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Abstract

In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature

susceptible individuals (Sp), mature individuals (S, ), infectious individual
(1), removal individuals (R) and vaccine population (V). The existence,

unigueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.

Keywords: Epidemic model, Stage Structures, Vaccination, Local and Global
Sta+bility.
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1. Introduction
Epidemic diseases that spread among communities severity vary depending on the age of
the infected person, there are diseases of children without admiration and diseases afflict
only adults, and also there are illnesses they suffer together. Therefore, the age a major impact
on the spread of the disease usually is immune to the highest adult children and thus
less morbidity. In this research, we studied the effect of growth stages in the spread of disease.
There are many studies in this area see [1-5]. Hence also it appeared another problem is
the diversity and vaccination, treatment and that have a significant impact on the spread of

disease, or eliminate them. And here it came the importance of mathematical models to
help understand and explain and give appropriate solutions and perceptions.
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There are several studies presented in this field, for example, Kribs-Zaleta and
Velasco-Hernandez in 2000 [6] have been proposed and studied the SIS epidemic model
with vaccine for the diseases such as pertussis and tuberculosis, later on Arino et al. [7],
generalized this model by allowing individuals recovering from the diseases to go into
a temporarily immune class rather than directly back in to the susceptible class. Kribs-Zaleta
and Martcheva [8] investigated the effects of a vaccination campaign upon the spread of a
non-fatal disease such as Hepatitis A, B. Alexander et al. [9] and Shim [10] are discussing the
transmission dynamics of influenza with vaccination through using SVIR models.
d' Onofrio et al. [11] gave a family of models for information related vaccinating behavior.
In this paper, a mathematical model of epidemic disease, in which it is assumed that the disease
transmitted by contact with stage structures and involving vaccination is proposed and studied.
The local as well as global stability analysis of this model is investigated.

2. The derivation model
Consider an epidemic model in which the total population (say N(t)) at time t are divided into

five sub classes the immature susceptible individuals S; (t), mature susceptible individuals S (t),
vaccinated individuals V (t), at time t, infected individuals | (t) at time t and removed individuals
R(t) at time t. such that model can be represented as follows :-

% = A—(a+y + u)S,(t) - S,S,(H)1(t)

% — S, (t) = A,5,(1)] (1) - 45, ()

%wsl(t)—&v(t)l(t)—uva) @
% = BS,(O1O) + £,5, 01 ©) + N )1 () — (u+ 7)1 ()

T 10-R0

Here, all parameters in this model are positive and we can description in the following table

Table 1- Description of Parameters

Parameter Description

A
o Recruitment of Population
4 Vaccination rate

H Natural death

A Infection rate

So Infection rate

0 Failure Vaccine

y Recovery rate

Theorem (1): All the solutions of system (1) are initiate in R? , are uniformly bounde

Proof : Let (S;(t),S,(t),V(t), I(t),R(t)) be any solution of the system (1)
with non-negative initial condition (51(0),5,(0),V (0),1(0), R(0)), since
N(t)=S;(t) +S,(t) +V (t) + I (t) + R(t) and then:

dN _ﬁerierV dl dR

= —+—+— which gives d—N:A—yN
dt dt dt dt dt dt dt
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Now, by using Gronweall lemma [3] , it obtains that N(t)gé(l—e_"t) +N(0)e
7

Therefore, N(t)éA as t — oo, that is independent of the conditions and hence the proof is
U
complete.
3. Existence of equilibrium points of system
There are three equilibrium points of system(1). First, because the removal class R is related

with infected class only. In fact, if I= 0 then R= 0. While, if | =1, is a positive constant, then
R approaches to :-
r=ec @
Y7,

Consequently, for simplifying, system (1) can be reduced to the following system, in which we can
determine the value of I, by solving it, and then using Eq.(2).

