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Abstract

In this article, we study the notion of closed Rickart modules. A right R-module
M is said to be closed Rickart if, for each ¢ € End(M), r,(¢) = Kere is a closed
submodule of M. Closed Rickart modules is a proper generalization of Rickart
modules. Many properties of closed Rickart modules are investigated. Also, we
provide some characterizations of closed Rickart modules. A necessary and
sufficient condition is provided to ensure that this property is preserved under direct
sums. Several connections between closed Rickart modules and other classes of
modules are given. It is shown that every closed Rickart module is x-nonsingular
module. Examples which delineate this concept and some results are provided.

Keywords: c-Rickart Modules, Quasi-Dedekind Modules, Closed Simple Modules,
Nonsingular Modules.
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1 Introduction

Throughout this article, R denotes an associative ring with identity, unless otherwise stated, and all
modules will be unitary right R-modules. The concept of right Rickart modules has been extensively
studied in the literature. According to [1], a module M is called Rickart if, for any ¢ € S = End(M),
v (@) = Kergp = eM for some e? = e € S. A submodule N of a module M is called closed if, N has
no proper essential extensions inside M [2]. Following [3], a right R-module M is said to be closed
Rickart (for short c-Rickart) if, for each ¢ € S = End(M), r, () = Kere is closed submodule of
M. R is a c-Rickart ring if Ry is a c-Rickart module. It is clear that every Rickart module is c-Rickart.
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This work consists of two sections. In section 2, we establish basic properties and some
characterizations of c-Rickart modules. Also, we discussed and investigated the connections between
a c-Rickart modules and other types of modules. It is shown that every nonsingular module is c-
Rickart. Also, we give an example to show that the convers need not be true, in general. We prove
that the class of rings R for which every right R-module is c-Rickart is precisely that of the
semisimple artinian. The investigations in section 3 focus on the question when the direct sum of two
or more c-Rickart modules is also c-Rickart ? Further, we prove that for all i € I, M; is a c-Rickart
module if and only if @;c; M; is a c-Rickart module, where M; is a fully invariant submodule of
@iy M; for all i € I. Some results on direct sum decompositions of c-Rickart modules are also
included in this section. In what follows, we will denote the endomorphism of a module M by
End(M). The notations N € M,N < M, N <, M, N <¢ M,or N <® M mean that N is a subset, a
submodule, an essential submodule, a closed submodule, or a direct summand of M, respectively.
E(M) denotes the injective hull of a module M. For a module M, we denote
(@) = {m € M|p(m) = 0} = Kerg foreach ¢ € S = End(M).

2 Closed Rickart Modules

Let M be a right R-module with S = End(M). The module M is called closed Rickart (for short
c-Rickart) if, for any ¢ € S = End(M), ry (@) = Kerg is closed submodule of M [3]. In this
section, we continue to investigate properties and characterizations of c-Rickart modules. We begin
with the following remarks and examples.

Remarks and Examples (2.1)
(i) Every semisimple module is c-Rickart, but not conversely, for example: the Z-module Z is c-
Rickart but its neither semisimple nor simple.

A right R-module M is called Baer if, the left annihilator in S = End(M) of any submodule of M
is generated by an idempotent of S. Equivalently, the right annihilator in M of any non-empty subset
of S = End(M) is generated by an idempotent of S [4]. It is clear that every Baer module is Rickart,
so it is a c-Rickart module.

(ii) The c-Rickart property does not always transfer from a module to its submodule, as example: it is
well known that the Z-modules Q and Z, are Baer modules such that Hom,(Q, Z,) = 0, so by [5,
Prop. 3.20] QZ, is a Baer Z-module, then it is c-Rickart. However, we can see that the submodule
Z®Z, is not a c-Rickart module, as follows: assume that ¢ € S = End(Z®Z,) defined by ¢(x,y ) =
(0,x) foreachx € Z, y € Z,. Hence Kerg = 2Z®Z, which is not closed in Z&®Z,. In fact 2Z®Z,
is an essential submodule of Z@Z,.

