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                      Abstract 

    In this paper a mathematical model that analytically as well as numerically 

the flow of infection  disease in a population is proposed and studied. It is 

assumed  that the disease divided the population into five classes: immature 

susceptible individuals )( 1S , mature individuals )( 2S , infectious individual 

),(I  removal individuals )(R  and vaccine population )(V . The existence, 

uniqueness and boundedness of the  solution of the model are discussed. The 

local and global stability of the model is studied.  Finally the global dynamics of 

the proposed  model is studied numerically. 
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 مراحل عمرية  متضمنا اللقاح معتقرارية الشاملة لنموذج وبائي الاس
 

 حسن فاضل الحسيني
 قسم الرياضيات ، كمية العموم ، جامعة بغداد ، بغداد ، العراق

 
                                                                                             الخلاصة

أفترضنا أن المرض المعدي يقسم  .في هذا البحث أقترحنا وحممنا نموذج رياضي لمرض معدي     
)(المجتمع الى خمسة أصناف : مجتمع سميم غير بالغ  1S مجتمع سميم بالغ ،)( 2S مجتمع ،

بحثنا كلا من وجود ، وحدانية وقيود  . V)(ومجتمع ملقحين  R)(، مجتمع مشافينI)(مصابين 
اكاة اخيرا ، أستخدمنا المح .الحل لمنموذج ، وحددنا شروط الاستقرارية المحمية والشاممة لكل نقاط التوزان 

     العددية لدراسة الديناميكية الشاممة لمنموذج
1. Introduction 
     Epidemic diseases that spread among communities severity vary depending on the age of        

the infected person, there are diseases of children without admiration and diseases afflict                 

only adults, and also there are illnesses they suffer together. Therefore, the age a major impact            

on the spread of the disease usually is immune to the highest adult children and thus                    

less morbidity. In this research, we studied the effect of growth stages in the spread of disease. 

There are many studies in this area see [1-5]. Hence also it appeared another problem is              

the diversity and vaccination, treatment and that have a significant impact on the spread of  

disease, or eliminate them. And here it came the importance of mathematical models to             

help understand and explain and give appropriate solutions and perceptions.  
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     There are several studies presented in this field, for example, Kribs-Zaleta and                   

Velasco-Hernandez in 2000 [6] have been proposed and studied the SIS epidemic model               

with vaccine for the diseases such as pertussis and tuberculosis, later on Arino et al. [7], 

generalized this model by allowing individuals recovering from the diseases to go into                    

a temporarily immune class rather than directly back in to the susceptible class. Kribs-Zaleta           

and Martcheva [8] investigated the effects of a vaccination campaign upon the spread  of a        

non-fatal disease such as Hepatitis A, B. Alexander et al.  [9] and Shim [10] are discussing the 

transmission dynamics of influenza with vaccination through using SVIR models.               
,d Onofrio et al. [11] gave a family of models for information related vaccinating behavior.           

In this paper, a mathematical model of epidemic disease, in which it is assumed that the disease 

transmitted by contact with stage structures and involving vaccination is proposed and studied.  

The local as well as global stability analysis of this model is investigated. 

2. The derivation model 
      Consider an epidemic model in which the total population (say N(t))  at time t are divided into 

five sub classes the immature susceptible individuals )(1 tS , mature susceptible individuals )(2 tS , 

vaccinated individuals )(tV , at time t, infected individuals )(tI at time t and removed individuals 

)(tR  at time t. such that model can be represented as follows :- 
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Here, all parameters in this model are positive and we can description in the following table 

 

Table 1- Description of Parameters 

Parameter Description 






 

  

  

1  

2  

  
  

 

Recruitment of Population 

 

Vaccination rate 

Natural death 

Infection rate 

Infection rate 

Failure Vaccine 

Recovery rate  

 

Theorem (1):  All the solutions of system (1) are initiate in 
5
R , are uniformly bounde 

Proof : Let ))(),(),(),(),(( 21 tRtItVtStS be any solution of the system (1)                              

with non-negative initial condition ))0(),0(),0(),0(),0(( 21 RIVSS , since 

)()()()()()( 21 tRtItVtStStN   and then:  

 
dt

dR

dt

dI

dt

dV

dt

dS

dt

dS

dt

dN
 21      which gives       N

dt

dN
  
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Now, by using Gronweall lemma [3] , it obtains that 
tt eNetN 



 


 )0()1()(   

Therefore, 



)(tN  as t , that is independent of the conditions and hence the proof is 

complete. 

