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Abstract 

       In this article, we study the notion of closed Rickart modules. A right R-module 

M is said to be closed Rickart if, for each          ,            is a closed 

submodule of M. Closed Rickart modules is a proper generalization of Rickart 

modules. Many properties of closed Rickart modules are investigated. Also, we 

provide some characterizations of closed Rickart modules. A necessary and 

sufficient condition is provided to ensure that this property is preserved under direct 

sums. Several connections between closed Rickart modules and other classes of 

modules are given. It is shown that every closed Rickart module is  -nonsingular 

module. Examples which delineate this concept and some results are provided.       
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 حول مقاسات ريكارت المغمقة
 

 2ثائر يونس غاوي  ،*1أنعام محمد عمي هادي

 العراق ،بغداد ،جامعة بغداد ،كمية التربية أبن الهيثم ،قسم الرياضيات 1
 العراق ،القاد سية ،سيةجامعة القاد   ،كمية التربية ،قسم الرياضيات 2

 

 الخلاصة 
يدعى ريكارت  Rالحمقة عمى  M. المقاس الأيمن سنا فكرة مقاسات ريكارت المغمقةفي هذا البحث در          

. مقاس ريكارت Mمقاس جزئي مغمق من             فأن           مغمق اذا كان لكل 
المغمق يمثل اعمام فعمي لمقاس ريكارت. الكثير من الخصائص لمقاسات ريكارت المغمقة تحققت. كذلك نحن 

الكافي لضمان تحقق خاصية  برهنا بعض الشواخص لمقاسات ريكارت المغمقة. برهنا الشرط الضروري و
. K مق يكون مقاس غير منفرد من النمطريكارت المغمقة تحت الجمع المباشر. أثبتنا ان كل مقاس ريكارت مغ

                رهنت.أمثمة لتوضيح هذا المفهوم وبعض النتائج قد ب  

 
1  Introduction 

     Throughout this article, R denotes an associative ring with identity, unless otherwise stated, and all 

modules will be unitary right R-modules. The concept of right Rickart modules has been extensively 

studied in the literature. According to [1], a module M is called Rickart if, for any            ,  
              for some        . A submodule N of a module M is called closed if, N has 

no proper essential extensions inside M [2]. Following [3], a right R-module M is said to be closed 

Rickart (for short c-Rickart) if, for each            ,            is closed submodule of 

M. R is a c-Rickart ring if    is a c-Rickart module. It is clear that every Rickart module is c-Rickart.  
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    This work consists of two sections. In section 2, we establish basic properties and some 

characterizations of c-Rickart modules. Also, we discussed and investigated the connections between 

a c-Rickart modules and other types of modules. It is shown that every nonsingular module is c-

Rickart. Also, we give an example to show that the convers need not be true, in general. We prove        

that the class of rings R for which every right R-module is c-Rickart is precisely that of the 

semisimple artinian. The investigations in section 3 focus on the question when the direct sum of two 

or more c-Rickart modules is also c-Rickart ? Further, we prove that for all    ,    is a c-Rickart 

module if and only if         is a c-Rickart module, where    is a fully invariant submodule of  

       for all    . Some results on direct sum decompositions of c-Rickart modules are also 

included in this section. In what follows,  we will denote the endomorphism of a module M by 

      . The notations    ,    ,     ,     , or       mean that N is a subset,      a 

submodule, an essential submodule, a closed submodule, or a direct summand of M, respectively. 

     denotes the injective hull of a module M. For a module M, we denote 

      {   |      }        for each            .                                                     
2  Closed Rickart Modules  

      Let M be a right R-module with         . The module M is called closed Rickart (for short           

c-Rickart) if, for any            ,            is closed submodule of M [3]. In this 

section,  we continue to investigate properties and characterizations of c-Rickart modules. We begin 

with the following remarks and examples.   

Remarks and Examples (2.1)  

(i) Every semisimple module is c-Rickart, but not conversely, for example: the Z-module Z is c-

Rickart but  its neither semisimple nor simple.  

      A right R-module M is called Baer if, the left annihilator in          of any submodule of M 

is generated by an idempotent of S. Equivalently, the right annihilator in M of any non-empty subset 

of           is generated by an idempotent of S [4]. It is clear that every Baer module is Rickart, 

so it is a c-Rickart module.     

