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Abstract  

    In this paper, the oscillatory and nonoscillatory qualities for every solution of 

fourth-order neutral delay equation are discussed. Some conditions are established to 

ensure that all solutions are either oscillatory or approach to zero as𝜉 → ∞.  Two 

examples are provided to demonstrate the obtained findings. 
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 الخصائص غير المتذبذبة للمعادلة التفاضلية غير الخطيه المحايده من الرتبة الرابعة

 

 2حسين علي محمد, 1دنيا محمد حميد*, 1انتظار زامل مشتت

العراق, بغداد, ستنصريةالم , الجامعةالتربية ةكلي, الرياضيات مقس1  
العراق, بغداد, جامعة بغداد,العلوم للبناتةكلي, الرياضيات مقس 2  

 

  الخلاصة 
في هذا البحث تمت مناقشة الخصائص التذبذبية وغير التذبذبية لكل حل من المعادلة التباطؤية المحايدة       
ول إما متذبذبة أوتقترب إلى الصفر الرابعة. تم وضع بعض الشروط للتأكد من أن جميع الحل الرتبةمن 

𝜉 عندما →  . يتم تقديم مثالين لتوضيح النتائج التي تم الحصول عليها.  .∞
 

1. Introduction 

    The main concept of this article is the fourth- order nonlinear neutral differential equations 

(NDE): 

             [𝒫(𝜉) − 𝒮(𝜉)𝒫(𝓊(𝜉))]
(4)

+ 𝒬(𝜉)𝒯 (𝒫(𝓋(𝜉))) = 0, 𝜉 ≥ 𝜉0  .                        (1)      

Where 𝒮(𝜉) ∈ 𝐶([𝜉0, ∞); 𝑅+), 𝒬(𝜉) ∈ 𝐶([𝜉0, ∞); 𝑅),𝓊(𝜉) ∈ 𝐶[𝜉0, ∞); 𝑅), 𝓋(𝜉) ∈
𝐶[𝜉0, ∞); 𝑅), 𝓊(𝜉) < 𝜉, 𝓋(𝜉) < 𝜉, lim

𝑡→∞
𝓊(𝜉) = ∞‚ lim𝑡→∞ 𝓋(𝜉) = ∞,  

𝐴1:  𝒯 ∈ 𝐶(𝑅; 𝑅), 𝜗𝒯(𝜗) > 0,   |𝒯(𝜗)| ≥ 𝑚|𝜗|,   𝑚 > 0. 
By a solution eq.(1), we are currently referred to a function  𝒫(𝜉) in the sense that the 

 function 𝒫(𝜉) − 𝒮(𝜉)𝒫(𝓊(𝜉)) is four times continuously differentiable such that  

𝒫(𝜉) fulfills eq.(1) on [𝜉0, ∞]. 
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     A non-trivial solution 𝒫(𝜉) is claimed to be oscillatory if its sign changes on  (𝜉𝒫 , ∞), 

where 𝜉𝒫 is an arbitrary number. Otherwise,  it is nonoscillatory. The equation (1) is called 

oscillatory if all its solutions oscillate [1]. 

    Many researchers have discussed and investigated the oscillatory and asymptotic behaviour 

solution of NDE in their works for more details see the references listed therein [1-10]. 

      Bazighifan [1] find novel oscillation conditions for fourth-order neutral differential 

equations (NDE) with a Canonical operator using a comparative approach with a first-order 

differential equation. Mohamad and Ketab [2] studied the oscillation behaviour of the solution 

of  n
th

 order NDE . Moaaz and El-Nabulsi [3] studied fourth-order DE and established some 

conditions for asymptotic and oscillation of the solutions. Mohamad [6] considered oscillation 

of third-order DE. Yildiz. Karaman and Durur [7] investigated the oscillations of bounded 

solutions of higher-order nonlinear neutral delay differential equations. The goal of this work 

is to find enough novel conditions for nonoscillation to occur. The following lemma serves as 

the foundation for the proof of our key findings. 

