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Abstract

We extended the characterization of strict local minimizers of order two in ward's
theorem for nonlinear problem to a certain class of nonsmooth semi-infinite
problems with inequality constraints in the nonparametric constraint case.
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1. Introduction

The notion of a strict local minimize of order m was introduced by Cromme, under name "strongly
unique minimize" , in study of iterative numerical method ( see[1]) .

Strict local minimize play an important role in stability studies (see e.g [2-5]). Some results
concerning characterization of such minimizers have been obtained for (i) standard nonlinear
programming problems with both inequality and equality constraints, form =1 or m = 2 in [6-8],
(if) non smooth static minmax problems with inequality constraints in the nonparametric and
parametric constraint case . for m =1 in [9-11]. These results were derived under the presence of
constraint qualification leading to statements in which there is no gap between the necessary and
sufficient conditions.

The aim of this paper is to extend the characterization obtain for m =2 in wards theorem [6,
Theorem 3.3] to a certain class of non-smooth semi-infinite problems with inequality constraints in the
nonparametric constraint case. We consider problems in which the objective function f: R™ - R is
continually differentiable on R™, while the inequality constraints function g: R™ — R are given by
gi(x) = max, ey, @;(x,y;), where @; : R™ X R™ — R are continuously differentiable on R"™ x R™:
,and Y, c R™ i =1,..,p.
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2. Notation and preliminary:

We will need some notations and definitions which can be found in [12, chapter 2]. For a locally
Lipschitzian function f : R™ - R, we denote by 0 f (x) the generalized gradient of f at x . We
say that f is regular (or subdifferentially regular) at x if the usual one-sided directional derivative
f'(x; d) exists forall d and is equal to the generalized directional derivative f°(x; d).

Consider the following nonlinear programming problem:

() min{f (x)|x € S},

S:={xeR"g;(x)<0,iel},
Where I ={1,..,p},f: R" > R,g;: R" > R,i €1.
Special problem of the form (p) is the following problem:

(r1) min{f (x)|x € S},
S:={xeR"|gi(x) <0,i e},
Where I=(10p) f 1 R' 5 R () = maxyeer, Bo(x,30), g * R = R, g;(x) =

max,, ey, @;(x,y)(@ € 1); @; : R* X R™ > R, ¥; ¢ R™i(i € {0} U D).

For x, € R® and & > 0, we denote B(xy,8) = {x € R™ |||x — x,|| < 8}. We say that x, € S is
a local minimizer for problem (p) if there exists € > 0 such that

f(x) = f(xy) forall x € SN B(x,¢).
Let m > 1 be an integer. We say that x, € S is a strict local minimizer of order m for problem
(p) if there exist € > 0,8 > 0 such that
f(x) = f(xg) + Bllx — xo|I™ forall x € SN B(Xy,€).

Throughout the paper, we will use the following notations for a given x € R™:
I(x) ={i €llgi(x)} =0 (2.1)

We will need some additional assumptions concerning problem (p1) .
(A1) Assume that, forall i € {0} U I,

(1) Y; is a compact set,

(2) @;(x,y;) is upper semi continuous in (x, y;),

(3) @;(x,y;) is locally Lipschitz with respect to x , uniformly for y; in Y;,
(4) 0i(x,y;;.) = 0;(x,v;;.), the derivatives being with respect to x,

(5) 0,9, (x,y;) is upper semicontinuous in (x,y;).

Under assumption (Al), in view of [12, Theorem 2.1],[13] the maximal-value functions f,g;,i €
I, are locally Lipschitz, while their directional derivatives and generalized gradients are given as
follows:

f'Ced) = fo(x;d) = max{{y.d |{y € 0,00 (xX,¥0), Yo € Yo(x)},
of@=co | ] a0y

Yo€Yo(X)
g9'i(xd) = g°%(xd) =max {G;.d | € 0x0i(xyi),y; € Yi(¥)},i €],

29 =co | ] amicoyier

ViEY;(x)
Where
Vi) = {y; | 9:(x, yi) = max @;(x, u;)}, i € (03U 1 (2.2)
Theorem 1.[14, theorem 26]. Let x, be a local minimizer for (p1), and suppose that assumption
(A1) holds. Then there exists vectors Yij € Yi(xo) together  with  scalars
Aj=0,j=1,..,0,B; €N,i € {0} U, such that
Bi
0€ Z Z/lijax@i(xmyij)r
ie{0}ul j=1

