Jawad

Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3437-3441 DOI: 10.24996/ijs.2023.64.7.24

ISSN: 0067-2904

On the G-quadratic and LG-quadratic of the Exterior Algebra and Associated Algebra

Ruaa Yousuf Jawad

Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq

Received: 2/2/2022 Accepted: 26/9/2022 Published: 30/7/2023

Abstract:

Given an exterior algebra E over a finite dimension vector space v, and let R = E/I, where I is a graded ideal in E. The relation between the algebra R and R_{mon} regarding to G-quadratic and LG- quadratic will be investigated. We show that the algebra R is G- quadratic if and only if R_{mon} is G- quadratic. Furthermore, it has been shown that the algebra R is LG- quadratic if and only if R_{mon} is LG- quadratic.

Keywords: Initial ideal, Exterior algebra, Associated algebra, G-quadratic, and LG-quadratic.

حول G التربيعيه و LG التربيعية في الجبر الخارجي والجبر المرتبط

رۇى يوسف جواد

معهد اعداد المدربين التقنين,الجامعه التقنيه الوسطى, بغداد, العراق

الخلاصة:

بالنظر إلى الجبر الخارجي
$$E$$
 على متجه ذو ابعاد منتهية ، ونفرضد $R = E/I$ حيث I مثالي متدرج في E . تم البحث في العلاقة بين الجبر R و R_{mon} فيما يتعلق بخاصية. B – التربيعية و LG – التربيعة.
نظهر أن الجبر R هو G –التربيعي فقط إذا وفقط اذا R_{mon} هو B – تربيعي . نتيجة أخرى ايضا ، يكون
الجبر R هو LG – تربيعي إذا وفقط إذا كان R_{mon} هو LG–التربيعي.

1-Introduction:

Let $E = \Lambda_k(e_1, ..., e_m)$ be an exterior algebra over a field *K*. The objective of this paper is to study the relation between two algebras; R = E/I and $R_{mon} = E/in_{<}(I)$ regarding to *G*-quadratic and *LG* - quadratic properties. From literature, the following relations in case of commutative are given by

G-quadratic \Rightarrow LG-quadratic \Rightarrow Koszul \Rightarrow quadratic. The converse of the first implication holds under some conditions, where Conca [1] states that

every quadratic Artinian algebra R with $\dim R_2 \leq 2$ is G-quadratic. Mccullough and Mere show that these implications hold in exterior algebra. However, they showed that the converse not true for implications [2]. From the algebra that given by quiver and relations, we know that every quadratic is Koszul [3].

^{*}Email: ruaa.yousuf.jawad@mtu.edu.iq

In this paper, *G*-quadratic and *LG*-quadratic in two algebras *R* and R_{mon} will be investigated. Furthermore, we will show in Theorem 3.2, that the algebra *R* is *G*-quadratic if and only if R_{mon} is *G*-quadratic. Moreover, we will go through the relationship between *R* and R_{mon} under *LG*-quadratic properties.

The layout of this paper will be as follows: The background of Görbner basis, properties of monomial in the exterior algebra, and the associated algebra will be explained in Section two. Finally, the relation between R and R_{mon} under G-quadratic, LG-quadratic conditions will be given in Section three.

Now, we fix some notation in this work. Let K be a field, V be a vector space over K with dimension $n, E = \Lambda_k(e_1, \dots, e_n)$ be an exterior algebra of V, and e_1, \dots, e_n be a basis of V.

The exterior algebra *E* will be considered as a skew-commutative and graded ring with $\deg(e_i) = 1$, for i = 1, ..., n. Additionally, a module *E* will be called graded if there is *K*-vector space M_i ; such that $M = \bigoplus_i M_i$ and $E_i M_j \subseteq M_{i+j}$, for all *i* and *j*. Let *M* be a finitely generated and graded *E*-module.

2-Gröbner basis of associated algebra

Let *K* be a field, and *E* be an exterior algebra. We call the set of monomial of *E* by Mon(E). The ideal that generated by monomial element is called monomial ideal. Let B be the set of finite monomail in *E*. We write a monomail element in *E* as $e_{i1}e_{i2}\dots e_{is}$ instead of $e_{i1} \wedge e_{i2} \wedge \dots \wedge e_{is}$.