% =A—(a+y+u)Si(t) - S (D1(t)
dS,(t) _

dt
% =y Si(t) -V ()1 (1) - 4V (1)
% =BS1O1(E) + BoS,(O)1(t) + oV ()1 (1) — (u+p)1(t)

Clearly, system(3) has at most two biologically feasible points. These two points can be described
as follows:
In case of absence of disease (|1 =0), there is an equilibrium point represented by

EC = (Slo , Sg AVAS 0) and it’s called the disease free equilibrium point, where
A A A
@ and V° = 1

—, —— —— (4)
a+y+u o +y + ) o +y + )
In case of existence of disease (| >0), system (3) has an equilibrium point represented by

a $1(t) — BoSo ()1 (t) — 15,(t)
3)

5P = 59 =

E" = (Sl*,Sé‘,V*, I *) and it’s called endemic equilibrium point, where

* A * 0{1\
Sl = x ! 82 = * *
a+y+pu+ pl (u+ Bl Na+y +pu+pil) (53)
V* = wA
@7+ w)(a+y +pu+ fil7)
While ™ represents a positive root for the following equation
*4 *3 *2 *

Dll +D2| +D3| +D4| =0 (5b)

Here,
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Dy =068 (u+7)
Dy = BiB20A — (1 + )08z (e +y + p) + fu(B + )]
D3 = SiAu(fy +0) + PoAO(a +y) — u(u+ ) (By + O)a +y + ) + 1]
Dy = Au(afy + Oy + Pups) — u® (u+ y)a +y + 1)

Obviously, the endemic equilibrium point exists unique in the interior of positive
octant of  S5;S,VI —space if and only if the following condition holds
D, >0, D3>0and D,>0 (5¢)
4. Local and global stability of disease free equilibrium point

In this section, the local and global stable analysis of the disease free equilibrium point E° is
studied as shown in the following theorems.

Theorem (2): The disease free equilibrium point E°® = (Sf,SS,VO,O) of system (3) is locally
asymptotically stable provided that:-

PiST + P83 + N < (u+y) (6)
Proof : Clearly the Jacobian matrix of system(3) at E® which is denoted by J (EO) can be written

—(a+y+pu) 0 O BiST
0
J(EO): o —H O _IBZSZ
% 0 —u -Vv°
0 0 0 BSP+BS;+N° —(u+y)

Accordingly, the eigenvalues of J(E®) are given by

B =—(a+y+p) <0, R =—u<0, ) =—u<0, & =BSY+B,83 +N° —(u+7)
Therefore, all the eigenvalues will be negative and hence the disease free equilibrium point is
locally asymptotically stable if and only if condition (6) is holds

Theorem (3) : Assume that, the disease free equilibrium point E° is locally asymptotically stable.

Then it is a globally asymptotically stable in the sub region of Rf’ that satisfies the following
sufficient conditions:

2
B el ey e (7a)
S s; AS?
(ﬂjz < 2(—“ s J{ﬁj (7b)
v s?  \V

Proof: Consider the following positive definite function

L, =S, —-S -S; n>L |+ S,-S5 —-S9 n>2 +(v—v°—v°|nij+|
S? S9 A

Clearly, Ly : R — R is a continuously differentiable function such that Ll(Sf,Sg,VO,O): 0
and Ly(S1,5,.V,1)>0, ¥(S;,5,,V,1)#(S2,59,v°,0). Further, we have
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d, __ (a+W+’u)(S —52)? +—(81 $1)(S,-87) - ﬂ(Sz—Sz)z
dt 25,

OV 5, -0y + V(s - STV V) - E v vy
1

+(BiSy + B2S3 + N ) = (u+7)]

Now, by doing some algebraic manipulation and using the condition (6), we get

- 2
(o] Y a+y+u 0 M 0
ES— 1/2—81(51_31)—1/8—(52—52)}
a+y+Hu 0
—1/ 25, =SV V)}

+(BiSL + oS5 + N )l — (u+7)]

L
Consequently, due to condition (7a)-(7b), %<O is negative definite and hence L; is a

Lyapunov function with respectto E° in the region that satisfies the given condition. Thus E° is
a globally asymptotically stable and the proof is complete.