(iii) The c-Rickart property does not always transfer from submodules to a module, as the next
example illustrate: the Z-module Z, is not c-Rickart, since ¢ € End(Z,) such that ¢(x) = 2x for all
X € Z,, but Kero = 2Z, <, Z,, S0 Kere is not closed in Z,. However, the submodule 2Z,(= Z,) is
a c-Rickart Z-module.

(iv) A homomrphic image of a c-Rickart module may not be c-Rickart. Consider the natural
epimorphism ¢: Z — Z,. The Z-module Z is c-Rickart, but Im¢ = Z, is not c-Rickart Z-module.

(v) The c-Rickart property transforms under an isomorphism.

Proof. Assume that M; and M, are two R-modules such that M, is c-Rickart, and ¢: M; — M, is an
isomorphism. Let « € End(M,), to prove that Kera <¢ M,. Suppose that Kera <, A, in M, hence
@ 1(Kera) <, ¢ 1(4,) in M;. We claim that p~1(Kera) = Ker(¢ tag). Let y € p~1(Kera),
y=¢ 1(x) and x € Kera, hence ¢(y)=x and a(x) =0. Then ¢ lap(y) =¢ ta(x) =
©~1(0) =0, so y € Ker(¢ tag). Conversely, let x € Ker(¢p tap), ¢ ta(p(x)) =0 and so
o(x) € Ker(p~ta). But Ker(p~ta) = Kera (clear), hence ¢(x) € Kera, x € ¢~ 1(Kera). Thus,
@ 1(Kera) = Ker(¢~tag). Since ¢ lap € End(M,;) and M; is a c-Rickart module, then
@ 1(Kera) = Ker(p tap) <¢ My, but 9~ 1(Kera) <, ¢~1(4,) in M, this implies ¢~ 1(Kera) =
@~ 1(A,) and hence Kera = A,. Therefore Kera <¢ M, and M, is a c-Rickart module. m

An R-module M is said to have the closed intersection property (for short CIP) if, the intersection

of any two closed submodules of M is again closed [3].

Theorem (2.2) The following conditions are equivalent for a module M :

(i) M is a c-Rickart with CIP;

(ii) The right annihilator in M of any finitely generated left ideal I = (@4, @3, ..., ¢,) of End(M)

is closed in M.
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Proof. (i) = (ii) Suppose that M is a c-Rickart module, let I < S = End(M) be a nonzero left ideal
with a finite number of generators {4, @5, ..., @ }. Since 1y (1) = Niv (@) <M for 1<i<
n, as M has the CIP. Hence ry,(I) <¢ M.

(i) &= (i) Let Y €S =End(M), then () is a left ideal of S with one generator, hence
() <¢ M. Therefore M is c-Rickart. =

Proposition (2.3) Every direct summand of a c-Rickart module is c-Rickart.

Proof. Let M be a c-Rickart module, and let N <® M. Then M = N®K for some K < M. Let

¢ €S = End(N), to prove Kere <¢ N. Consider the sequence M ENE NS M where p is the
natural projection, i is the inclusion mapping. Hence io @ o p € End(M), and so Ker(i o ¢ o p) is
closed in M. It is easy to see that Ker(io @ op) = Kero®K, implies Kero®K <¢ M, but
Kerp <¢ Kerop@®K, hence Ker¢p <¢ M by [6, Prop. 6.24 (2)], but Kerp S N, so Kero <¢ N by [6,
Prop. 6.24 (1)]. Thus N is c-Rickart. =

The converse of Proposition 2.3 need not be true, in general, as the following example shows.
Example (2.4) Consider the Z-module Z,,. Let ¢ € S = End(Z;,) such that ¢(x) =6x for all

X € Z;,, then Kerp = (2) <, Z;, this implies Ker¢ is not closed in Z;,, and hence Z;, is not c-

Rickart. On the other hand, N = (4) <® Z,,, then N(= Z3). But Z; is a simple Z-module, so it is c-
Rickart. Thus N is a c-Rickart Z-module.