 

Lemma 1[4]: Let 𝑓 ∈ 𝐶𝑛(𝐼; 𝑅+)  𝑎𝑛𝑑 𝑓(𝑛)(𝜉) be eventually of one sign for all large 𝜉 such 

that  there is a 𝜉1 ≥ 𝜉0. As a result 𝑓(𝑛−1)(𝜉)𝑓(𝑛)(𝜉) ≤ 0 for all 𝜉 ≥ 𝜉1 , if 

lim𝜉→∞ 𝑓(𝜉) exists, then for every 𝜀 ∈ (0,1) there exists 𝜉𝜀 ∈ [𝜉1, ∞) such that 𝑓(𝜉) ≥
𝜀

(𝑛−1)!
𝜉𝑛−1𝑓(𝑛−1)(𝜉) , for all 𝜉 ∈ [𝜉𝜀 , ∞). 

 

Lemma 2. [5]: 

i-If  𝒬, 𝓋 ∈ 𝐶(𝑅+; 𝑅+), 𝓋(𝜉) < 𝜉 and  

 lim inf
𝜉→∞

∫ 𝒬(𝜔)
𝜉

𝓋(𝜉)

𝑑𝜔 >
1

𝑒
 . 

   Then, 𝔇′(𝜉) + 𝒬(𝜉)𝔇′(𝓋(𝜉)) ≤ 0 has no eventually positive solution. 

ii-If  𝒬, 𝓋 ∈ 𝐶(𝑅+; 𝑅+), 𝓋(𝜉) > 𝜉,and  

 lim inf
𝜉→∞

∫ 𝒬(𝜔)
𝓋(𝜉)

𝜉

𝑑𝜔 >
1

𝑒
 . 

   Then, 𝔇′(𝜉) − 𝒬(𝜉)𝔇′(𝓋(𝜉)) ≥ 0 has no eventually positive solution. 

 

2-Mains Results: 

 The following outcomes give some necessary requirements for nonoscillation of all solutions 

of eq.(1). For simplicity, we defined the function: 

                        𝔇(𝜉) = 𝒫(𝜉) − 𝒮(𝜉)𝒫(𝓊(𝜉)).                               (2)                                  

So eq.(1) can be written as  

                       𝔇(4)(𝜉) + 𝒬(𝜉)𝒯 (𝒫(𝓋(𝜉))) = 0                                (3) 

 

Lemma 3: Suppose that 0 ≤ 𝒮(𝜉) ≤ 𝒮1 < 1, 𝒬(𝜉) ≥ 0   , 𝐴1 hold and  

eq.(1) has a solution that is nonoscillatory. Then there are only the following cases to 

consider:   

1. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, lim𝜉→∞ 𝔇(𝜉) = ∞ , 

2. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) < 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, 
3. 𝔇(𝜉) < 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) < 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, lim

𝜉→∞
𝔇(𝜉) = lim

𝜉→∞
𝒫(𝜉) = 0. 

Proof. Suppose that eq.(1) has a nonoscillatory solution 𝒫(𝜉), so 𝒫(𝜉)  is eventually positive 

 ( eventually negative). Let 𝒫(𝜉) > 0, 𝒫(𝓊(𝜉)) > 0, 𝑎𝑛𝑑  𝒫(𝓋(𝜉)) > 0, it follows from 

eq.(3) that 𝔇(4)(𝜉) ≤ 0, hence  𝔇′′′(𝜉),  𝔇′′(𝜉),  𝔇′(𝜉) 𝑎𝑛𝑑  𝔇(𝜉) are monotone, that is there 



Mushtt et al.                                                 Iraqi Journal of Science, 2023, Vol. 64, No. 2, pp: 798-803 
 

800 

is  𝜉1 ≥ 𝜉0 such that,, 𝔇′′′(𝜉),  𝔇′′(𝜉),  𝔇′(𝜉), 𝔇(𝜉) of constant sign for 𝜉 ≥ 𝜉1. We assert: 