A monomial order [4] on E is a total order \leq on Mon(E) satisfying the following conditions:

1. if $u \in Mon(E)$ and $u \neq 1$, then 1 < u.

2. Let u, v and w in Mon(E). If u < v, then uw < vw.

Now we fix a monomial order on B. We use the monomail order to define the leading term of element in E.

Definition 2.1: Let $0 \neq f \in E$ and if $f = \sum_{\{g \mid in \mathbb{B}\}} c_g g$, where $c_g \in K$ with some $c_g \neq 0$, then the leading term of f is defined by LT(f) = g where $c_g \neq 0$ and $h \leq g$ for all h with $c_h \neq 0$.

Definition 2.2:[2] Let *I* be a graded ideal in *E*. The initial ideal *I* is defined as $in_{\leq}(I) = (LT(f): f \in I)$, with leading coefficients equal 1.

Example 2.3: Let $f = 3x^3 + 2x^2y^2 - 4xy^2z^3$, where $f \in C[x, y, z]$ and let < be a monomail order with z < y < x. Then $LT(f) = 3x^3$ and $in_{<}(f) = x^3$.

We state here some properties of monomial ideal.

Proposition 2.4: (Properties of monomial in the exterior algebra see [2])

1. Let $g_1, ..., g_t \in I$ and let $T = \{g_1, ..., g_t\}$ be the minimal set of monomials which generate $in_{\leq}(I)$. In other words $in_{\leq}(I) = (LT(g_1), LT(g_2), ..., LT(g_t))$.

2. $I \setminus$ has unique reduced Gröbner basis T.

Let $N = \mathbb{B} \setminus \{LT(\{f\}): \{f\} \in I\}$ and let $T = \{g_1, \dots, g_t\}$ be the minimal set of monomails which generate $in_{\leq}(I)$.

The result that shows the exterior algebra $\Lambda(V)$ can be written as a direct sum of K vector space will be stated now.

Lemma 2.5: Let K be a field and let $E = \Lambda(V) = \Lambda_k(e_1, ..., e_n)$ be an exterior algebra of V. Then

$$\Lambda(V) = in_{\leq}(I) \bigoplus_{k} Span_{k}N$$

as the *K* vector space.

Proof: Let $0 \neq x \in in_{\leq}(I) \cap Span_{K}N$. Then $x \in LT(f)$ where $f \in I$ which is contradiction, since $\in N$.

Assuming that $\Lambda(V) \neq in_{\leq (I)} + Span_K N$. So there is $x \in \Lambda(V)$ such that LT(x) is minimal, and $x \notin in_{\leq}(I) + Span_K N$. Let f = LT(x) and so that $f \in in_{\leq}(I)$ or $f \in N$. We let c_f be the coefficient of f in x, where $x = \sum_{h \in \mathbb{B}} c_h h$, for all $c_h \in K$. If $f \in in_{\leq}(I)$, then there exists $g \in I$ such that LT(g) = f. Since $f \in in_{\leq}(I)$, then $c_{g=} = 1$. So $LT(x - c_f g)$ is either 0 or has minimal leading term than f. With the minimalty of the LT(x), we have $x - c_f g \in in_{\leq}(I) + Span_K N$. By hypothesis $g \in in_{\leq}(I)$, and so $x \in in_{\leq}(I) + Span_K N$. Therefore, we get a contradictory.

On the other side, let $f \in N$, then $x - c_f f = 0$ or has minimal than x. Using the minimally fact of $f, x - c_f f \in in_{\leq}(I) + Span_K N$ and so $x \in in_{\leq}(I) + Span_K N$ which contradict with hypothesis. Therefore, we can write an element in E uniquely. If x in E, then $x = g_x + n_x$ where g_x unique in $in_{\leq}(I)$ and n_x unique in $Span_K N$.

The basis of $\Lambda(V)/in_{\leq}(I)$ will be characterized in the following proposition.

Proposition 2.6: Let *K* be a field and let $E = \Lambda(V) = \Lambda_k(e_1, \dots, e_n)$

be an exterior algebra of V. Then $Span_K N \simeq \Lambda(V)/i n_{\leq}(I)$ as K vector space.

Consequently, using Proposition 2.6, we can determine the elements in $\Lambda(V)/in_{\leq}(I)$ with the elements in $Span_{K}N$. So for all $x, y \in Span_{K}N$, the products of x and y in $\Lambda(V)/in_{\leq}(I)$ which equals to $N_{x \wedge y}$, where $x \wedge y$ is the wedge product in $\Lambda(V).(see[2])$.