Now, we need to recall of definitions for a module M such as: (C;) every submodule of M is
essential in a direct summand of M; (C,) if a submodule A of M is isomorphic to a direct summand of
M, then A is a direct summand of M; and (C3) if A and B are direct summands of M such that
ANB = 0, then A®B is a direct summand of M. Modules with the C; property are called extending
(or CS)-modules. A module M is an extending module if and only if every closed submodule of M is a
direct summand [7]. A module M is called continuous if M has C; and C,, and quasi-continuous if M
has C; and C3 [7]. An R-module M is said to be a quasi-injective module if, for any submodule L of
M, any ¢ € Homg(L, M) can be extended to an endomorphism of M [6].

The next result give a condition under which the concepts of Rickart and c-Rickart modules are
equivalent.

Proposition (2.5) Let M be an extending R-module. Then M is c-Rickart if and only if M is Rickart.
Proof. It is easy to check. m

Corollary (2.6) Let M be an injective or (quasi-injective, continuous, quasi-continuous) R-module.
Then M is c-Rickart if and only if M is Rickart.

Corollary (2.7) If M is a c-Rickart extending R-module, then so are Kere and Ime for every
@ € End(M).

Proof. By Proposition 2.5, M is a Rickart module. Hence, for any ¢ € End(M), Kerep <® M this

implies Kerp@®K = M for some K < M. But Img = Xerp = K. Thus Ker¢g and Im¢ are Rickart

modules, by [1, Th. 2.7], and so they are c-Rickart. m

Our next aim is to find some conditions under which every submodule of a c-Rickart module is
also c-Rickart. First, we give the following Lemma.
Lemma (2.8) Let M be a c-Rickart R-module, and N < M. If every ¢ € End(N) can be extended to
an ¢ € End(M), then N is a c-Rickart module.
Proof. Let ¢ € End(N), so by assumption, there is an ¢ € End(M) such that ¢|y = ¢. Since M is c-
Rickart, then Keryp <¢ M and so Kerp < M, but Kerep € N implies Kerp <° N by [6, Prop. 6.24
(1)]- Hence N is a c-Rickart module. =
The following Corollary is an immediate consequence of Lemma 2.8.
Corollary (2.9) Let M be a quasi-injective R-module. If E(M) is a c-Rickart module, then so is M.
Corollary (2.10) Let M be a quasi-injective and c-Rickart R-module, then every submodule of M is
c-Rickart.
Proof. Assume M is a quasi-injective and c-Rickart R-module. Let N < M and ¢ € End(N), S0 ¢
extends to an ¢ € End(M), as M is quasi-injective. Since M is c-Rickart, then by Lemma 2.8, N is a
c-Rickart module. m
Consider the following condition (I.) for an R-module M :

- For any submodule A of M for which % = B <® M, then Ais a closed submodule of M ... (I,.)
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Proposition (2.11) Every c-Rickart module satisfy the condition I, .
Proof. Assume that M is a c-Rickart module. Let N be any submodule of M with % = K <® M, then

there is an isomorphism (p:% — K. Consider the sequence M 5 M/N % K 5 M where  is the natural
projection map, and i is the inclusion map. Thus ic @ om € End(M), and so Ker(iec @ om) =
n~Y(Ker(io¢)) =n"1(0) = N. Since M is c-Rickart, N = Ker(iog@om) is closed in M.
Therefore M satisfies I.. =

Corollary (2.12) Let M be a c-Rickart such that% = [, <® M forall N < M, then M is semisimple.

Proof. Since M is a c-Rickart module and % = [, <® M for all N < M, thus by previous proposition,

every submodule of M is closed. Hence M is semisimple. =

In the next Proposition, we put certain condition under which the converse of Proposition 2.11 is
true.
Proposition (2.13) If M is a module satisfies I,. , and I'me is isomorphic to a direct summand of M,
for each ¢ € End(M), then M is a c-Rickart module .

i ~ ® Mo M
Proof. Let ¢ € End(M), so by assumption, Imgp = A <% M. But Xere = Img, hence Rorg =

A <® M, then Kerg is closed in M, by the condition I, . Therefore M is a c-Rickart module. m
Notice that the factor module of a c-Rickart module may not be c-Rickart, for example; the Z-

module Z is c-Rickart, but we know é = 7, isnot a c-Rickart Z-module.