𝔇′′′(𝜉) > 0, 𝜉 ≥ 𝜉1 . Otherwise, 𝔇′′′(𝜉) < 0, then consequently, 

𝔇′′(𝜉) < 0, 𝔇′(𝜉) < 0 , 𝔇(𝜉) < 0,   and  lim
𝜉→∞

𝔇(𝜉) = −∞, 

From (2) note that  𝔇(𝜉) ≥ −𝒮(𝜉)𝒫(𝓊(𝜉)) ≥ −𝒮1𝒫(𝓊(𝜉))  

𝒫(𝓊(𝜉)) ≥
−1

𝒮1
𝔇(𝜉) 

Hence,  𝒫(𝜉) → ∞, as  𝜉 → ∞. On the other hand, since 𝔇(𝜉) < 0 then from (2) 

𝒫(𝜉) < 𝒮(𝜉)𝒫(𝓊(𝜉)) ≤ 𝒮1𝒫(𝓊(𝜉)) < 𝒫(𝓊(𝜉)).  

 It implies that 𝒫(𝜉) is decreasing function, this is a contradiction with 𝒫(𝜉) → ∞. 
Thus, 𝔇′′′(𝜉) > 0, 𝑓𝑜𝑟  𝜉 ≥ 𝜉1. If   𝔇′′(𝜉) > 0, 𝑓𝑜𝑟  𝜉 ≥ 𝜉2 ≥ 𝜉1, consequently,𝔇′(𝜉) >
0, 𝔇(𝜉) > 0  and lim𝜉→∞ 𝔇(𝜉) = ∞, this suggests 𝒫(𝜉) → ∞. 

If  𝔇′′(𝜉) < 0, 𝜉 ≥ 𝜉2 ≥ 𝜉1, then by the same way to 𝔇′′′(𝜉) ,we can show that  

𝔇′(𝜉) > 0, 𝜉 ≥ 𝜉2 ≥ 𝜉1, so either 𝔇(𝜉) > 0, or 𝔇(𝜉) < 0. When 𝔇(𝜉) < 0. It remains to 

show that lim𝜉→∞ 𝔇(𝜉) = 0. Now if we assume that it is not true, then 

lim
𝜉→∞

𝔇(𝜉) = 𝑙 < 0. 

 From (2) we get 

𝒮1𝒫(𝓊(𝜉)) ≥ 𝒮(𝜉)𝒫(𝓊(𝜉)) = 𝒫(𝜉) −  𝔇(𝜉) 

𝒫(𝓊(𝜉)) ≥
𝒫(𝜉) −  𝔇(𝜉)

𝒮1
                                       (4) 

Since 𝔇(𝜉) < 0, then  𝒫(𝜉) < 𝒫(𝓊(𝜉)) and 𝒫(𝜉) is decreasing, so let   

lim𝜉→∞ 𝒫(𝜉) = 𝑘 ≥ 0, letting  𝜉 → ∞ , it follows from (4) that  𝑘 ≥
𝑘−𝑙

𝒮1
 , this is a 

contradiction. Therefore, we have  lim𝜉→∞ 𝔇(𝜉) = 0, lim𝜉→∞ 𝒫(𝜉) = 0, 

The proof is complete.  

 

Lemma 4: Suppose that   𝒬(𝜉) ≤ 0 , 0 ≤ 𝒮(𝜉) ≤ 𝒮1 < 1, 𝐴1 hold and eq.(1) has a solution 

that is nonoscillatory. Then, there are only the following cases to consider:   

1. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≥ 0, lim
𝜉→∞

𝔇(𝜉) = ∞, lim
𝜉→∞

𝒫(𝜉)

= ∞,  
2. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) < 0,  𝔇(4)(𝜉) ≥ 0, lim

𝜉→∞
𝔇(𝜉) = ∞, lim

𝜉→∞
𝒫(𝜉)

= ∞,  
3. 𝔇(𝜉) < 0, 𝔇′(𝜉) < 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) < 0,  𝔇(4)(𝜉) ≥ 0.  
4. 𝔇(𝜉) > 0, 𝔇′(𝜉) < 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) < 0,  𝔇(4)(𝜉) ≥ 0. 
  

