (for      ) percolation clusters of the 

network. 

     Pizzuti and Rombo [7 – 9] proposed three local search co-clustering strategies (      ,       , 

and          ). The basic concept behind these co-clustering methods is to search for dense sub-

matrices in the adjacency matrix. The quality of sub-matrices differs from one strategy to another 

depending on the contribution of the proteins to improve the quality function. Additionally, the same 

authors, i.e. Pizzuti and Rombo, in 2014 [10] stated the complex detection problem in PPI networks as 

a single-objective optimization problem and devised the methodology of evolutionary algorithms 

(EAs) to solve the formulated problem. They formulated different topology-based quality functions 

include                 (  ),             (  ),                 (  ),                  (  ), 

          (  ), and           (  ) as fitness models. Their investigations showed that EA has more 

detection ability than the traditional complex detection algorithms.  

     Although Pizzuti and Rombo, in 2014 showed that EA has advantageous over other complex 

detection algorithms, but they presented EA with its more general form. The main contribution of this 

paper is to introduce a heuristic operator to be injected into the general framework of the EA to 

improve its detection ability The remaining of this paper is organized into the following sections. Next 

section presents essential background related to the topic. Section 3 presents the general characteristic 

components of the proposed EA for tackling complex detection problem in PPI networks and the 

proposed heuristic methodology. The followed section, then, presents the experimental results to 

evaluate the performance of EA. The evaluation is reported with respect to different evaluation 

metrics. Final section presents conclusion of the current work. 

2. Background 

     Mathematically, a network is a graph of nodes and edges. A PPI network   can be modeled as 

undirected graph        . The set of   proteins in   is noted as the set of nodes or vertices 

                  while the mutual interaction between any pair of proteins in   is noted as 

edges        .  Normally, an undirected graph   can be represented by a symmetric     matrix 

called adjacency or connection matrix  . Rows and columns of    are labeled with the proteins of   

with either   or   in entry       if protein    has mutual interaction with protein   , i.e. if          .  

In list notation, matrix   can be represented by a set of   adjacency lists               , one list    
for each protein     aggregating all   entries in row  . Thus, |  |  ∑       

    and | |  ∑ |  |
 
   . 

Mathematically,   is said to be the cardinality of  ,  |  | is the degree of vertex   , while | | denotes 

the volume of  . 

     Graph co-clustering problem is a fundamental problem in computer science that is proved to be 

NP-hard [11] Consider a data set matrix   consisting of   objects, each being characterized by   

features, i.e.   [    ]          . Any clustering algorithm tries to partition the space of   into a 
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partition set   of   clusters, i.e.          
 , according to the correlation among   objects. On the 

other hand, co-clustering means simultaneous clustering of both objects and features of   into sub-

matrices, each of which consists of locally correlated objects under a subset of their features.  

     Given a graph        , the main problem in graph co-clustering is to find the set of sub-graphs 

             such that the number of inter-edges connecting vertices from two different sub-

graphs, usually known as cut size, is minimum [12]. Let             and            be two sub-

graphs of   , the cut set and cut size of     and    can be expressed in Eq. 1 and 2, respectively. 

                     |                        (1) 

|          |  ∑                  
          (2) 

     The second issue that should be carefully addressed in graph co-clustering problem is to group 

individual nodes of the graph into disjoint sets of dense clusters. Each cluster should have intra-

contributions among its nodes as more as possible than its inter-contributions with other clusters. In 

context of social networks, Radicchi et al. [13] semantically define a sub-graph              as a 

community in a strong sense if for every node   belongs to   , the intra-edge connections are larger 

than inter-connections, i.e.  

      ∑          
 ∑          

          (3) 

     However, if this intra-connections versus inter-connections relation only holds over the aggregation 

of all   's nodes (see Eq. 4), then    is said to be a community in a weak sense. 