(ii) The c-Rickart property does not always transfer from a module to its submodule, as example: it is 

well known that the Z-modules Q and    are Baer modules such that             , so by [5, 

Prop. 3.20]      is a Baer Z-module, then it is c-Rickart. However, we can see that the submodule 

     is not a c-Rickart module, as follows: assume that               defined by         
       for each          . Hence            which is not closed in     . In fact       

is an essential submodule of      .  

(iii) The c-Rickart property does not always transfer from submodules to a module, as the next 

example illustrate: the Z-module    is not c-Rickart, since           such that           for all  

    , but             , so      is not closed in   . However, the submodule          is 

a c-Rickart Z-module.  

(iv) A homomrphic image of a c-Rickart module may not be c-Rickart. Consider the natural 

epimorphism       . The Z-module Z is c-Rickart, but         is not c-Rickart Z-module.  

(v) The c-Rickart property transforms under an isomorphism.  

Proof. Assume that    and    are two R-modules such that    is c-Rickart, and          is an 

isomorphism. Let          , to prove that          . Suppose that          in   , hence 

                   in   . We claim that                     . Let            , 
         and       , hence        and       . Then                  
        , so             . Conversely, let             ,              and so 

              . But                (clear), hence          ,            . Thus, 

                    . Since                and    is a c-Rickart module, then 

                        , but                    in    this implies           
        and hence        . Therefore          and     is a c-Rickart module.       

     An R-module M is said to have the closed intersection property (for short CIP) if, the intersection 

of any two closed submodules of M is again closed [3].  

Theorem (2.2) The following conditions are equivalent for a module M : 

(i) M is a c-Rickart with CIP; 

(ii) The right annihilator in M of any finitely generated left ideal    〈          〉 of          
      is closed in M.   
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Proof.          Suppose that M is a c-Rickart module, let             be a nonzero left ideal 

with a finite number of generators  {          }. Since        ⋂           
     for      

 , as M has the CIP. Hence          .   

         Let            , then 〈 〉 is a left ideal of S with one generator, hence  

        . Therefore M is c-Rickart.      

Proposition (2.3) Every direct summand of a c-Rickart module is c-Rickart.  

Proof. Let M be a c-Rickart module, and let     . Then       for some    . Let 

          , to prove        . Consider the sequence   
 
→  

 
→  

 
→   where   is the 

natural projection, i  is the inclusion mapping. Hence              , and so            is 

closed in M. It is easy to see that                  , implies          , but 

            , hence         by [6, Prop. 6.24 (2)], but        , so         by [6, 

Prop. 6.24 (1)]. Thus N  is c-Rickart.        

The converse of Proposition 2.3 need not be true, in general, as the following example shows.   

Example (2.4) Consider the Z-module    . Let              such that              for all 

     , then      〈 〉       this implies      is not closed in    , and hence     is not c-

Rickart. On the other hand,   〈 〉      , then       . But    is a simple Z-module, so it is c-

Rickart. Thus N is a c-Rickart Z-module.      

     Now, we need to recall of definitions for a module M such as: (    every submodule of M is 

essential in a direct summand of M; (    if a submodule A of M is isomorphic to a direct summand of 

M, then A is       a direct summand of M; and (    if A and B are direct summands of M such that 

 ⋂   , then     is    a direct summand of M. Modules with the    property are called  extending 

(or CS)-modules. A module M is an extending module if and only if every closed submodule of M is a 

direct summand [7]. A module M is called continuous if M has    and   , and quasi-continuous if M 

has    and    [7].  An R-module M is said to be a quasi-injective module if, for any submodule L of 

M, any             can be extended to an endomorphism of M [6].      

     The next result give a condition under which the concepts of Rickart and c-Rickart modules are 

equivalent.  

Proposition (2.5) Let M be an extending R-module. Then M is c-Rickart if and only if M is Rickart. 

Proof. It is easy to check.       

Corollary (2.6) Let M be an injective or (quasi-injective, continuous, quasi-continuous) R-module. 

Then M is c-Rickart if and only if M is Rickart. 

Corollary (2.7) If M is a c-Rickart extending R-module, then so are      and     for every 

        .  
Proof. By Proposition 2.5, M is a Rickart module. Hence, for any         ,         this 

implies          for some    . But      
 

    
  . Thus      and     are Rickart 

modules, by [1, Th. 2.7], and so they are c-Rickart.       

     Our next aim is to find some conditions under which every submodule of a c-Rickart module is 

also    c-Rickart. First, we give the following Lemma.  

Lemma (2.8) Let M be a c-Rickart R-module, and     . If every          can be extended to 

an  ̅        , then N is a c-Rickart module.  