Proof. Suppose that eq.(1) has a solution that is nonoscillatory.𝒫(𝜉), we can assume that 

𝒫(𝜉) > 0, 𝒫(𝓊(𝜉)) > 0  𝑎𝑛𝑑 𝒫(𝓋(𝜉)) > 0, it follows from eq.(3) that 𝔇(4)(𝜉) ≥ 0, hence 

 𝔇′′′(𝜉),  𝔇′′(𝜉),  𝔇′(𝜉), 𝔇(𝜉) are monotone and they have a constant sign for 𝜉 ≥ 𝜉1 ≥ 𝜉0. If 

 𝔇′′′(𝜉) > 0, 𝜉 ≥ 𝜉1 ,then consequently, 

𝔇′′(𝜉) > 0, 𝔇′(𝜉) > 0 , 𝔇(𝜉) > 0,   and  lim𝜉→∞ 𝔇(𝜉) = ∞, this implies lim𝜉→∞ 𝒫(𝜉) = ∞, 

If  𝔇′′′(𝜉) < 0, 𝑓𝑜𝑟  𝜉 ≥ 𝜉1, we claim that 𝔇′′(𝜉) > 0, 𝜉 ≥ 𝜉2 ≥ 𝜉1. Otherwise, 𝔇′′(𝜉) <
0, 𝜉 ≥ 𝜉2 ≥ 𝜉1, hence  𝔇′(𝜉) < 0, 𝔇(𝜉) < 0,  and   lim𝜉→∞ 𝔇(𝜉) = −∞. From (2) it should  

be noted that 

𝔇(𝜉) ≥ −𝒮(𝜉)𝒫(𝓊(𝜉)) ≥ −𝒮1𝒫(𝓊(𝜉)) 

𝒫(𝓊(𝜉)) ≥ −
1

𝒮1
𝔇(𝜉) 

Hence,  𝒫(𝜉) → ∞, as  𝜉 → ∞. On the other hand, since 𝔇(𝜉) < 0 then from (2) 
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𝒫(𝜉) < 𝒮(𝜉)𝒫(𝓊(𝜉)) ≤ 𝒮1𝒫(𝓊(𝜉)) < 𝒫(𝓊(𝜉)) 

It implies that 𝒫(𝜉) is decreasing function, this is a contradiction with 𝒫(𝜉) → ∞. 
Thus,   𝔇′′(𝜉) > 0, 𝜉 ≥ 𝜉2. If   𝔇′(𝜉) > 0, 𝜉 ≥ 𝜉2 ≥ 𝜉1, Consequently, 

 𝔇(𝜉) > 0  and lim𝜉→∞ 𝔇(𝜉) = ∞, which implies that  lim𝜉→∞ 𝒫(𝜉) = ∞.  

If  𝔇′(𝜉) < 0, 𝜉 ≥ 𝜉2 ≥ 𝜉1, so either 𝔇(𝜉) < 0, or 𝔇(𝜉) > 0. Therefore, the  proof is finished.  

 

Theorem 4: Suppose that  𝐴1 holds  𝒬(𝜉) ≥ 0 , 0 ≤ 𝒮(𝜉) ≤ 𝒮1 < 1,  

 lim inf
𝜉→∞

∫ 𝒬(𝜔)
𝜉

𝓋(𝜉)

𝓋3(𝜔)𝑑𝜔 >
6

𝑚𝜀𝑒
 .                             (5) 

Then, each solution of eq.(1) oscillates or approaches to 0 as 𝜉 → ∞. 