The next theorem deals with the stability of the positive equilibrium point using the
Lyapunov function.

Theorem (4): Assume that the endemic equilibrium point E~ = (Sf,S;,V*, I *) exists then it is

a asymptotically stable in the sub region Q, Rf’ that satisfy the following sufficient conditions

1"<S; (8a)
BiSy+ LSy + N <p+y (8b)
a’ <dq4doy (8c)
w? <dgyda; (8d)
d54 <dpdyq (8e)
d34 <3504 (8f)

Where
dyy=a+y+u+fil”, dpp=pFol " +p, dgg=A"+u, dgy=V-a"
dag =p+y=(BiS1+foS, + ), diy=f1S - B, dos =55, ~fol”
Proof: Consider the following function
1 * 1 * 1 * 1 *
Lp(S1,82.V, 1) = (81 =S7)? +=(S, =$;)° +=(V -V )2 + 2 (1 -17)?
2 2 2 2
Clearly L,: Rf—) R and it is a continuously differentiable function, in addition,
Ly(S;, S5, V5, 17) =0  while  Ly(S;,S,,V,1)>0, V(S,S,,V, 1) (S:, S5, VE 1),

Further by taking the derivative with respect to the time and simplifying the resulting terms,
we get that
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dL, _

_d * * % d *
at - %(51—31)2 —a(S;-51)(S; —52)+%(52 —52)2}

- %(sl—sji‘f —p(Sy - SV —V*)+d—§3(v —V*)Z}

o : e da
225,52 sy s - 1)+ -1y

—d14(S; =S = 17)
It is easy to verify that, d;, and d,,are positive provided that conditions (8a)-(8b) are satisfied
respectively. Consequently, due to conditions (8c)-(8f), we have

2 2
dL d x d x d x d *
d—t2<—[ 5 (61-80)- %(52—52)} —{ SHE=8D) -V -V )}

2 2
d . d . d * d .
—[,/%(v V) + - )} {,/%(Sz—sm — (-1 )}

—d14(S =S -17)
dL *
Therefore, d_t2 is negative definite and hence L, is a Lyapunov function with respectto E in
the sub region €2,. So E"isa asymptotically stable.
Note that the function L, is approaching to infinity as any of its components do the same and its

positive definite on Rf, however its derivative is negative definite on the sub region €, due to

the given sufficient conditions. Therefore E'isa globally asymptotically stable within Q.

5. Numerical Simulations

In this section, the global dynamics of system (1) is investigated numerically for different
sets of initial values and different sets of parameters values. The objectives of such
investigation are determine the effect of varying the parameters values and confirm our obtained
results. It is observed that, for the following biologically feasible set of hypothetical parameters
values:

A =100, & =061, =0.1, u=0.1, A, =0.0001,

9
S, =0.001, £=0.0001, y=0.11 ®)
The solution of system (1) approaches asymptotically to the endemic equilibrium point

= =(321,149.1, 287.8,115.2,126.7) as shown in Figure- 1, started from different sets of
initial points.
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Figure 1- Globally asymptotically stable positive equilibrium point of system (1) for the
parameters set (9), started from different sets of initial point.

Obviously, Figure-1 shows that, system (1) approaches asymptotically to the globally stable

endemic equilibrium point E” from different sets of initial conditions. This is indicates to the
existence of globally asymptotically stable of system (1) in the interior of positive octant, which
represents the persistence of all the species too.