However, we have the following Remarks:
Remarks (2.14)

(i) If M is a c-Rickart module, then it is clear that % is c-Rickart for each direct summand N of M. In
particular, if M is a semisimple module, then % is c-Rickart for every submodule N of M .
(ii) Let M be a module,and N < M. If N and %are both c-Rickart modules, then M may not be c-

Rickart, for example; let M =Z @ Z, and N = (0) @ Z, < M. It is clear that N and %5 Z are c-

Rickart Z-modules, but M is not c-Rickart, see [Rem. and Ex. 2.1(ii)].
Now, we consider the following definitions:

An R-module M is called nonsingular if, for all m € M with rz(m) <, R implies m =0 [2].
Recall that an R-module M is said to be k-nonsingular if, for each ¢ € End(M) and Kerp <, M
implies ¢ = 0 [8]. It is clear that every nonsingular module is x-nonsingular. Following [9], an R-
module M is called monoform (polyform) if, for any submodule K of M and for all ¢ € Hom(K, M),
Kerg = 0 (resp. Ker¢ is closed in K). Let M and N be R-modules. Then M is called N-c-Rickart (or
relatively c-Rickart to N) if, for each ¢ € Hom(M, N), Kere <¢ M [3]. Clearly, a module M is c-
Rickart if and only if M is M-c-Rickart.

Proposition (2.15) The following conditions hold for a module M :

(i) If M is a polyform module then M is c-Rickart.

(if) Forany N < M, N is M-c-Rickart module if and only if M is a polyform module.
Proof. It is easy to check. m

It is known that every nonsingular module is polyform, by [7, 4.10(1)], also every prime (or
monoform) module is polyform. So we have:

Corollary (2.16) Every nonsingular (prime, or monoform) module is c-Rickart.

The converse need not be true, in general, as example shows: it is clear that the Z-module Z,,, is
semisimple, where p and g are prime, so it is c-Rickart. But, it is not nonsingular (not prime, not
monoform) as Z-module.

By using Corollary 2.16, we shall give another short proof of the following Proposition which
appeared in [4].

Proposition (2.17) If M is a nonsingular and extending module, then M is Rickart.
Proof. By Corollary 2.16, M is c-Rickart. But M is c-Rickart and extending implies M is Rickart, by
Proposition 2.5. m
The following result is appeared in [1, Prop. 2.12].
Proposition (2.18) Every Rickart module is x-nonsingular.
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However, we presented the next strong Proposition.

Proposition (2.19) Every c-Rickart module is x-nonsingular.

Proof. Suppose that M is a c-Rickart module. Let ¢ € End(M) such that Kere <, M. Since M is c-
Rickart, Kergp <¢ M which implies that Ker¢g = M, and so ¢ = 0. Thus M is k-nonsingular. =
Proposition (2.20) Let M be an R-module. If S = End(M) is a regular ring, then M is c-Rickart.
Proof. Let ¢ € End(M). Since S = End(M) is a regular ring, so by [10, Th.4] Ker¢ is a direct
summand of M, thus Kerg <¢ M. Hence M is c-Rickart. =

The converse is false, in general, for example: it is well known that Z as Z-module is c-Rickart, but
End,(Z) = Z is not a regular ring.

Recall that an R-module M is called quasi-Dedekind if, for each nonzero endomorphism ¢ of M, ¢
is @ monomorphism [11]. A module M is said to be closed simple if, the trivial submodules are the
only closed submodules of M [3]. Each of the Z-module Z, Q, Z, is closed simple .

In the next result, we give a condition under which the concepts Baer, Rickart, c-Rickart, quasi-
Dedekind and x-nonsingular modules are coincide. Before, we need the following Lemma which
appeared in [4, Lemma 2.2.4].