3. Existence of equilibrium points of system 
     There are three  equilibrium points of system(1). First, because the removal class R is related 

with infected class only. In fact, if I= 0 then R= 0 . While, if cII   is a positive constant, then    

R approaches to :- 

            


 cI
R                                                                                                                                (2) 

Consequently, for simplifying, system (1) can be reduced to the following system, in which we can 

determine the value of I, by solving it, and then using Eq.(2). 
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                                                    (3) 

Clearly, system(3) has at most two biologically feasible points. These two points can be described 

as follows: 

In case of absence of disease ( 0I ), there is an equilibrium point represented by 

 0,,, 21
oooo VSSE   and it’s called the disease free equilibrium point, where 
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In case of existence of disease ( 0I ), system (3) has an equilibrium point represented by 

  IVSSE ,,, 21
*

 and it’s called endemic equilibrium point, where 
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 While 
I  represents a positive root for the following equation 

043

3

2

4

1

2

  IDIDIDID                                                           (5b) 

Here, 
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      Obviously, the endemic equilibrium point exists unique in the interior of positive                     

octant of VISS 21 space if and only if the following condition holds                                                                                                                                                                                                                                        

00,0 432  DandDD                                                                                                        (5c) 

4. Local and global stability of disease free equilibrium point 

     In this section, the local and global stable analysis of the disease free equilibrium point 
oE  is 

studied as shown in the following theorems. 

Theorem (2):  The disease free equilibrium point  0,,, 21
oooo VSSE   of system (3) is locally 

asymptotically stable provided that:- 

                   )(2211   ooo VSS                                                                                (6) 

Proof : Clearly the Jacobian matrix of system(3) at 
oE  which is denoted by  oEJ  can be written 
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Accordingly, the eigenvalues of )( oEJ  are given by 

)(,0,0,0)( 221121
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I
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o
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Therefore, all the eigenvalues will be negative and hence the disease free equilibrium point is 

locally asymptotically stable if and only if condition (6) is holds 

Theorem (3) : Assume that, the disease free equilibrium point 
oE  is locally asymptotically stable. 

Then it is a globally asymptotically stable in the sub region of 
4
R  that satisfies the following 

sufficient conditions: 
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Proof: Consider the following positive definite function 
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Clearly, RRL 
4

1 :  is a continuously differentiable function such that   00,,, 211 ooo VSSL   

and   0,,, 211 IVSSL ,    0,,,,,, 2121
ooo VSSIVSS  . Further, we have 
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Now, by doing some algebraic manipulation and using the condition (6), we get 
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Consequently, due to condition (7a)-(7b), 01 
dt

dL
 is negative definite and hence 1L  is a 

Lyapunov function with respect to 
oE  in the region that satisfies the given condition. Thus 

oE  is 

a globally asymptotically stable and the proof is complete.          

The next theorem deals with the stability of the positive equilibrium point using the 

Lyapunov function. 

Theorem (4):  Assume that the endemic equilibrium point   IVSSE ,,, 21
*

 exists then it is 

a asymptotically stable in the sub region 
4

2  R  that satisfy the following sufficient conditions 
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      Clearly RRL 
4

2 :  and it is a continuously differentiable function, in addition, 

0),,,( 212  IVSSL  while ,0),,,( 212 IVSSL ),,,(),,,( 221 1

 IVSSIVSS .      

Further by taking the derivative with respect to the time and simplifying the resulting terms,         

we get that 
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It is easy to verify that, 4414 dandd are positive provided that conditions (8a)-(8b) are satisfied 

respectively. Consequently, due to conditions (8c)-(8f), we have  
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Therefore, 
dt

dL2  is negative definite and hence 2L  is a Lyapunov function with respect to 
*E  in 

the sub region 2 . So 
*E  is a asymptotically stable.   

Note that the function 2L  is approaching to infinity as any of its components do the same and its 

positive definite on 
4
R , however its derivative is negative definite on the sub region 2  due to 

the given sufficient conditions. Therefore 
*E  is a globally asymptotically stable within 2 .     

5. Numerical Simulations 

     In this section, the global dynamics of system (1) is investigated numerically for different     

sets of initial values and different sets of parameters values. The objectives of such       

investigation are determine the effect of varying the parameters values and confirm our obtained 

results. It is observed that, for the following biologically feasible set of hypothetical parameters 

values: 

11.0,0001.0,001.0

,0001.0,1.0,1.0,61.0,100

2

1








                                                       (9) 

The solution of system (1) approaches asymptotically to the endemic equilibrium point 

)7.126,2.115,8.287,1.149,321(* E  as shown in Figure- 1, started from different sets of 

initial points. 
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Figure 1- Globally asymptotically stable positive equilibrium point of system (1) for the 

parameters set (9), started from different sets of initial point. 

