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Abstract 

      Detecting protein complexes in protein-protein interaction (PPI) networks is a 

challenging problem in computational biology. To uncover a PPI network into a 

complex structure, different meta-heuristic algorithms have been proposed in the 

literature. Unfortunately, many of such methods, including evolutionary algorithms 

(EAs), are based solely on the topological information of the network rather than on 

biological information. Despite the effectiveness of EAs over heuristic methods, 

more inherent biological properties of proteins are rarely investigated and exploited 

in these approaches. In this paper, we proposed an EA with a new mutation operator 

for complex detection problems. The proposed mutation operator is formulated 

under four expressions depending on the type of gene sub-ontology. To demonstrate 

the performance of the proposed evolutionary based complex detection algorithm, 

the Saccharomyces Cerevisiae (yeast) PPI network is used in the evaluation. The 

results reveal that the proposed algorithm achieves more accurate complex structures 

than the counterpart heuristic algorithms and the canonical evolutionary algorithm 

based on the topological-aware mutation operator. 

 

Keywords: Evolutionary algorithm; functional similarity; gene sub-ontology; 

protein-protein interaction network; semantic similarity. 
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( ، تعتمد فقط على EAsفإن العديد من هذه الأساليب ، بما في ذلك الخوارزميات التطورية ) الحظ ،
على الطرق  EAsالمعلومات الطوبولوجية للشبكة بدلًا من المعلومات البيولوجية. على الرغم من فعالية 

هرية للبروتين في هذه الاستكشافية ، نادرًا ما يتم التحقيق والاستفادة من الخصائص البيولوجية الأكثر جو 
. تمت صياغة المركبات البروتينيةمشكلة اكتشاف  مشغل ترحيل لحلالأساليب. في هذا البحث ، اقترحنا 

خوارزمية  أداءالفرعية. لإثبات الأنطولوجية عامل الطفرة المقترح تحت أربعة تعبيرات اعتمادًا على نوع الجينات 
 PPI)الخميرة(  Saccharomyces Cerevisiaeشبكة  استعمالتم أكتشاف المركبات البروتينية المقترحة ، 

 المضادة اتأكثر دقة من الخوارزمي مركبات بروتينيةالمقترحة تحقق  ييم. كشفت النتائج أن الخوارزميةللتق
 المعلومات الطوبولوجيةمشغل ترحيل مبني على   والتي تعتمد علىوالخوارزمية التطورية القانونية  الموجهة

 .فقط
  

1. Introduction  

     Within one cell, multi-biological processes are carried out by proteins, which are grouped 

into complexes. These complexes work, even in the world of microorganisms (such as yeast), 

in a dense model [1, 2]. Protein complexes interact with each other or with proteins as a unit 

alone, and the interaction formulates a functional model that identifies cellular mechanisms. A 

Protein-Protein Interaction (PPI) network is a kind of biological network where proteins are 

nodes and the interactions between proteins are the network’s edges. Consequently, detection 

of protein complexes and understanding of complete reconstruction of physical interactions 

within protein complexes will be very useful to get a clear idea about cellular organization, 

mechanisms regulating cell life, even therapeutic purposes, and more [2, 3].   

  

      Unlike heuristic or deterministic based complex detection algorithms, metaheuristics and 

evolutionary algorithms (EAs) are proved to be a sustainable alternative to solve NP-hard 

problems while accommodating their combinatorial explosion. For complex detection 

problems, Pizzuti and Rombo in 2014 [3] were the first to show that evolutionary-based 

complex detection methods are more robust than other state-of-the-art heuristic-based 

complex detection methods. Unfortunately, almost all the design of the main components of 

all these meta-heuristic algorithms is generally directed by several topological structures of 

the complexes. For example, Pizzuti and Rombo [3] expressed a canonical EA to detect 

protein complexes and showed the encouraging performance of EAs to outperform the 

counterpart heuristic methods. Unfortunately, the current effort to design evolutionary-based 

complex detection methods with gene ontology (GO) aware components is still lagging 

behind in the literature. 