Lemma (2.21) Every k-nonsingular extending module is a Baer module.

Proposition (2.22) Consider the following conditions for an R-module M :

(i) M is a Baer module;

(ii) M is a Rickart module;

(iii) M is a c-Rickart module;

(iv) M is a quasi-Dedekind module;

(v) M is a k-nonsingular module.

Then (i) = (ii) = (iii) = (v). If M is extending, then (v) = (i). (i) through (v), whenever M is
a closed simple module.

Proof. (i) = (ii) = (iii), obvious.

(iii) = (v) It follows by Proposition 2.19.

(v) = (i) Since M is extending, then the result follow by Lemma 2.21.

(iii) = (iv) Let ¢ be any nonzero endomorphism of M, Kergp <¢ M (since M is c-Rickart). But M is
closed simple and ¢ # 0, this implies Kerg = 0, thus ¢ is a monomorphism and hence M is a quasi-
Dedekind module.

(iv) = (iii) Obvious. m

The condition " closed simple " in above Proposition, is necessary as the following example shows: let
M =Z, @ Z, be a Z-module. It is clear that M is semisimple, then M is c-Rickart. Consider the short

exact sequence M LA Z, ® (0) 5 M, where p is a projection map, and i is the inclusion map. Then
h=iop€End(M)and h =+ 0, but Kerh = (0) @ Z,, so h is not a monomorphism. Hence M is
not quasi-Dedekind Z-module. Notice that M is not closed simple.

An R-module M is said to be Hopfian if, every epimorphism ¢ € End (M), is an isomorphism [12].
Corollary (2.23) Every closed simple c-Rickart module is Hopfian.
Proof. Let ¢: M — M be a non-zero epimorphism. Since M is c-Rickart, Kerp < M but M is closed
simple and ¢ # 0, this implies Kerg = 0, hence ¢ is a monomorphism. m
The following result is appeared in [8, Th. 2.20].
Proposition (2.24) Let R be a ring. Then the following conditions are equivalent :
(i) Every injective R-module is a Baer module;
(ii) Every R-module is a Baer module;
(iii) R is a semisimple artinian ring.
However, we can prove the following Proposition.

Proposition (2.25) The following conditions are equivalent for aring R :
(i) Every R-module is a c-Rickart module;

(ii) Every extending R-module is a c-Rickart module;

(iii) Every injective R-module is a c-Rickart module;

(iv) Every injective R-module is a Baer module;

(v) Every R-module is a Baer module;

(vi) R is a semisimple artinian ring.
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Proof. (i) = (ii) = (iii), obvious. Assume (iii), let M be an injective module, then M is c-Rickart,
and hence by Proposition 2.19, M is k-nonsingular. But M is extending, hence by Lemma 2.21, M is a
Baer module, so (iv) holds.
(iv) = (v) = (vi) It follows by Proposition 2.24.
(vi) = (i) Since R is semisimple, every R-module is semisimple, and so every R-module is a c-
Rickart module. =

Recall that an R-module M is said to be finitely related if there exists an exact sequence 0 - P —
F - M — 0 where F is free (of arbitrary rank) and P is finitely generated [6].
Proposition (2.26) Consider the following conditions foraring R :
(i) Every flat R-module is c-Rickart;
(i) Every projective R-module is c-Rickart;
(iii) Every free R-module is c-Rickart.
Then (i) = (ii) = (iii). However, (i) through (iii) for finitely related R-modules.
Proof. (i) = (ii) = (iii), obvious. Assume (iii), let M be a projective module, so by [13, Th. 5.4.1]
M = A <® (F free R-module). By (iii), F is c-Rickart, then by Proposition 2.3, A is a c-Rickart
module, and hence M is c-Rickart, so (ii) holds.
(i) = (i) By [6, Th. 4.30], every finitely related flat module is projective, so the result holds. =
Proposition (2.27) Let R be a ring, and S = End(R) be a commutative ring. If R is a c-Rickart R-
module, then S is nonsingular.
Proof. Assume R is a c-Rickart R-module. Let ¢ € S = End(R) such that rz(¢) = Kerp <, R.
Since R is c-Rickart, Kerg <¢ R this implies Kerp = R and so ¢ = 0. Therefore S = End(R) is a
nonsingular R-module. =
Corollary (2.28) Let R be a commutative ring. Then R is c-Rickart if and only if R is nonsingular.
Proof. Since R is a c-Rickart R-module, so by previous Proposition, S = End(R) is nonsingular, but
End(R) = R, hence R is a nonsingular ring. The converse, follows from Corollary 2.16. =