∑ ∑              
 ∑ ∑              

           (4) 

 

3. Improving EA based complex detection models 
     Evolutionary algorithms (EAs) are heuristic search and optimization techniques that simulate the 

process of natural evolution. The main idea of EAs is to evolve a population of candidate solutions 

towards better and better solutions. A typical EA has three main operators (selection, crossover and 

mutation) which are used collaboratively to improve the initial solutions set. Selection strategy selects 

sub-set of best solutions depending on fitness value. Crossover strategy creates new solutions from the 

existing solutions available in the mating pool after applying selection operator. This strategy 

exchanges the gene information between the solutions in the mating pool. Mutation is the occasional 

introduction of new features into the solution to maintain diversity in the population. 

3.1 EA for complex detection problem 

     In this section, the characteristic components of the EA are presented and expressed in such a way 

to handle complex detection problem in PPI networks. The first component to express is how to define 

an individual solution in EA, i.e. chromosome. Here, the chromosome,   of the population   is defined 

as a collection of protein-protein interaction genes. A single gene in   is defined by its locus and its 

allele. Thus, in   loci chromosome, locus   identifies protein   in the PPI network, while its allele 

value   corresponds to protein   that has an actual interaction with protein   in the PPI network. 

Formally speaking,           
 , where    is the set of all interacting proteins with protein   in the 

network    . The decoding function               
  of individual   will outline different complexes 

of the network.  

     Given that    is population-based optimization algorithm, then a population   is a set of   

solutions and can be represented as:               .   

     The iterative structure of the adopted EA can be defined as           , where    and      are 

the population of chromosome solutions at generation   and    , respectively. The population starts 

with an initial random population    and continues until a maximum number of iterations      has 

been reached.  

     Uniform crossover and mutation operators are used with probability    and   , respectively. 

Consider two chromosomes    and    to be the two participating parents in the crossover. Under    

control, a child    can be generated by uniformly mixing allele values of    and    together. This is 

formally defined by,         : 

   
  {

               

               
                      (5) 
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 where         is a uniform random number. For the mutation operator, the allele of the mutated gene 

   can be altered to any value   providing that protein    and    has an interaction in the PPI (i.e. 

         ).  

 

3.2 EA based complex detection models 

     Some of the recent and successful efforts for tackling complex detection problem in PPI networks 

are based on evolutionary algorithms (EAs). In [10], Pizzuti and Rombo addressed the problem as 

single-objective optimization functions. They projected different quality, i.e. fitness, functions used to 

solve community detection in complex networks as fitness functions. These include           , 

                (  ),             (  ),                 (  ),                  (  ), 

          (  ), and           (  ). Before formulating these models, let us express some 

mathematical notations [10]. Consider a network   of   individuals being modeled by        . 

Let             be a candidate partitioning of   with   complexes. Le fort      ,    and 

   ∑            
 be the degree and volume of   , respectively. Moreover, let        

∑          
 and         ∑          

 be, respectively, the number of intra-connections and inter-

connections of node   which belongs to cluster    (i.e. |  |                ).  

               ,  , awards a clustering solution             according to the fraction of intra-

connections inside           (see Eq. 6). In Eq. 6, two contradictory objectives are handled.  The 

first term in Eq. 6 biases towards a solution   with a densely intra-connected modules. On the other 

hand, the second term expresses that the expected value of the same edge density in   with the same 

community structure           but fall at random between the vertices should be small.   will 

approach its minimum at   if the number of within-community edges is no better than random. On the 

other hand, values approaching    , which is the maximum, indicate strong community structure.  

         ∑ [
  

| |
  

∑ |  |    

 | |
  ] 

                                           (6) 

                    ,    in Eq. 7 is considered as a global quality measure of            , 
allowing the detection of the maximal and dense partitions.            ,    and                

in Eq. 8 and Eq. 9, respectively, measure the fraction of inter-connections of a clustering solution 

           .                 ,   , qualifies a partitioning solution according to the internal edge 

density, while          ,   , and          ,   , qualify the solution based on the number of inter-

edges per node (refer to Eq. 10, Eq. 11, and Eq. 12, respectively).  