 

      The key contribution of this paper is to design an evolutionary-based complex detection 

algorithm with a gene ontology mutation operator. The proposed mutation operator (the so-

called migration operator) is formulated based on three different gene sub-ontology types: 

Molecular Function (MF), Cellular Component (CC), and Biological Process (BP) and their 

combinations. The remainder of this paper is organized as follows. A literature review and 

preliminary concepts are presented in the following two sections. This is followed by Section 

4 introducing the proposed EA with the proposed migration operator. Four formulations are 

suggested for the proposed migration operator. The results and discussions are provided in 

Section 5, demonstrating that it is interesting enough to develop an EA with gene ontology-

based components. Finally, conclusions and future directions are provided in Section 6. 

 

2. Metaheuristic based complex detection algorithms: A review 

      As far as we know, developing GO-based evolutionary algorithms for the complex 

detection problem is still insufficiently explored in the literature. Only a few works have 
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examined the incorporation of GO information into the framework of evolutionary 

algorithms. For example, Mukhopadhyay et al. [4] and Bandyopadhyay et al. [5] applied a 

direct way of modeling GO semantic similarity in the optimization function, however, with 

the main aim of maximizing functional modules. In both [4] and [5], a multi-objective 

optimization problem is formulated reflecting a topologically based protein-cluster 

contribution and closeness centrality objectives. However, in [5], the proposed GO-based 

function is formulated with respect to the direct annotation and average of pairwise GO 

semantic similarity.   

 

      A multi-objective evolutionary based complex detection algorithm is proposed in [6]. The 

algorithm defines the problem as a multi-objective optimization model. Further, in [6, 7], a 

heuristic mutation operator (the so-called protein-complex attraction and repulsion operator) 

is also proposed to harness the strength of the proposed optimization model and other state-of-

the-art single and multi-objective optimization models. Unlike the canonical mutation 

operator, more inherent topological properties at both the complex level and protein level are 

reflected by the proposed protein-complex attraction and repulsion operator.  

However, the main interest of many metaheuristic-based complex detection algorithms is to 

formulate their components from topological structure only. For example, a topological-based 

mutation operator is proposed in [8, 9]. The basic idea of the proposed operator is to break up 

the coexistence of a pair of proteins according to their topological similarity. Their similarity 

will determine the existence of this pair within one complex or distinct complexes. The 

detection ability of several single and multi-objective topology-based optimization models is 

demonstrated using this operator. 

  

3. PPI networks and complex graphs  

     A PPI network, 𝑁, is a random but finite complex graph of 𝑛 nodes (proteins) and 𝑚 edges 

(interactions). Usually in graph notations, we can describe 𝑁 as a graph with cardinality 𝑛 and 

volume 𝑚. The general expression of any network can be modeled as an undirected graph 

𝐺 = (𝑉, 𝐸) of a finite set of 𝑛 vertices 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑛) V and a finite set of 𝑚 edges E 

⊆V×V. 

 

      When two nodes, 𝑣1 and 𝑣2, have an edge in E, then we can use the term “neighbor” to 

describe them. Overall, 𝐺 = (𝑉, 𝐸) can be described by a symmetric binary square matrix, 

usually known as an adjacency matrix 𝑨, where each entry (𝑖, 𝑗) in the matrix is assigned to 1 

(similarly (𝑗, 𝑖) = 1) when 𝑣1 and 𝑣2 are neighbors, otherwise (𝑖, 𝑗) is set to 0.  