Proof. Let         , so by assumption, there is an  ̅         such that  ̅|   . Since M is c-

Rickart, then     ̅     and so        , but         implies          by [6, Prop. 6.24 

(1)]. Hence N is a c-Rickart module.      

The following Corollary is an immediate consequence of Lemma 2.8.   

Corollary (2.9) Let M be a quasi-injective R-module. If      is a c-Rickart module, then so is M. 

Corollary (2.10) Let M be a quasi-injective and c-Rickart R-module, then every submodule of M is          

c-Rickart.  

Proof. Assume M is a quasi-injective and c-Rickart R-module. Let      and         , so   

extends to an  ̅        , as M is quasi-injective. Since M is c-Rickart, then by Lemma 2.8, N is a 

c-Rickart module.      

Consider the following condition (  ) for an R-module M :  

- For any submodule A of M  for which  
 

 
     , then A is a closed submodule of M …       
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 Proposition (2.11) Every c-Rickart module satisfy the condition     . 

Proof. Assume that M is a c-Rickart module. Let N be any submodule of M with  
 

 
     , then 

there is an isomorphism   
 

 
→  . Consider the sequence  

 
→   ⁄

 
→  

 
→   where   is the natural 

projection map, and i is the inclusion map. Thus             , and so            

   (        )          . Since M  is c-Rickart,              is closed in M. 

Therefore M  satisfies     .         

Corollary (2.12) Let M be a c-Rickart such that 
 

 
      for all    , then M is semisimple.  

Proof. Since M is a c-Rickart module and  
 

 
      for all    , thus by previous proposition, 

every submodule of M is closed. Hence M is semisimple.       

     In the next Proposition, we put certain condition under which the converse of Proposition 2.11 is 

true. 

Proposition (2.13) If M is a module satisfies    , and     is isomorphic to a direct summand of M, 

for each          , then M is a c-Rickart module .  

Proof. Let         , so by assumption,         . But  
 

    
    , hence 

 

    
 

    , then      is closed in M, by the condition    . Therefore M is a c-Rickart module.       

     Notice that the factor module of a c-Rickart module may not be c-Rickart, for example; the  Z-

module Z is c-Rickart, but we know  
 

  
     is not a c-Rickart Z-module.  

However, we have the following Remarks: 

Remarks (2.14)  

(i) If M is a c-Rickart module, then it is clear that  
 

 
 is c-Rickart for each direct summand N of M. In 

particular, if M is a semisimple module, then  
 

 
  is c-Rickart for every submodule N of M . 

(ii) Let M be a module, and    . If  N  and  
 

 
 are both c-Rickart modules, then M may not be c-

Rickart, for example; let        and            . It is clear that N and  
 

 
   are c-

Rickart Z-modules, but M is not c-Rickart, see [Rem. and Ex. 2.1(ii)].  

Now, we consider the following definitions: 

     An R-module M is called nonsingular if, for all     with          implies     [2]. 

Recall that an R-module M is said to be  -nonsingular if, for each          and         

implies     [8]. It is clear that every nonsingular module is  -nonsingular. Following [9], an R-

module M is called monoform (polyform) if, for any submodule K of M and for all           , 
       (resp.      is closed in K). Let M and N be R-modules. Then M is called N-c-Rickart (or 

relatively c-Rickart to N) if, for each           ,         [3]. Clearly,  a module M is c-

Rickart if and only if M is M-c-Rickart.  

Proposition (2.15) The following conditions hold for a module M : 

(i) If M is a polyform module then M is c-Rickart. 

(ii) For any    , N is M-c-Rickart module if and only if M is a polyform module. 

Proof. It is easy to check.       

     It is known that every nonsingular module is polyform, by [7, 4.10(1)], also every prime (or 

monoform) module is polyform. So we have: 

Corollary (2.16) Every nonsingular (prime, or monoform) module is c-Rickart. 

       The converse need not be true, in general, as example shows: it is clear that the Z-module      is 

semisimple, where p and q are prime, so it is c-Rickart. But, it is not nonsingular (not prime, not 

monoform) as Z-module.   

     By using Corollary 2.16, we shall give another short proof of the following Proposition which 

appeared in [4]. 

Proposition (2.17) If M is a nonsingular and extending module, then M is Rickart.  

Proof. By Corollary 2.16, M is c-Rickart. But M is c-Rickart and extending implies M is Rickart, by 

Proposition 2.5.      

     The following result is appeared in [1, Prop. 2.12].  

Proposition (2.18) Every Rickart module is  -nonsingular.  
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However, we presented the next strong Proposition. 