2ij®i(x0, ;) =0,j=1,.., B, i €1
Furthermore, if « is the number of nonzero 4;;,j =1,..,6;,i € {0}julthenl <a<n+1
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Proposition 2. [6, Corollary 2.3 (d)]. Let x, be a strict local minimizer of order m > 1 for (p). Then
dmfK (xg;d) >0, Vd € k(S,x,) \ {0},
Where d™ 18 (xo; d) = infesolimegy inf SUP4’eB(d,e) (f(xo +td') - f(xo))/tm )
and k(S,x,) denotes the Ursescu tangent cone, defined by
k(S,xg) = {d|Vt, —» 0+,3d, » d with x, + t,d, € S,Vn}.
Definition 3. A function f: R™ - R U {+oo} is said to be C¥! at x if f is continuously Frechet
differentiable at x and Vf(.) is locally Lipschitz near x .
Lemma4. [6, Lemma 3.1 (i)]. If f isCY' at x Vf(x) = 0, then
d?f*(x;.) = d?f'%(x,.),
Where d?fK(x;d) := lim, g1y go4,ay(F (¢ + td) — f(x))/t2.
3
Now, we set the following notation. For A; = 0,i = 1, ..., p, we define the Lagrangian function
L(x) := f(x) + XI_; 2:9:(%)
And partition I(x), where I(x) is defined by (2.2), into the sets
J(x) ={i € I(x)|4; > 0},
Q) ={i€l(x)|1; =0},
We also define the set of directions
D(x) :={d € R"|Vg;(x).d <0,Vi € Q(x),Vg;(x). d =0,Vi € J(x)}.
Definition 5. Let g;, i =1,..,p, be C! at x, . We say that the Strict Mangasarian-Fromowitz
Constraint Qualification (SMFCQ) holds at x, if
(i) Vgi(xp),i € J(xy), are linearly independent;
(ii) there exist d' € R™ such that
Vgi(xo). d' < 0,Vi € Q(xy),
Vgi(xg). d' =0, Vi€ J(xp).
Theorem 6. [6, theorem 3.3]. Let f,g;i=1,..,p, be C! at x, . Suppose that SMFCQ is satisfied
at x, forsome A; >0 suchthat VL(x,) =0, A;9;(xo) =0, Vi=1,...,p. Then X, 1S a strict
local minimizer of order two for (p) if and only if
d?LX(xy;d) > 0,vd € D(x,) \ {0}.
3. Necessary optimality conditions:

In this section , we present necessary optimality conditions which are satisfied by all local
minimizers (not necessary strict) for the given problem . These conditions include a restriction on the
nonzero multipliers .

In this paper, we consider the following semi-infinite problem:
(P2)  min {f(x)|x €S},
S:={xeR"|g;(x) <0,i €},

Where I={1,..,p},f: R"> R is C' on R",g;: R" - R, g;(x) = maxy, ey, 8;(x,y,);
@;: R*xR™ - R are C* on R® x R™, ¥; ¢ R™i is compactset (i € 1) .

Looking at problem (P2) from a different perspective, we can write the inequality constraints
gi(x) <0,i el ,alternatively as follows:

gi(x) = max Bi(x,y)<0=0;(x,y;) <0,Vy, €Y, (3.1)

Which implies that problem (P2) can be rewritten as follows:

(P3) min {f(x)|x € S}
S:={xeR"|0;(x,y,) <0, Vy;€Y;,i €l}.

Analogously to (2.1), we define the active index set for x € R™ as follows:

I(X) = {l el | ®i(x!yi) = O'vyi € Yl(x) } .
Where Y;(x) is defined by (2.2).
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For a given x, € S, let us assume that:
(A2) For any number 4;; > 0 and vectors z;; = V®;(x0,y;), Vi € Yi(Xo) ,
(=1,...8,i €1(xp)), (where B; > 1), the following implication holds:

Bi
Z Zzijzg; =0=2;=0, (=1.,0i€(x)

i€l(xo) j=1

The next result is an easy consequence of Theorem 1 .