Proof. Suppose that eq.(1) has a nonoscillatory solution 𝒫(𝜉), let  𝒫(𝜉) > 0, 𝒫(𝓊(𝜉)) > 0,

𝒫(𝓋(𝜉)) > 0, According to Lemma 3, there are only the following cases for discussion: 

1. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, lim
𝜉→∞

𝔇(𝜉) = ∞  

2. 𝔇(𝜉) > 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) < 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, 
3. 𝔇(𝜉) < 0, 𝔇′(𝜉) > 0,  𝔇′′(𝜉) < 0, 𝔇′′′(𝜉) > 0,  𝔇(4)(𝜉) ≤ 0, lim

𝜉→∞
𝔇(𝜉) = lim

𝜉→∞
𝒫(𝜉) = 0. 

Since cases 1 and 2 are similar for 𝔇(𝜉) > 0, 𝑎𝑛𝑑  𝔇′(𝜉) > 0, then we will discuss them 

together. 

Cases 1 and 2. Since 𝔇(4)(𝜉)𝔇′′′(𝜉) < 0, and 𝔇(𝜉) is positive increasing so lim𝜉→∞ 𝔇(𝜉) >

0, then by Lemma 1, we have 𝔇(𝜉)  ≥
𝜀

3!
𝜉3𝔇′′′(𝜉), for 𝜉 ∈ [𝜉𝜀 , ∞). So 

𝔇(𝓋(𝜉))  ≥
𝜀

3!
𝓋3(𝜉)𝔇′′′(𝓋(𝜉)).                         (6) 

By 𝐴1 ,  the eq.(3) leads to: 

𝔇(4)(𝜉) + 𝑚𝒬(𝜉)𝒫(𝓋(𝜉)) ≤ 0 

By (2), it follows that    𝒫(𝓋(𝜉)) ≥ 𝔇(𝓋(𝜉)) so  

𝔇(4)(𝜉) + 𝑚𝒬(𝜉)𝔇(𝓋(𝜉)) ≤ 0 

By substituting (6) in the last inequality, we get  

𝔇(4)(𝜉) +
𝑚𝜀

3!
𝒬(𝜉)𝓋3(𝜉)𝔇′′′(𝓋(𝜉)) ≤ 0 

Let  𝜑(𝜉) = 𝔇′′′(𝜉), then  

𝜑′(𝜉) +
𝑚𝜀

3!
𝒬(𝜉)𝓋3(𝜉)𝜑(𝓋(𝜉)) ≤ 0, 

In terms of condition (5) and Lemma 2, it follows that the last inequality is impossible to have 

eventually positive solution, this is incongruent. 

 

Example 1. Take into account fourth order nonlinear neutral equation  

[𝒫(𝜉) − (
1

5
+ 𝑒−1) 𝒫(𝜉 − 1)]

(4)

+
1

10
𝑒−1𝒯(𝒫(𝜉 − 2)) = 0, 𝜉 ≥ 0.     (7)    

𝒮(𝜉) =
1

5
+ 𝑒−1  , 𝒬(𝜉) =

1

10
𝑒−1,   𝓊(𝜉) = 𝜉 − 1, 𝓋(𝜉) = 𝜉 − 2, 𝒯(𝒫) = 2𝒫, 𝑚 = 2.   To 

check the condition (5)  

 lim inf
𝜉→∞

∫ 𝒬(𝜔)
𝜉

𝓋(𝜉)

𝓋3(𝜔)𝑑𝜔 =
𝑒−1

10
lim
𝜉→∞

∫ (𝜔 − 2)3
𝜉

𝜉−2

𝑑𝜔 = ∞. 

All conditions of theorem 4 are satisfied, To clarify, note that 𝒫(𝜉) = 𝑒−𝜉 is a solution to the 

eq.(7) and approaches zero as  𝜉 → ∞.   
Theorem 5: Suppose that 𝐴1 holds, 𝒬(𝜉) ≤ 0, 𝓋(𝜉) ≥ 𝜉 for some 𝜂(𝜉) > 𝜉  and 

 lim inf
𝜉→∞

 ∫ |𝒬(𝜚)|𝓋3(𝜚)𝑑𝜚
𝓋(𝜉)

𝜉

>
6

𝜀𝑚𝑒
 ,     (8) 
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 lim sup
𝜉→∞