The associated algebra R_{mon} will be introduced now.

Definition 2.7: Let *E* be an exterior algebra. Let $in_{\leq}(I)$ be the ideal generated by $(LT(g_1), ..., LT(g_t))$ in *E*. Then $in_{\leq}(I)$ is a monomial ideal and set $R_{mon} = E/in_{\leq}(I)$.

The following proposition shows that some facts of reduced Gröbner bases and monomial algebra R_{mon} .

Proposition 2.8: Let *I* be a graded ideal and let *E* be an exterior algebra. Assuming that *T* is the unique minimal set of monomial generating $in_{<}(I)$, and g_1, \ldots, g_t is the unique reduced Gröobner basis generating for *I*. Then

1. *T* is the reduced Gröbner basis for $in_{\leq}(I)$.

2. Using the description of *E* with Span *N*, The $dim_k(R_{mon}) = |N|$, where |N| is the cardinality of *N*.

3. The dimension of R is equal to the dimension of R_{mon}

- 4. The exterior algebra E is finite dimensional if and only if the set N is finite
- **3** The algebra *R* and the associative algebra R_{mon}

We state here the relationship between R and R_{mon} with regard to G-quadratic algebra, and LG-quadratic algebra. We keep previous notation and start with definition of the G-quadratic algebra.

Definition 3.1: [2] Let R = E/I be a quotient of an exterior algebra E, and I be a graded ideal. Let < be a monomial order on E. Then R is G-quadratic algebra if I has Gröbner basis consisting of homogeneous elements of degree two (quadric) with respect to some coordinate on E_1 .

From the definition, we can see that quadratic Gröbner basis is precisely the G-quadratic. We stated here one of the main result of this paper.

Theorem 3.2: Let R = E/I be a quotient of an exterior algebra E and let I be a graded ideal. Then R = E/I is G-quadratic if and only if $R_{mon} = E/in_{<}(I)$ is G-quadratic. Proof: We suppose that R is G-quadratic, we need to prove R_{mon} is G-quadratic algebra. Since $in_{<}(I)$ is an ideal generated by $(LT(g_1), ..., LT(g_t))$, where $g_s \in I$, and s = 1, ..., t. By hypothesis I has reduced Gröbner basis consisting of homogenous elements of degree 2 (quadric). So $LT(g_s)$ is homogenous element of degree 2 for all $g_s \in I$ and s = 1, ..., t. Therefore, $in_{<}(I)$ is generated by homogenous elements of degree 2 and then R_{mon} is G-quadratic algebra.

Conversely, we have to prove *R* is *G*-quadratic algebra. Since *I* has reduced Gröbner basis g_1, \ldots, g_t , Moreover, $in_- < (I) = (LT(g_1), \ldots, LT(g_t))$. Then g_1, \ldots, g_s are homogenous elements of degree 2, since R_{mon} is G-quadratic. Therefore, R is G-quadratic algebra.

Fröberg [5] proved that R is Koszul if I is a monomail ideal and he showed by using a stranded deformation argument R is Kozul when R is G- quadratic.

We view here the depth and regular sequence. Let M be a graded module over the exterior algebra E. We call $l \in E_1$ regular on M if lm = 0, for all $m \in M$. Otherwise, l is M singular. Let l_1, \ldots, l_s be a sequence of elements on E_1 , if l_i is regular element on $M/l_1, \ldots, l_{i-1}$, we say l_1, \ldots, l_s is regular sequence on M, for all $i = 1, \ldots, s$. The

 $depth_{E}(M) = Max \{\ell (l_{1}, ..., l_{s}) | l_{1}, ..., l_{s} \text{ is regular sequence} \}$ where $\ell(l_{1}, ..., l_{s})$ is the length of regular sequence $l_{1}, ..., l_{s}$.

We call the algebra R, LG- quadratic, if there exists G- quadratic algebra S and r regular sequence elements t_1, \ldots, t_r , with $deg(t_i) = 1$ in S, and $i = 1, \ldots, r$ such that $R \simeq S/(t_1, \ldots, t_r)$.

Caviglia [6], Avramov, Conca, and Iyenger [7] studied the LG- quadratic algebra in the commutative case.