Recall that an R-module M is called scalar if, for all ¢ € End(M), there exists an x € R such that
@(m) =mx forall m € M [14].
Proposition (2.29) Let M be a scalar R-module. If M is a c-Rickart R-module, then for any (0 #)¢ €
End (M), there exists (0 #)a € R such that r,(a) < M
Proof. For any ¢ € End(M) and ¢ # 0, then there is (0 #)a € R such that ¢(x) = ax forall x € M,
as M is scalar. Since M is c-Rickart, thus Kergp =ry(a) <M. =
Corollary (2.30) Let R be a commutative ring with identity. If R is a c-Rickart R-module, then for any
(0 #)¢ € End(R), there exists (0 #)a € R such that rz(a) <° R
Proof. It is clear, since every commutative ring R is a scalar R-module . m
Corollary (2.31) Let M be a scalar faithful R-module, and S = End(M). Then R is c-Rickart if only if
S is c-Rickart.
Proof. Since M is a scalar R-module, so by [15, Lemma 6.2] S = End(M) = R/rg(M). But M is
faithful, so S = End(M) = R. Thus the result is obtained. =
Proposition (2.32) Let M be an R-module, and R = R/rz(M). Then M is c-Rickart as R-module if
only if M is c-Rickart as R-module.
Proof. It is easy to check. m
3 Direct Sums Of c-Rickart Modules

In this section, we will discuss the direct sum of c-Rickart modules. Before that, we give the
following example which illustrates that the direct sum of c-Rickart modules is not c-Rickart.
Example (3.1) It is easy to see that the Z-modules Z, Z,, are both c-Rickart, where p is prime. But
M = Z@®Z, is not c-Rickart. Consider the endomorphism ¢ € End (M) such that ¢(x,y) = (0,x) for
all x € Zand 'y € Z,, then Kerg = pZ®Z, is an essential in Z&®Z,. Thus Kerg is not closed in M,
and hence M = Z&®Z, is not a c-Rickart Z-module.
Our next results generalize Example 3.1 to arbitrary modules.
Proposition (3.2) Let M be a closed simple and c-Rickart module which has a nonzero maximal
submodule N, then M@ (M /N) is not a c-Rickart module.
Proof. Assume that M@(M/N) is a c-Rickart module. Consider an ¢ € End(M@®(M/N)) defined

by ¢(m,n) = (0,m) forall me M, ne M/N. So = {(mn) € M&M/N)|p(m,7n) = (0,0)} =
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{im,m)Im+ N =N} = {(m,n)im € N} = N®O(M/N). Since M®(M/N) is a c-Rickart module,
Kerp = N®O(M/N) < M®(M/N), but N <€ Kere, so by [6, Prop. 6.24 (2)] N <¢ M@®(M/N)
this implies N <¢ M by [6, Prop. 6.24 (1)], which contradicts that M is closed simple. Therefore
M&(M/N)isnot c-Rickart. m

Recall that a submodule N of a module M is called a fully invariant submodule if, ¢(N) € N for
each ¢ € End(M) [16].

Now, we give a condition under which the c-Rickart property is closed under direct sums.
Proposition (3.3) Let M = @;<;M; be an R-module such that M; is fully invariant for each i € I.
Then M is c-Rickart if and only if M; is c-Rickart, for each i € I.