 

Obviously, Figure-1 shows that, system (1) approaches asymptotically to the globally stable 

endemic equilibrium point 
*E  from different sets of initial conditions. This is indicates to the 

existence of globally asymptotically stable of system (1) in the interior of positive octant, which 

represents the persistence of all the species too. 

On the other hand, system (1) for the following set of hypothetical data approaches asymptotically 

to the DFE as shown in Figure- 2 

11.0,0001.0,0001.0

,0001.0,1.0,1.0,61.0,100

2

1








                                              (10) 

 

 
Figure 2- Globally asymptotically stable DFE of system (1) for the parameters set (10)        

Clearly Figure- 2 shows the approaching of the solution of system (1) asymptotically to 

the free disease equilibrium point from different initial values as the infection rate 

reduced to 0001.02  . 

 

Varying of the parameters values ),,,,( 21   don’t have qualitative effects on the 

dynamics of system (1) rather than that they have quantitative effects on the value of positive 

equilibrium point. 
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For the parameters values given in Eq.(9) with 4.2  the solution of the system (1) approaches 

asymptotically to disease free equilibrium point )0,0,02.923,4.38,4.38(oE  as shown in the 

typical figure given by Figure- 3 below. 
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Figure 3- Time series of the solution of system (1) for the data (9) with different values of       

(a) Globally asymptotically stable endemic equilibrium point for 1.0  (b) Globally 

asymptotically stable disease free equilibrium point 
oE  for 5.2 . 

 

According to the Figure- 3, it is clear that as the   increase the solution of system (1) approaches 

asymptotically to the 
oE  equilibrium point.  

Now for the data given by Eq. (9) with 17.0 , the solution of system (1) approaches 

asymptotically to disease free equilibrium point as shown  in the following typical figure,              

Figure 4. However the system still approaches to the endemic equilibrium point for other values   

of    
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Figure 4- Time series of the solution of system (1) for the data (9) with different values of       

(a) Globally asymptotically stable endemic equilibrium point for 1.0  (b) Globally 

asymptotically stable disease free equilibrium point 
oE  for 2.0 . 

 

Now by varying the recovery rate of  the population in the range  37.0 , keeping the rest of 

parameters values as in Eq. (9), system (1) approaches asymptotically to the disease free 

equilibrium point 
oE  as shown in the typical figure, Figure- 5 
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Figure 5- Time series of the solution of system (1) for the data (9) with different values of        

(a) Globally asymptotically stable endemic equilibrium point for 11.0  (b) Globally 

asymptotically stable disease free equilibrium point 
oE  for 4.0 . 

 

Clearly, Figure-5 explains the approaches of the solution of system (1) to the disease free 

equilibrium point as the recovery rate of the population increase. 

6. Conclusions and discussion                                                  

      The objective of this study is to understand the effects of all factors, which helping the spread 

of this type of disease and hence get the capability of  control the disease.  

 The boundedness of the system has been discussed. The existence conditions of all      

possible equilibrium points of the system are established. All possible equilibrium points with   

their local and global stability are investigated. The qualitative dynamical behavior as a      

function  of varying the parameters values is studied analytically as well as numerically. Finally, 

for the biologically feasible set of hypothetical data as given in Eq. (9), the system (1) is solved 

numerically and the obtained results are explained in some typical figures and we will    

summarize as follows. 

1. System (1) does not have periodic dynamics; instead of that it approaches either to the disease 

free equilibrium point or else to endemic equilibrium point depending on the value of 

reproduction number. 

2. For the set of hypothetical parameters values given by Eq.(9), the system (1)  approached 

asymptotically to the global stable endemic equilibrium point 
*E   

3. Increasing the recovery rate   above a specific value causes bifurcation in the   system and 

the trajectory transferred from the endemic equilibrium point to the disease free equilibrium 

point asymptotically. Otherwise the system still approaches  to the endemic point. 

4. Increasing the inverse of natural death    above 0.17 in   Eq. (9) caused destabilizing to the 

endemic equilibrium point and the trajectories of system (1) approached asymptotically to the 

free disease equilibrium point. Otherwise the system still has a globally asymptotically stable 

endemic equilibrium point. 

5. Further increasing the recovery rate   above 0.37 in Eq. (9)  causes bifurcation in the system 

and the trajectory transferred from the endemic point to the disease free equilibrium point 

asymptotically an hence the system will losses the persistence. Otherwise the system still 

approaches to the endemic point. 

6. Finally all the other parameters have quantitative change but note qualitative change  on the 

stability of the positive equilibrium point. 
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