From the adjacency matrix, 𝑨 = [𝑖, 𝑗]𝑛×𝑛, we can visualize the search space, Ω, for the 

network decomposition problem. The search space, Ω,  contains all possible or candidate 

decomposition solutions of the matrix, 𝑨 into square sub-matrices, (𝐴1, 𝐴2, … , 𝐴𝐾). In 

complex detection problem and for PPI network, 𝑁, each candidate solution renders a 

possible partitioning for the 𝑛 proteins into 𝐾 complexes 𝒞 = (𝐶1, 𝐶2, … , 𝐶𝐾). The main 

characteristic of complexes (or modules), even though there is no firm rule to define them, is 

that they can be mapped onto highly dense sub-matrices (𝐴1𝐴2, … , 𝐴𝐾). 

Representation of conditional independence relations among variables and causal 

relationships could use directed graphs as a useful tool. A directed graph G consists of a set of 

vertices and a set of edges. When (𝑋, 𝑌) belongs to the edge set E, then there is an arrow 

pointing from Y to X (see Figure 1).  
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Figure 1: A directed graph with vertices V = {X, Y, Z} and edges E = {(Y, X), (Y, Z)}. 

  

4. Gene Ontology 

     Ontology is the part of philosophy that specializes in studying existence and beginnings. It 

tries to build norms to define and characterize entities, their properties, events that may occur 

on them, processes that take place on them, and relationships in all aspect of the real world, 

taking into account all details and different domains [10, 11]. This was the main motivation 

behind Gene Ontology (GO). GO is a guide for describing gene and protein functions. 

Actually, the correlation of a gene product to a GO term is a GO annotation. The GO 

Consortium realized that the availability of supporting information besides these correlations 

is important, so each GO annotation constantly makes mention of the evidence that is based 

upon it. One widespread use is to derive commonalities in the location or function of genes 

that are over-or under-expressed [12]. The goal of GO is to create strict shared vocabularies 

and clarify its role across different organisms [12, 13]. These strict vocabularies are separated 

into three sub-ontologies:  

 

1. Molecular Function (MF): Gene products perform molecular-level activities. These 

activities at the molecular-level (such as catalysis or transport) are described by Molecular 

Function terms. These terms also represent entities, molecules, or complexes, to perform the 

actions. However, it is not defined where, when, or even under which conditions the action 

occurs. Molecular Function is usually correlated with an activity that is performed by one 

gene product (i.e., protein or RNA) [14]. In short, we can say that MF terms are terms that 

depict actions that they perform [15]. 

2. Cellular Component (CC): Terms in this ontology depict the position of a gene product in 

the cell [15]. Gene product functions are performed in one of the following cellular structures: 

i) cellular compartments (e.g., the mitochondrion), or ii) stable macromolecular complexes of 

which they are part (e.g., the ribosome). Contrary to what is known about aspects of GO, 

cellular component classes represent a cellular anatomy, not processes [16]. 

3. Biological Process (BP): Multiple molecular activities are needed to accomplish larger 

processes or “biological programs” which are described by the term “Biological Process 

(BP)”. A simple example of a broad Biological Process ontology is cell growth and 

maintenance. Note that Biological Process is not equivalent to pathway [16]. Briefly 

speaking, Biological Process (BP) terms are terms that depict the broadest role that could be 

played [15]. 

 

      Each GO sub-ontology is represented as a hierarchically structured graph (known as 

directed acyclic graphs (DAGs)). Consider the three DAGs in Figure 2, of three GO terms. 

The top left represents a CC term, the top right represents an MF term, and the bottom DAG 

represents a BP term. In each DAG, the terms (i.e., functional feature descriptions) are the 

nodes in these DAGs, and edges form relations between terms. Because of the hierarchically 

structured nature of GO, the annotated proteins can be compared in terms of the different 

terms in the ontology graph [12, 14, 17]. Mainly, relationships come in two types. The first 

type is sub-typing (or simple class-subclass) relations (i.e., “is a”); where term A “is a” term B 

means that A is a subclass of B. The second type is the partition (or partial ownership) 

relation (i.e., “part of”); where the term C “part of” D means that whenever C is present, it is 

always a part of D, but C need not always be present [14, 16]. In ontology graph, terms which 

http://amigo.geneontology.org/amigo/term/GO:0005739
http://amigo.geneontology.org/amigo/term/GO:0005840
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are semantically more similar are arranged close together than those away from each other 

[12]. A gene product (i.e., protein) is annotated with any set of terms from all or any of the 

three ontologies, depending on the available data [15]. 