          ∑ ∑  
∑           

  
  

    
 

   

  

 
                              (7) 

          ∑
∑            

    ∑            

 
                                             (8) 

          ∑
∑            

   
 

∑            

  | |     ∑            

 
             (9) 

          ∑   
  

          
 
                    (10) 

          ∑
∑            

  

 
                    (11) 

          ∑
∑            

        
 
                     (12) 

     These studies showed that EA based methods deserve the credits as a powerful and competitive 

computational technique to cope with complex detection problem. However despite their success on 

this problem, the characteristic components of the adopted methods are still in their more or less 

traditional forms. They provide single-objective community detection being modeled with the very 

general form of EA. In other words, they didn't exploit any possible heuristic to harness the strength of 

the adopted models. In the next section a heuristic operator is introduced to improve the quality of the 

solutions provided by the state-of-the-art EA based models. 

3.3 The proposed protein-complex attraction and repulsion strategy 

     To improve the performance of any evolutionary algorithm, one should design some problem-

specific operators. In this paper, we propose a heuristic perturbation        operator that is tailored 

for the complex detection problem in PPI networks. The proposed  , called protein-complex  

attraction and repulsion operator, is designed to fulfill the topological properties at the complex level. 
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The main guidelines on the design of   operator is to fine-grain the structure of a complex by releasing 

its sparse interactions and delimiting its boundary as close as possible towards a core protein (e.g. 

many complexes in nature are very small composed of only two or three proteins). How to fix the 

boundary of a complex depends on our perspective towards utilizing topological features of proteins 

complexes. In each complex   , two distinct proteins are identified, these are, core protein (Eq. 13) 

and odd protein (Eq. 14). Core protein       is protein   which belong to    and satisfies, in terms of 

distance closeness centrality (  ), the closest protein with respect to all other proteins of   . Odd 

protein     , on the other hand,  represents the furthest away protein with respect to all other proteins 

of   .   

      
      
    

∑             

  
                        (13) 

     
      
    

∑             

  
                   (14) 

Note that the distance between two proteins   and   in   ,          , is computed by considering 

Dijkstra shortest path between   and  .  

     Based on the above considerations, complex   , then, is allowed to be divided into two more 

complexes, one complex is structured to attract proteins close to       while the second complex is 

centered around     . Here, we simply claim that there should be a strong relation among proteins, so 

that proteins with small distance to either core or odd protein should form together unique function. 

Thus, one relaxed or coarse-grained complex can be divided further into two more compact 

complexes. Let us assume that         and        are the two complexes derived from    after 

identifying       and     , then, the association of the remaining proteins of    to         and        

can be specified by attraction operation following Eq. 15 and by repulsion operator following Eq. 16, 

respectively. 

        
          |                                                     (15) 

         |                                                     (16) 

     Moreover, we can repeatedly fine-grained over-sized complexes until a certain minimum size is 

reached.  Note that very coarse-grained condition is satisfied if the size of the complex exceeds the 

maximum size of a true or reference complex taken from the golden ttrue reference set. We suggest to 

apply complex division at every generation  , however, enlarged, or coarse-grained, complexes are 

considered for further divisions after every      of generations. Algorithm 1 outlines the main steps of 

the proposed protein-complex attraction and repulsion operator. 

4. Experimental results 

     In the performance evaluations, yeast Saccharomyces cerevisiae PPI network is used. Yeast is 

proven to be highly effective PPI network of model organism for mammalian biological functions and 

diseases.        network was prepared by Gavin et al. [14] and filtered by Zaki et al. [15]. The 

filtered version of this network contains     proteins with      interactions. 
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     To validate the quality of the predicted complexes, a reference set, denoted as          , drawn 

from the Munich Information Center for Protein Sequence (MIPS) catalog is used in the experiments 

[16].          contains    complexes of sizes ranges from   and   . Mathematically, these can be 

expressed as                
 , |  |        and               . 

     A predicted cluster    is said to match a gold standard complex    if their proteins are overlapped 

or intersected with overlapping score,    equals or larger than a specific threshold     [17].  

  (     )  
|     |

 

|  ||  |
                   (17) 

     (     )  {
       (     )     

                          
                                                                  (18) 

where | | is the number of proteins common to both a predicted cluster and a gold standard complex. 