Corollary 7. Let x, be a local minimize for (P2), and suppose that assumption (Al) holds. Then
there exists vectors y;; € Y;(x,) together with scalars

Aij =0,j=1,...,8,B; €N,i €1, such that

Bi
Vf(xo) + Z zlij V@i (x0,y35) = 0 (3.2)
i€l j=1
Aij0i(x0,yi;) = 0,j = 1,.., B, i €1 (3.3)
Furthermore, if a is the number of nonzero A;;,j = 1,...,8;,i €1, then

asn (3.4)

Proof. Suppose that x, is a local minimize for problem (P3). Since @, are € on R"™ x R™ and Y;
is compact set (i € I), then assumption (A1) holds similarly as in the case of [11, Theorem
6.7.2]. Then, by Theorem 1 implies that there exists a scalar A, = 0, vectors y;; € Y;(x,) together
with scalars 4;; >0,/ =1,...,5;,; € N,i €I, such that

Bi
JoFGo) + ) A Vui(x0,v) = 0, (3:5)
i€l j=1
Aij0i(x0, ;) =0, j=1,..B,i€l, (3.6)
Furthermore, if a; isthe number of nonzero A, and 4;;,j =1,...,p,i €1, then
1<a;<n+1 (3.7)

Now , if A, = 0, then condition (3.5) takes on the form
Yiel Zfil Aij Vx®i(x0,y3) = 0.

Then it follows from condition (3.6) and assumption (A2) that all 4;; are zero a contradiction with the
left-hand inequality in (3.7) . Hence , 4, > 0, and we may assume A, = 1 and ag=a+1,
where a is the number of nonzero 2;;, j =1,..,6;, i €1, so that conditions (3.2)-(3.4) hold .

In a similar way as in section 2, one can easily set , for problem (P3) the following notation:
For given vectors y;; € Y;(x,) together with scalars 4;; =0, j=1,..,5,B; € N,i € I(x,), we
define the Lagrangian function

Bi
L) =@+ D0 ) A0y,

iEI(xO) ]=1

and partition [;(xo) := {1, ..., B}, i € I(xy), into the sets
Ji(xo) := {j € I;(xo)| A > 0}, i € I(xo),
And
Qi(xo) = {j € I;(x0)| A;; = 0},i € I(xy).
We also define the set of directions
D(x,) i= {d € R™ | V,0;(x0,¥i;). d < 0,j € Qi (o), Vye®;(x0,y1;)-d = 0, E]i(xo);}_
i €1(xg)

Finally, Definition 5, is stated as follows:
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Definition 8. Let @;(.,¥;),vij € Yi(x0),j =1, .., B, B €N, i € I(xp) be C* at xq . We say
that the Strict Mangasarian-Fromowitz Constraint Qualification (SMFCQ) holds at x, if

(i) Vi0i(x0,yij).J € Ji(x0), 1 € I(xp) , are linearly independent ;

(i) there exist d' € R™ such that
V@i (x0,y1;)-d' < 0,V € Qi(x0), 1 € I(xo),
V@i (%0, ¥i5)-d' = 0,Vj € Ji(x0), i € I(x).

4. Characterization of strict local minimizers of order two

In this section, we present a characterization of strict local minimizers of order two for problem
(P3) with c¥! data. This characterization is given in terms of the Lagrangian function .

To prove Theorem 11, we need the following lemma which is a parametric version of
[6, Lemma 3.2].
Lemma 9. Let Xo be a strict local minimizer of order two for (P3). Let
yij € Yi(x0), 45 = 0,j = 1,...,B;,B; € N,i € I(xo). Suppose that the following conditions hold:

(a) Aij(bi(xo,yij) =0, forall j= 1, ...,ﬁi,i € I(XO);

(b ) there exists 6§ > 0 such that Y;(x) c {yij lj=1, ...,,[)’l-}, for all i €1(xy) and
X € B(xy, 6)\S .

Then x, isastrict local minimizer of order two for L on the set

C:= {x|0;(xy;)<0,j=1,..8,8 €N,0;(x,y;;) = 0,j € J;(x0),i € I(x)} .