∫ ∫ ∫ ∫ |𝒬(𝜚)|𝑑𝜚
𝜂(𝜏)

𝜏

𝜂(𝜎)

𝜎

𝑑𝜏
𝜂(𝜔)

𝜔

𝜉

𝜉2

𝑑𝜎𝑑𝜔 = ∞ .  (9) 

 

Then, every bounded solution of eq.(1) either oscillates or approaches to 0 as  𝜉 → ∞,  
Proof. Suppose eq.(1) has a nonoscillatory solution 𝒫(𝜉), so 𝒫(𝜉)  is eventually positive 

(eventually negative). Let  𝒫(𝜉) > 0, 𝒫(𝓊(𝜉)) > 0, 𝒫(𝓋(𝜉)) > 0. According to lemma 4, 

there are only the following cases for discussion: 

1. 𝔇(𝜉) < 0, 𝔇′(𝜉) < 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) < 0,  𝔇(4)(𝜉) ≥ 0. 

2. 𝔇(𝜉) > 0, 𝔇′(𝜉) < 0,  𝔇′′(𝜉) > 0, 𝔇′′′(𝜉) < 0,  𝔇(4)(𝜉) ≥ 0. 
 

Cases 1: Since  𝔇′′′(𝜉)𝔇′′′′(𝜉) < 0, and 𝔇(𝜉) is negative decreasing , lim𝜉→∞ 𝔇(𝜉) < 0, 

then by lemma 1 we have 𝔇(𝜉)  ≥
𝜀

6
𝜉3𝔇′′′(𝜉), for 𝜉 ∈ [𝜉𝜀 , ∞). So 

𝔇(𝓋(𝜉))  ≥
𝜀

6
𝓋3(𝜉)𝔇′′′(𝓋(𝜉))                               (10) 

Eq.(3)  may  be written as well as the 

𝔇(4)(𝜉) ≥ 𝑚|𝒬(𝜉)|𝒫(𝓋(𝜉)) ≥ 𝑚|𝒬(𝜉)|𝔇(𝓋(𝜉))                   (11) 

By substituting (10) in (11) we get  

𝔇(4)(𝜉) ≥
𝜀𝑚

6
|𝒬(𝜉)|𝓋3(𝜉)𝔇′′′(𝓋(𝜉)).                    (12) 

Let  𝜑(𝜉) = 𝔇′′′(𝜉) then  

𝜑′(𝜉) −
𝜀𝑚

6
|𝒬(𝜉)|𝓋3(𝜉)𝜑(𝓋(𝜉)) ≥ 0.  

     In terms of condition (8) and Lemma 2, it follows that the last inequality is impossible to 

have eventually positive solution, this is incongruous. 

Case 2: We claim that  lim inf𝜉→∞ 𝒫(𝜉) = 0, otherwise  lim inf𝜉→∞ 𝒫(𝜉) = 𝑙1 > 0.  So there 

is  𝜉2 ≥ 𝜉1 such that𝒫(𝜉) ≥ 𝑙1, 𝜉 ≥ 𝜉2. 

Hence, the inequality (11) leads to  

𝔇(4)(𝜉) ≥ 𝑚|𝒬(𝜉)|𝒫(𝓋(𝜉)) ≥ 𝑚𝑙1|𝒬(𝜉)|,   𝜉 ≥ 𝜉2 

       Integrating the last inequality from  𝜉 to 𝜂(𝜉) three times for some𝜂(𝜉) > 𝜉, this yields 

 −𝔇′(𝜉) ≥ 𝑚𝑙1 ∫ ∫ ∫ |𝒬(𝜚)|𝑑𝜚
𝜂(𝜏)

𝜏

𝜂(𝜎)

𝜎

𝑑𝜏
𝜂(𝜉)

𝜉

𝑑𝜎 

𝔇′(𝜉) ≤ −𝑚𝑙1 ∫ ∫ ∫ |𝒬(𝜚)|𝑑𝜚
𝜂(𝜏)