The GO project is composed of two main parts: the biological aspects models (i.e., Gene 

Ontology itself) and the annotations. The annotation part links genes or gene products to 

terms from the Gene Ontology. Thus, all functions that a gene could have are explained in GO 

annotation. Table 1 presents ten different gene products (proteins) with their GO annotations 

in MF, CC, and BP. These proteins and their annotations in GO terms were taken from the 

Saccharomyces Genome Database (SGD) in the live version (URL: 

http://www.yeastgenome.org). 

 

Table 1 explains that each protein could consist of one, two, or three types of ontologies. 

Additionally, each ontology can have a different number of GO terms. For example, the 

annotation of protein 'YNL317W' consists of three types of ontology (MF, BP, and CC). 

However, the annotation of protein 'YMR091C' has two types of ontology, while protein 

'YLR312W' has no term in any ontology. 

 

5. The proposed meta-heuristic with tri gene ontology migration operator 

     In this section, we introduce the proposed meta-heuristic-based complex detection 

algorithm. As evolutionary algorithms (EAs) are known to be the most dominant meta-

heuristics, we will consider them as the search algorithm. The presentation includes the 

formulation of the main components of the proposed EA with the modularity as optimization 

model and the proposed tri-gene ontology migration operator. To improve the quality of the 

population evolved by EA, four formulations for the migration operator are formulated. The 

formulations are based on the three main gene ontology types and their combinations. 
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Figure 2: DAGs for three different GO terms. Top left: The DAG for a GO term of CC sub-

ontology (protein phosphatase type 1 complex: 0000164). Top right: The DAG for a GO term 

of MF sub-ontology (ribonuclease MRP activity: 0000171). Bottom: The DAG for a GO term 

of BP sub-ontology (septum digestion after cytokinesis: 0000920). 
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Table 1: Annotation of ten different gene products (i.e. proteins) with their sub-ontology MF, 

BP, and/or CC terms. The annotation in GO terms is an updated version taken from 

Saccharomyces Genome Database (SGD) in the live version (URL: 

http://www.yeastgenome.org).   

Protein MF CC BP 

YNL317W [GO:0003723] [GO:0005847, GO:0005634, 

GO:0005634, GO:0005847, 

GO:0005847, GO:0005847] 

[GO:0006378, GO:0006378, 

GO:0098789, GO:0098789, 

GO:0006397, GO:0006378, 

GO:0006378] 

YDL213C [GO:0003723, 

GO:0019843, 

GO:0030515, 

GO:003676, GO:003676] 

[GO:0030686, GO:0005730, 

GO:0030686, GO:0005730 , 

GO:0005634, GO:0005730] 

[GO:0042274, GO:0042254, 

GO:0006364] 

YDR381W [GO:0005515, 

GO:0003723, 

GO:1990119, 

GO:0003723, 

GO:0003676, 

GO:0003676] 

[GO:0005634, GO:0000346, 

GO:0005634] 

[GO:0043462, GO:0006283, 

GO:0006406, GO:1902281] 

'YLR221C [GO:0003674] [GO:0005730, GO:0005634, 

GO:00030687, GO:0005730, 

GO:0030687, GO:0030687] 

[GO:0042254, GO:0000027, 

GO:0000027, GO:0000027] 

YPR093C [GO:0004842, 

GO:0046872] 

[GO:0005634, GO:0005737, 

GO:0005737, GO:0005737, 

GO:0005634, GO:0005634] 

[GO:0000921, GO:0016567, 

GO:0016567, GO:0045471] 

YDR240C [GO:0003723, 

GO:0003729, 

GO:0003729] 

[GO:0000243, GO:0005685, 

GO:0071004, GO:0005634, 

GO:0005634, GO:0005681] 