Proof. Assume that M; is a c-Rickart module, for each i € 1. Let M = @;¢;M; and ¢ = (¢;;) €
End(M) where ®ij € Hom(M;, M;). Since M; is fully invariant, then by [17, Lemma 1.9]
Hom(M;,M;) = 0 for i#j, also ¢(M;) € M; for each i € I. So Kergp = ®;¢;Kerq;;. However,
Kerp;; <¢ M; for each i € I, as M; is a c-Rickart module, then @;¢;Kerg;; <€ ®;c;M; [2], this
means that Kere <¢ M and hence M is a c-Rickart module. The converse, follows directly from
Proposition 2.3. =
Proposition (3.4) Let M be an R-module. Then the following conditions are equivalent.
(i) M is a c-Rickart module;
(if) For N < M, every direct summand K of M is N-c-Rickart;
(iii) For any direct summand K of M, and for any L <¢ M such that ¢ € Hom(M, L), Ker(¢|x)

is a closed submodule of K.
Proof. (i) = (ii) Assume N < M. Let K be a direct summand of M, K = eM for some e? =e €
End(M). Let ¢ € Hom(K,N), so @ = pe € End(M). On the other hand, Kera = Kerp®(1 — e)M,
then Kerp <® Kera, and hence Kerp < Kera. Since M is c-Rickart and
a € End(M), Kera <¢ M so by [6, Prop. 6.24 (2)] Kerp <¢ M, but Kero < K, hence by [6, Prop.
6.24 (1)] Kerp <€ K. Therefore K is N-c-Rickart.
(ii) = (iii) Let K be a direct summand of Mand so L <¢ M. If ¢ € Hom(M, L), ¢|x € Hom(K,L).
By (ii), K'is L-c-Rickart, and hence Ker(¢|x) is a closed submodule of K.
(iii) = (i) By taking L = K = M, we get M is M-c-Rickart this mean M is a c-Rickart module. =
Proposition (3.5) The following conditions are equivalent for a ring R and a fixed n € N.
(i) Every n-generated projective R-module is a c-Rickart module;
(i) The free R-module R™ is a c-Rickart module.
Proof. (i) = (i) Since every free R-module is projective, so it is clear that R-module R™ is n-
generated projective, so by (i), R™ is a c-Rickart R-module.
(it) = (i) Assume M is an n-generated projective R-module. So there exists a free R-module F, and
an epimorphism ¢: F — M. Since F is free and M is n-generated projective R-module, then a: R™ —
M splits, where F = R, On the other hand, M is isomorphic to a direct summand of R, but R
is c-Rickart, hence M is a c-Rickart R-module. =
Proposition (3.6) The following conditions are equivalent for a ring R.
(i) Every finitely generated free (projective) R-module is c-Rickart;
(i) For each finite index set I, @;¢;R™ is a c-Rickart R-module for some n € N.
Proof. (i) = (ii) Since R™ is a free R-module for some n € N, then @;;R™ is a finitely
generated free R-module, for each finite index set I, so by (i), @;¢;R™ is a c-Rickart R-module.
(ii) = (i) Let R® be a finitely generated free R-module, for some t € N. Then R® <® R =
®!_,R™ which is c-Rickart by (ii). Hence R® is a c-Rickart R-module, by Proposition 2.3. m

Corollary (3.7) The following conditions are equivalent for a ring R.

(i) Every free (projective) R-module is c-Rickart;

(i) For any index set I, @;c;R™ is a c-Rickart R-module for some n € N.

Proof. (i) = (ii) Since R™ is a free R-module for some n € N, s0 @®;;R™ is a free R-module, for
any arbitrary index set | , so by (i), @;e;R™ is a c-Rickart R-module.

(ii) = (i) Let RD be a free R-module, where | is an arbitrary index set, so we have two cases: if
[I] (i.e. length of ) is finite, then by a similar to the proof (ii) = (i) of Proposition 3.6, R® is a c-
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Rickart R-module. Now, if |I] is infinite, then R is a direct sum of copies of R™. Hence R(D is a
c-Rickart R-module. =
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