Based on matching expressed in Eq. 18, the notions of       ,          , and cumulative   score are 

Algorithm 1: Protein-complex attraction and repulsion operator (  ;    ) 

Input:   |              

Output:    |             

1: Decode    to a partition set              

2: for        to    

3:     |  | // degree of     

4:  

      
      
    

     

     
      
    

    

// find out core and odd proteins in     

// 1. find closeness centrality    for each protein 

     :     
∑             

  
   

// 2. find core protein having closest centrality 

// 3. find odd protein having furthest centrality  

5:  // divide    into two complexes centered at       and      

//1. Initialize complexes to empty 

             

            

  //2. Re-assign proteins of    to         or        

       : if                             

           =          

   Else 

          =         

   End 

6: end  
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defined. Recall refers to the fraction of gold standard complexes that are matched to any predicted 

cluster. As       function returns either   or  , then             (     ) in the numerator of Eq. 

19 will be computed to   if a given gold standard complex    has one or more matches with the 

predicted clusters. Precision, on the other hand, refers to the fraction of predicted clusters that are 

matched to any gold standard complex (Eq. 20). A harmonic mean of both recall and precision is 

reflected by   score (Eq. 21). 

       
|  |                 (     )|

  
                  (19) 

          
|  |                 (     )|

  
                                                               (20)  

  
                  

                
                                                                                               (21) 

     As        and           evaluate the cumulative quality of the prediction at the complex level, 

        and            (Eq. 22 and Eq. 23, respectively) can similarly estimate the accuracy of the 

prediction, however, at the protein level [15]. For these two measurements, we formulate an    score 

(Eq. 24) to imitate   score, but at the protein level. 

        
∑ |  |

  
   

 

∑ |  |
  
   

                                                                                             (22) 

where |  |         |     (     ). 

           
∑ |  |

  
   

 

∑ |  |
  
   

                                 (23)  

where |  |         |     (     ). 

   
                    

                  
                                                                                 (24) 

     In the experiments, the seven single EA based models presented in Eq. 6 – Eq. 12 are annotated as 

   ,  ,   ,   ,   ,   , and   . In the simulation runs, population size,        , and maximum 

number of generations,        , are set to    , probabilities of crossover and mutation are set to     

and    , respectively, and         . The objective of the experiments is to test the impact of the 

proposed heuristic operator on the final prediction power of all EA models. The results present the 

performance of the tested models operating with no heuristic and when there exists collaboration 

between the model and the proposed heuristic operator. Here, performance evaluation is reported in 

terms of   and    scores evaluation metrics presented in Eq. 21 and Eq. 24. Moreover, the threshold 

    is assumed to vary from     to     in steps of     . Figures-2, 3, 4, 5, 6, 7 and 8 report the 

performance evaluations in terms of   and    scores for  the seven tested complex detection models.   
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Figure 2- Performance evaluation of conductance model (  (top) and   (bottom) with no heuristic 

(left bar), and in heuristic version (right bar). 
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Figure 3- Performance evaluation of   model (  (top) and   (bottom) with no heuristic (left bar), and 

in heuristic version (right bar). 
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Figure 4 - Performance evaluation of expansion model (  (top) and   (bottom) with no heuristic (left 

bar), and in heuristic version (right bar). 
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Figure 5 - Performance evaluation of cut ratio model (  (top) and   (bottom) with no heuristic (left 

bar), and in heuristic version (right bar). 
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Figure 6 - Performance evaluation of normalized cut model (  (top) and   (bottom) with no heuristic 

(left bar), and in heuristic version (right bar). 
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Figure 7 - Performance evaluation of internal density model (  (top) and   (bottom) with no heuristic 

(left bar), and in heuristic version (right bar). 
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Figure 8 - Performance evaluation of community score model (  (top) and   (bottom) with no 

heuristic (left bar), and in heuristic version (right bar). 

 

     The introduction of the heuristic operator is supposed (due to its mechanism) to improve the 

prediction power of the EA based complex detection model. The results reported in Figures- 2 and 8 

reveal that conductance Figure-2, cut ratio Figure-5, normalized cut Figure-6, and internal density 

Figure-7 models have positive collaboration with the proposed heuristic operator to improve their 

detection ratio in terms of   and    scores. For modularity, one can see that the proposed heuristic 

operator is beneficial in terms of   and in almost all results of    score. The performance of 

community score model, however, is generally bewildered by the introduction of the heuristic operator 

(compare left bars against right bars in Figure-8).  
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