𝜏

𝜂(𝜎)

𝜎

𝑑𝜏
𝜂(𝜉)

𝜉

𝑑𝜎 

Integrating the last inequality from  𝜉2 to 𝜉  yields 

𝔇(𝜉) − 𝔇(𝜉2) ≤ −𝑚𝑙1 ∫ ∫ ∫ ∫ |𝒬(𝜚)|𝑑𝜚
𝜂(𝜏)

𝜏

𝜂(𝜎)

𝜎

𝑑𝜏
𝜂(𝜔)

𝜔

𝜉

𝜉2

𝑑𝜎 

      As 𝜉 → ∞, taking into account (9), the last inequality implies  lim 𝜉→∞ 𝔇(𝜉) = −∞, a 

contradiction. Thus  lim inf𝜉→∞ 𝒫(𝜉) = 0, implies that  lim 𝜉→∞ 𝔇(𝜉) = 0. We claim that 

lim sup𝜉→∞ 𝒫(𝜉) = 0, otherwise  lim sup𝜉→∞ 𝒫(𝜉) = 𝑙2 > 0, From (2) we get 

𝒫(𝜉) − 𝔇(𝜉) = 𝒮(𝜉)𝒫(𝓊(𝜉)) ≤ 𝒮1𝒫(𝓊(𝜉)) < 𝒫(𝓊(𝜉)) 

      As 𝜉 → ∞, the last inequality implies 𝑙2 < 𝑙2, this is incongruous. The proof is finished. 

 

 

Example 2: Consider the fourth-order NDE  

[𝒫(𝜉) −
𝑒−1

𝜉−1
𝒫(𝜉 − 1)]

(4)

−
𝜉−5

𝜉−2
𝑒−2𝒯(𝒫(𝜉 − 2)) = 0, 𝜉 > 5.  (13)       
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𝒮(𝜉) =
𝑒−1

𝜉 − 1
  , 𝓊(𝜉) = 𝜉 − 1, 𝒬(𝜉) = −

𝜉 − 5

𝜉 − 2
𝑒−2 , 𝒯(𝒫) = 𝒫, 

𝓋(𝜉) = 𝜉 − 2, 𝑚 ∈ (0,1], 𝜂(𝜉) = 𝜉 + 1, 𝓋(𝜂(𝜉)) = 𝜉 − 1. 

 lim inf
𝜉→∞

 ∫ ∫ ((𝜚 + 4)𝑒2 − 𝑒1)(𝜚 − 2)𝑑𝜚
𝜎+1

𝜎

𝜉

𝜉−1

𝑑𝜎 = ∞   

 lim sup
𝜉→∞

∫ ∫ ∫ ∫ |𝒬(𝜚)|𝑑𝜚
𝜂(𝜏)

𝜏

𝜂(𝜎)

𝜎

𝑑𝜏
𝜂(𝜔)

𝜔

𝜉

𝜉2

𝑑𝜎𝑑𝜔

=  lim inf
𝜉→∞

∫ ∫ ∫ ∫
(𝜚 − 5)𝑒−4

𝜚 − 4
𝑑𝜚

𝜏+1

𝜏

𝜎+1

𝜎

𝑑𝜏
𝜔+1

𝜔

𝜉

5

𝑑𝜎𝑑𝜔 = ∞.  

All of the requirements of theorem 5 are met, hence every solution of eq.(13) either oscillates 

or tends to zero as 𝜉 → ∞. To clarify, note that 𝒫(𝜉) = 𝜉𝑒−𝜉  is a solution to eq.(13) and 

approaches zero as  𝜉 → ∞.  
  

3. Conclusions:  

      In this paper, the oscillatory and non-oscillatory traits are proposed and studied to solve 

the fourth-order neutral delay equation. Some important conditions that guarantee the 

oscillation of the solutions to these equations are deduced, while others are close to zero 

 𝜉 → ∞.The results that illustrate the accuracy and efficiency of these conditions are obtained 

by displaying illustrative examples. 
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