Proof. Since x, is a strict local minimizer of order two for (P3), then there exist
€> 0,8 > 0, such that
f(x) = f(xo) + Bllx — x0l1%,V x €SN B(xy,¢) (3.8)
By [11,Theorem 6.7.2], the functions g;,i € I , defined in (3.1), are continuous. Therefore, we may
assume that ¢ Is so small that
gi(x) <0, forall i € I\I(xy) and x € B(xy, €). (3.9

Let ¢ be chosen according to assumption (b), and let n := min {g, §}. Take any X €
C N B(xg,1n) . We will showthat x € S .
Indeed, if x ¢ S, then there exist i € I and y; € Y;(x) such that @;(x,y;) > 0. Since, in view of
(3.9), we can omit the constraint functions which are not active at x,, it follows that i € I(x,). By
assumption (b), there exists j € {1, ..., 5;} such that y; = y;;. Hence, @;(x,y;;) > 0, which means
that x € C .

We have thus verified that x € S . Then, we can use assumption (a) and condition (3.8) to obtain.

L(x) = L(xg) = f(x) = f(x0) + Xier(xo) Zjesixo) Aij (Q)i(x’ Yij) = Q)i(xo:}’ij))
= f(x) — f(xo) = Bllx _x0||2

Hence, x, is astrict local minimizer of order two for Lon C . g

Remark 10. Assumption (b) of Lemma 9 is satisfied, in particular, if all the sets Y;,i € I, are finite,
and Y;(xg) = {yi]- |j =1,..., 5} This assumption is also valid for some examples where the sets Y;
are infinite; see, for instance, [11, Example 10.3.1].

The following theorem is a generalization of Theorem 6 .
Theorem 11. Let f,®;(.,y;),vij € Yi(xo),j=1,..,B, B €N,i €1(xy) , be C'' at x,
Suppose that SMFCQ s satisfied at x, for some 4;; >0,j =1,..,5;,6; €N,i € I(x), such that
VL(xo) =0 and 24;;0;(x0,¥i;) = 0,j = 1,...,B;, i € I(xp). Then, x, is a strict local minimizer of
order two for (P3) if and only if
d?L*(xo;d) > 0,V d € D(x,)\{0}. (3.10)
Proof, (i) Necessity. Suppose that x, is a strict local minimizer of order two for (P3) . Then by
Lemma 9, L has a strict local minimizer of order two on C , so by Proposition 2, we have

d?L' (xg;d) > 0,V d € k(C,x0){0} . (3.11)
It is known (see a remark on p. 565 of [6]) that, under assumption SMFCQ, we have
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k(C,xy) = D(xg). (3.12)
Combining (3.11) and (3.12) yields

d2L% (xo;d) > 0,V d € D(x)\{0}. (3.13)
By Lemma 4, we get

d?L (xq; d) = d?LX (xo; d) . (3.14)

Condition (3.10) then follows from (3.13) and (3.14) .

(ii) Sufficiency. Suppose that condition (3.10) holds and suppose that x, is not a strict local
minimizer of order two for (P3). Then, there exists a sequence {x,} of feasible points for (P3) such
that {x,} = xo,x, # x, and

fOe) = f(x0) < llxtn — X012/
Define
tn = lxn — xoll, dp := (xn — Xx0) /-
Then t, —» 0%, and we may assume, taking a subsequence if necessary, that {d,} — d, for some
d # 0. We will prove that d € D(x,).
By the definition of S (in problem (P3)) and Y;(x,),i € I(x,), we get
0:(xn yij) — Bi(x0,¥i;) <0,j =1,..., 5, B; € N, i € I(xy),

so that
V. ®;i(x0,yij).d = lim ((Di(xn' vij) — ®i(xo — }’ij)) /tn <0,
j = 11 "'Iﬂi)ﬂi € N;l S I(xO)) (315)
and
Vf(x0)-d = limy o0 (f (x5) — f(x0)) /tn < limp 0ty /m = 0. (3.16)
Since

Bi
VL(xo) = Vf(xo) + Z Zlijvxwi(xo,yij) =0,

lEI(xo) ]=1
by taking the inner product of both sides with d , we obtain

Bi
Vf(xo)d + Z z/lijvx(bi(xo,yij). d=0.
i€I(xp) j=1

Using (3.15) and (3.16), we conclude that,
Vf(xp).-d = 0,V,8;(x0,y:j).d = 0, for j € J;(x),i € I(x),
Vin(xO,yij).d < O, for ] € Qi(xo)'i € I(XO).
Hence, d € D(x;). Then forall n,

(L) — LCxo))/th < (f () — f(xo))/th < 1/n.

d? ¥ (xg; d) < limy e inf(L(x,) — L(xg)) /t2 < 0,
a contradiction to condition (3.10) . g

Therefore
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