Proposition (2.19) Every c-Rickart module is  -nonsingular. 

Proof. Suppose that M is a c-Rickart module. Let          such that        . Since M is c-

Rickart,          which implies that        , and so    . Thus M is  -nonsingular.      

Proposition (2.20) Let M be an R-module. If           is a regular ring, then M is c-Rickart. 

Proof. Let         . Since           is a regular ring, so by [10, Th.4]      is a direct 

summand of M, thus         . Hence M is c-Rickart.      

The converse is false, in general, for example: it is well known that Z as Z-module is c-Rickart, but  

          is not a regular ring.   

     Recall that an R-module M is called quasi-Dedekind if, for each nonzero endomorphism    of M,   

is a monomorphism [11]. A module M is said to be closed simple if, the trivial submodules are the 

only closed submodules of M [3]. Each of the Z-module Z, Q,    is closed simple .   

    In the next result, we give a condition under which the concepts Baer, Rickart, c-Rickart, quasi- 

Dedekind and  -nonsingular modules are coincide. Before, we need the following Lemma which 

appeared in [4, Lemma 2.2.4]. 

Lemma (2.21) Every  -nonsingular extending module is a Baer module.   

Proposition (2.22) Consider the following conditions for an R-module M : 

(i) M  is a Baer module; 

(ii) M  is a Rickart module; 

(iii) M  is a c-Rickart module; 

(iv) M  is a quasi-Dedekind module; 

(v) M  is a  -nonsingular module.    

Then                   . If M is extending, then        .     through    , whenever M is 

a closed simple module.  

Proof.               , obvious.  

          It follows by Proposition 2.19.  

        Since M is extending, then the result follow by Lemma 2.21.  

           Let   be any nonzero endomorphism of M,         (since M is c-Rickart). But M is 

closed simple and    , this implies       , thus   is a monomorphism and hence M is a quasi-

Dedekind module. 

           Obvious.         

The condition '' closed simple '' in above Proposition, is necessary as the following example shows: let 

        be a Z-module. It is clear that M is semisimple, then M is c-Rickart. Consider the short 

exact sequence   
 
→       

 
→  , where   is a projection map, and i  is the inclusion map. Then 

             and     , but             , so h is not a monomorphism. Hence M is 

not quasi-Dedekind Z-module. Notice that M is not closed simple.  

     An R-module M is said to be Hopfian if, every epimorphism         , is an isomorphism [12].  

Corollary (2.23) Every closed simple c-Rickart module is Hopfian.  

Proof. Let    →   be a non-zero epimorphism. Since M is c-Rickart,         but M is closed 

simple and    , this implies       , hence   is a monomorphism.       

The following result is appeared in [8, Th. 2.20].  

Proposition (2.24) Let R be a ring. Then the following conditions are equivalent : 

(i) Every injective R-module is a Baer module; 

(ii) Every R-module is a Baer module; 

(iii) R is a semisimple artinian ring. 

However, we can prove the following Proposition. 

  

Proposition (2.25) The following conditions are equivalent for a ring R : 

(i) Every R-module is a c-Rickart module; 

(ii) Every extending R-module is a c-Rickart module; 

(iii) Every injective R-module is a c-Rickart module; 

(iv) Every injective R-module is a Baer module; 

(v) Every R-module is a Baer module; 

(vi) R is a semisimple artinian ring. 
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Proof.               , obvious. Assume      , let M be an injective module, then M is c-Rickart, 

and hence by Proposition 2.19, M is  -nonsingular. But M is extending, hence by Lemma 2.21, M is a 

Baer module, so      holds.  
               It follows by Proposition 2.24.  

         Since R is semisimple, every R-module is semisimple, and so every R-module is a c-

Rickart module.      

     Recall that an R-module M is said to be finitely related if there exists an exact sequence   →  →
 →  →    where  F is free (of arbitrary rank) and P is finitely generated [6].  

Proposition (2.26) Consider the following conditions for a ring R : 

(i) Every flat R-module is c-Rickart; 

(ii) Every projective R-module is c-Rickart; 

(iii) Every free R-module is c-Rickart. 

Then               . However,     through       for finitely related R-modules. 

Proof.               , obvious. Assume      , let M be a projective module, so by [13, Th. 5.4.1] 

      (F free R-module). By      , F is c-Rickart, then by Proposition 2.3, A is a c-Rickart 

module, and hence M is c-Rickart, so      holds.  