Mccullough and Merf [2, Proposition 2.3] showed that the $depth_E(E/in_{\leq}(I)) \leq depth_E(E/I)$.

The following theorem proves that the algebras R and R_{mon} are corresponding under LG-quadratic.

Theorem 3.3: Let R = E/I be a quotient of an exterior algebra E and let I be a graded ideal. Then R = E/I is LG-quadratic if and only if $R_{mon} = E/in_{<}(I)$ is LG-quadratic.

Proof: We have R is LG- quadratic. So there is a G- quadratic algebra A and linear regular sequence elements $t_1, ..., t_r$ on A_1 such that $R \simeq A/(t_1, ..., t_r)$. In other words, there exists a surjective homorphism $\varphi : A \to R$ defined as $\varphi(a) = x + I$, for all $x \in E$. Using Theorem 3.2, we have the G-quadratic algebra, A_{mon} . From [2, Proposition 2.3] we get $depth_A(A_{mon}) \leq depth_A(A)$. So there exist m linear regular sequence elements $t_1, ..., t_m$ such that $m \leq r$. Our aim is to show that $R_{mon} \simeq A_{mon}/(t_1, ..., t_m)$. Let $\varphi: A \to R$ be epimorphism algebra. By using the first isomorphism theorem we have $A/Ker\varphi \simeq R$. It can be seen that $ker\varphi = (t_1, ..., t_r)$. Define $\varphi^*: A_{mon} \to R_{mon}$ to be the K- algebra homomorphism which is given by $\varphi^*(a) = \varphi(a)$, for all $a \in A_{mon}$. By first isomorphism theorem, we have $A_{mon}/Ker\varphi^* \simeq R_{mon}$. It can be seen that $ker\varphi^* = (t_1, ..., t_m)$, for all $m \leq r$ and hence the direction is proved.

Conversely, we suppose that R_{mon} is LG- quadratic. We have $R_{mon} \simeq A_{mon}/(t_1, ..., t_m)$, such that A_{mon} is G- quadratic algebra. Hence A is G- quadratic by Theorem 3.2. From [2, Proposition 2.3] and [8, Theorem 3.2] we get a finite linear regular sequence $t_1, ..., t_p$ on A such that $m \leq p$. Now we define the algebra homorphism $\varphi: A \to R$ via $\varphi(a) = \varphi^*(a)$ for all $a \in$ A. By hypothesis, we have $A/Ker\varphi \simeq R$. Thus, $A/(t_1, ..., t_p) \simeq R$.

Conclusions:

In this article, the relation between two algebras R and R_{mon} has been investigated. Also, the results regarding to the algebras R and R_{mon} have been proved. Furthermore, the coincide of algebras R and R_{mon} regarding to G-quadrattic has been shown. Therefore, we proved that the algebra R is LG-quadratic if and only if the algebra R_{mon} is LG-quadratic.

References

- [1] A. Conca, "Koszul algebras and Gröbner bases of quadrics", 29th Symposium on Commutative Algebra Nagoya, November 2007.
- [2] J. McCullough, Z. Mere, "G-Quadratic, LG-Quadratic, and Koszul Quotients of Exterior Algebras", (to appear) (arXiv:2105.13457)
- [3] R. Jawad, N. Snashall, "Hochschild cohomology, finiteness conditions and a generalization of d -Koszul algebras", *Journal of Algebra and Its Applications*, 2250147, 2021.
- [4] J. Herzog, T. Hibi, Monomial ideals, Graduate Texts in Mathematics 260, Springer-Verlag London, Ltd., London, 2011.
- [5] R. Föberg, "Koszul algebras", in *Advances in commutative ring theory*(Fez,1997), vol. 205 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1999, 337-350.
- [6] G. Caviglia, Koszul algebras, Castelnuovo-Mumford regularity, and generic initial ideals, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)-University of Kansas.
- [7] A. Aramova, A. Conca, S. B. IYengar, "Free Resolutions over commutative Koszul algebras", *Math. Res. Lett.*, vol. 17, pp. 197-210, 2010.
- [8] A. Aramova, L. L. Avramov, J. Herzog, "Resolutions of monomail ideals and cohomology over exterior algebras", *Trans. Amer. Math. Soc.*, vol. 352, pp. 579-594, 2000.