On the other hand, system (1) for the following set of hypothetical data approaches asymptotically
to the DFE as shown in Figure- 2

A =100, & =061 y =0.1, x=0.1, B, =0.0001,

(10)
B, =0.0001, # =0.0001, y =0.11
400 @ : 400 T T &
—5, —t
350 5,1 350 —5,
— o
300( ;7 300 —_
e —R ]
250 k \ 250
g
é. 200 :;; 200
& &
150 150
100 ( 100
s0t 50
% i 7 3 r 5 % i 7 3 r 5
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Figure 2- Globally asymptotically stable DFE of system (1) for the parameters set (10)
Clearly Figure- 2 shows the approaching of the solution of system (1) asymptotically to
the free disease equilibrium point from different initial values as the infection rate

reduced to S, =0.0001.
Varying of the parameters values (A,«,6, fB;,F,) don’t have qualitative effects on the

dynamics of system (1) rather than that they have quantitative effects on the value of positive
equilibrium point.
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For the parameters values given in Eq.(9) with > 2.4 the solution of the system (1) approaches

asymptotically to disease free equilibrium point E° =(38.4,38.4,923.02, 0,0) as shown in the
typical figure given by Figure- 3 below.
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Figure 3- Time series of the solution of system (1) for the data (9) with different values of y
(a) Globally asymptotically stable endemic equilibrium point for y» = 0.1 (b) Globally

Populations
Populations

.
@
S

50

asymptotically stable disease free equilibrium point E° for w=25.

According to the Figure- 3, it is clear that as the y increase the solution of system (1) approaches
asymptotically to the E equilibrium point.
Now for the data given by Eq. (9) with & > 0.17, the solution of system (1) approaches

asymptotically to disease free equilibrium point as shown in the following typical figure,
Figure 4. However the system still approaches to the endemic equilibrium point for other values

of u
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v 300 v
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—R —R
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100
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Figure 4- Time series of the solution of system (1) for the data (9) with different values of u
(a) Globally asymptotically stable endemic equilibrium point for #£=0.1 (b) Globally

asymptotically stable disease free equilibrium point E® for 1z=0.2.

Now by varying the recovery rate of the population in the range y > 0.37, keeping the rest of
parameters values as in Eq. (9), system (1) approaches asymptotically to the disease free

equilibrium point E° as shown in the typical figure, Figure- 5
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Figure 5- Time series of the solution of system (1) for the data (9) with different values of ¥
(a) Globally asymptotically stable endemic equilibrium point for » =0.11 (b) Globally
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asymptotically stable disease free equilibrium point E° for  =0.4.

Clearly, Figure-5 explains the approaches of the solution of system (1) to the disease free

equilibrium point as the recovery rate of the population increase.

6. Conclusions and discussion
The objective of this study is to understand the effects of all factors, which helping the spread

of this type of disease and hence get the capability of control the disease.

The boundedness of the system has been discussed. The existence conditions of all
possible equilibrium points of the system are established. All possible equilibrium points with
their local and global stability are investigated. The qualitative dynamical behavior as a
function of varying the parameters values is studied analytically as well as numerically. Finally,
for the biologically feasible set of hypothetical data as given in Eqg. (9), the system (1) is solved
numerically and the obtained results are explained in some typical figures and we will
summarize as follows.

1. System (1) does not have periodic dynamics; instead of that it approaches either to the disease
free equilibrium point or else to endemic equilibrium point depending on the value of
reproduction number.

2. For the set of hypothetical parameters values given by Eq.(9), the system (1) approached

asymptotically to the global stable endemic equilibrium point E”
3. Increasing the recovery rate  above a specific value causes bifurcation in the system and

the trajectory transferred from the endemic equilibrium point to the disease free equilibrium
point asymptotically. Otherwise the system still approaches to the endemic point.
4. Increasing the inverse of natural death x above 0.17 in Eq. (9) caused destabilizing to the

endemic equilibrium point and the trajectories of system (1) approached asymptotically to the
free disease equilibrium point. Otherwise the system still has a globally asymptotically stable
endemic equilibrium point.

5. Further increasing the recovery rate y above 0.37 in Eq. (9) causes bifurcation in the system
and the trajectory transferred from the endemic point to the disease free equilibrium point
asymptotically an hence the system will losses the persistence. Otherwise the system still
approaches to the endemic point.

6. Finally all the other parameters have quantitative change but note qualitative change on the
stability of the positive equilibrium point.
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