         By [6, Th. 4.30], every finitely related flat module is projective, so the result holds.     

Proposition (2.27) Let R be a ring, and           be a commutative ring. If R is a c-Rickart R-

module, then S is nonsingular.  

Proof. Assume R is a c-Rickart R-module. Let            such that              . 

Since R is c-Rickart,         this implies        and so    . Therefore          is a 

nonsingular R-module.        

Corollary (2.28) Let R be a commutative ring. Then R is c-Rickart if and only if R is nonsingular. 

Proof. Since R is a c-Rickart R-module, so by previous Proposition,          is nonsingular, but 

        , hence R is a nonsingular ring. The converse, follows from Corollary 2.16.       

     Recall that an R-module M is called scalar if, for all         , there exists an     such that 

         for all      [14].   

Proposition (2.29) Let M be a scalar R-module. If M is a c-Rickart R-module, then for any       
      , there exists         such that             .  

Proof. For any          and    , then there is         such that         for all    , 

as M is scalar. Since M is c-Rickart, thus                .        

Corollary (2.30) Let R be a commutative ring with identity. If R is a c-Rickart R-module, then for any 

            , there exists          such that            

Proof. It is clear, since every commutative ring R is a scalar R-module .        

Corollary (2.31) Let M be a scalar faithful R-module, and         . Then R is c-Rickart if only if  

  is c-Rickart.   

Proof. Since M is a scalar R-module, so by [15, Lemma 6.2]                ⁄ . But M is 

faithful, so           . Thus the result is obtained.        

Proposition (2.32) Let M be an R-module, and         ⁄ . Then M is c-Rickart as R-module if 

only if M is c-Rickart as  -module.   

Proof. It is easy to check.        

3  Direct Sums Of c-Rickart Modules          
     In this section, we will discuss the direct sum of c-Rickart modules. Before that, we give the 

following example which illustrates that the direct sum of c-Rickart modules is not c-Rickart.   

Example (3.1) It is easy to see that the Z-modules Z,    are both c-Rickart, where p is prime. But 

       is not c-Rickart. Consider the endomorphism          such that            ) for 

all     and     , then            is an essential in      . Thus      is not closed in M, 

and hence         is not a c-Rickart Z-module.  

Our next results generalize Example 3.1 to arbitrary modules.  

Proposition (3.2) Let M be a closed simple and c-Rickart module which has a nonzero maximal 

submodule N, then       ⁄   is not a c-Rickart module.  

Proof. Assume that      ⁄   is a c-Rickart module. Consider an            ⁄    defined 

by            )  for all     ,     ⁄ . So  {           ⁄  |            }   
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{     |     }  {     |   }       ⁄  . Since      ⁄   is a c-Rickart module, 

          ⁄         ⁄  , but         , so by [6, Prop. 6.24 (2)]          ⁄   
this implies      by [6, Prop. 6.24 (1)], which contradicts that M is closed simple. Therefore 

     ⁄   is not     c-Rickart.      

     Recall that a submodule N of a module M is called a fully invariant submodule if,        for 

each          [16].   

     Now, we give a condition under which the c-Rickart property is closed under direct sums. 

Proposition (3.3) Let          be an R-module such that    is fully invariant for each    . 
Then M is c-Rickart if and only if     is c-Rickart, for each     .  
Proof. Assume that    is a c-Rickart module, for each     . Let          and          

       where               . Since    is fully invariant, then by [17, Lemma 1.9] 

   (     )    for      , also          for each    . So                . However, 

           for each    , as    is a c-Rickart module, then                     [2], this 

means that         and hence M  is a c-Rickart module. The converse, follows directly from 

Proposition 2.3.       

Proposition (3.4) Let M be an R-module. Then the following conditions are equivalent. 

(i) M is a c-Rickart module; 

(ii) For    , every direct summand K of M is N-c-Rickart; 

(iii) For any direct summand K of M, and for any       such that           ,      |   
       is a closed submodule of K.  

Proof.          Assume    . Let K be a direct summand of M,      for some      
      . Let           , so            . On the other hand,                 , 

then           , and hence           . Since M is c-Rickart and 

        ,         so by [6, Prop. 6.24 (2)]        , but       , hence by [6, Prop. 

6.24 (1)]        . Therefore  K is N-c-Rickart.   

           Let K be a direct summand of M and so     . If            ,  |          . 
By     , K is L-c-Rickart, and hence      |   is a closed submodule of K.  

          By taking      , we get M  is M-c-Rickart this mean M is a c-Rickart module.       

Proposition (3.5) The following conditions are equivalent for a ring R and a fixed    .  

(i) Every n-generated projective R-module is a c-Rickart module; 

(ii) The free R-module      is a c-Rickart module.  

Proof.          Since every free R-module is projective, so it is clear that R-module      is  n-

generated projective, so by    ,       is a c-Rickart R-module.      

          Assume M is an n-generated projective R-module. So there exists a free R-module F, and 

an epimorphism    →  . Since F is free and M is n-generated projective R-module, then        →
  splits, where       . On the other hand, M is isomorphic to a direct summand of      , but       

is c-Rickart, hence M  is a c-Rickart R-module.        

Proposition (3.6) The following conditions are equivalent for a ring R.  

(i) Every finitely generated free (projective) R-module is c-Rickart; 

(ii) For each finite index set I,       
    is a c-Rickart R-module for some     . 

Proof.          Since      is a free R-module for some    , then      
    is a finitely 

generated free R-module, for each finite index set I , so by    ,      
    is a c-Rickart R-module.  

         Let      be a finitely generated free R-module, for some    . Then             

    
       which is c-Rickart  by     . Hence      is a c-Rickart R-module, by Proposition 2.3.     

 

Corollary (3.7) The following conditions are equivalent for a ring R.  

(i) Every free (projective) R-module is c-Rickart; 

(ii) For any index set I,       
    is a c-Rickart R-module for some     . 

Proof.          Since      is a free R-module for some    , so      
    is a free R-module, for 

any arbitrary index set I , so by    ,      
    is a c-Rickart R-module.   

         Let       be a free R-module, where I  is an arbitrary index set, so we have two cases:  if 

| |  (i.e. length of I) is finite, then by a similar to the proof          of Proposition 3.6,      is a c-
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Rickart   R-module. Now, if | | is infinite, then      is a direct sum of copies of     . Hence      is a 

c-Rickart R-module.           

 

References  

1. Lee, G., Rizvi, S.T. and Roman, C.S. 2010. Rickart Modules, Comm. In Algebra, 38, 4005-4027.    

2. Goodearl, K.R. 1976. Ring Theory, Nonsingular Rings and Modules, Maracel Dekker, Newyork. 

3. Ghawi, Th.Y. 2015. Modules with Closed Intersection (Sum) Property, Ph.D. Thesis, Univ. of Al-

Mustansiriyah, Iraq.  

4. Roman, C.S. 2004. Baer and Quasi-Baer Modules, Ph.D. Thesis, The Ohio State University. 

5. Rizvi, S.T., Roman, C.S. 2009.On Direct Sums of Baer Modules, J. Algebra, 321(2), 682-696. 

6. Lam, T.Y. 1999. Lectures On Modules and Rings, Springer-Verlag-Berlin, Heidelberg, Newyork. 

7. Dung, N.V., Huyn, D.V., Smith, P.F. and Wisbauer, R. 1994. Extending Modules, Pitman        

Research  notes in math. Series, 313, Longman Scientific and Technical: Harlow.          

8. Rizvi, S.T., Roman, C.S. 2007. On  -nonsingular Modules And Applications, Comm. In Algebra,  

35, 2960-2982. 

9. Zelmanowitz, J.M. 1986. Representation of Rings with Faithful Polyform Modules, Comm. In  

Algebra, 14(6), 1141-1169.   

10. Ranagaswamy, K. M. 1967. Abelian Groups with Endomorphic Images of Special Types, J. 

Algebra, 6(3), 271-280.  

11. Mijbass, A.S. 1997. Quasi-Dedekind Modules, Ph.D. Thesis, Univ. of Baghdad, Iraq.  

12. Xue, W. 1995. Hopfian and Co-Hopfian Modules, Comm. In Algebra, 23(4), 1219-1229. 

13. Kasch, F., 1982, Modules and Rings, Academic press, London. 

14. Shihab, B.N. 2004. Scalar Reflexive Modules, Ph.D. Thesis, Univ. Of Baghdad, Iraq.   

15. Mohamed-Ali, E.A. 2006. On Ikeda-Nakayama Modules, Ph.D. Thesis, Univ. Of Baghdad, Iraq.   

16. Wisbauer, R., 1991, Foundations of Module and  Ring Theory, reading, Gordon and Breach  

Science Publishers. 

17. Ozcan, A.C., Harmanci, A. and Smith, P.F. 2006. Duo Modules, Glasgow math. J, 48, 533-545.  

 

 

 
 

 

 