[3 GO:00098, GO:000398, 

GO:0006397, GO:0008380] 

YDR073W [] [GO:0005634, GO:0005829, 

GO:0016514, GO:0016514, 

GO:0005634, GO:005634] 

[GO:0045944] 

YMR091C [] [GO:0016586, GO:0016586, 

GO:0016586, GO:0005634, 

GO:0005634, GO:0005634, 

GO:0005634] 

[GO:0006337, GO:0006368, 

GO:0043044, GO:0006325] 

YLR312W [] [] [] 

YFR024C [] [] [] 

 

5.1 Individual representation and search space size  

     The formulations of all components of the proposed EA are expressed to meet the complex 

detection problem. First, the locus-based individual representation is used to encode each 

partitioning solution. In locus-based representation, here, each individual chromosome 𝑃 in 

the population ℙ = {𝑃1, 𝑃2, … , 𝑃𝑝𝑜𝑝−𝑠𝑖𝑧𝑒} is defined as a collection of 𝑛 protein–protein fitting 

in the same complex. Each chromosome, 𝑃𝑖, has  𝑛 entities, i.e. , 𝑃𝑖 = {𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑛}, 

where the locus, 𝑗,  points to the protein, 𝑗,  and the allele, 𝑃𝑖,𝑗, points to one of the 

neighboring proteins of 𝑗 within which protein, 𝑗, should fit in the complex formation. For this 

representation, one can compute the total search space size, |Ω|, that should be uncovered 

well by the proposed EA to reach an acceptable partitioning solution. Consider that |𝑑𝑖| is the 

number of neighbor proteins to protein, 𝑖. Then for 𝑛 proteins, the size of the search space 

|Ω| = 𝑑1 × 𝑑2 × … × 𝑑𝑛.  

 

      The decoding function δ of an individual chromosome sketches different complex 

structures, and thus different number of complexes, for the network. To uncover the 

promising area of the search space, the EA starts with a small subset of |Ω|, called an initial 

random population ℙ and evolves it iteratively towards a better and better population. 

http://www.yeastgenome.org/
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5.2 Modularity as a fitness function 

      Good solutions, and thus good areas of the search space, are quantitatively evaluated using 

the modularity function, 𝑄. Modularity 𝑄 (Eq. 1), positively treats a partitioning solution 𝒞 

with a higher fraction of intra-neighboring within the 𝐾 complexes of 𝒞 and, simultaneously, 

with sparse inter-neighboring between these 𝐾 complexes [18]. The left term in Eq.1 (i.e. 

(
𝑚𝐶𝑖

|𝑚|
)), expresses the ratio of the intra-volume of the complex 𝐶𝑖 (which is noted as 𝑚𝐶𝑖

) to the 

total volume of the network (|𝑚|). In other words, it biases towards a collection of densely 

intra-connected modules (or complexes). On the other hand, the right term (
∑ |𝑑𝑣|𝑣∈𝐶𝑖

2|𝑚|
) 

expresses that the expected value of the same connection density in 𝒞 with the same 

community structure, but fall at random, between the proteins should be small. 

𝑄(𝒞) = ∑ [
𝑚𝐶𝑖

|𝑚|
− (

∑ |𝑑𝑣|𝑣∈𝐶𝑖

2|𝑚|
)2]𝐾

𝑖=1             (1) 

 

5.3 Evolution operators 

      Once the chromosome solutions are evaluated in terms of modularity, another set of 

𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒, but better, solutions is generated by iterative composition of three the main 

evolution operators. These are selection (𝑠), crossover (Θ𝑐), and mutation. A set of parent 

solutions is selected, using tournament selection, based on their modularity values. Then, a 

uniform crossover operator, with relatively high crossover probability, 𝑝𝑐, is performed to 

perform a locus-wise crossing between the alleles of each pair of parent solutions. The 

uniform crossover uniformly mixes the alleles of the two parents to generate a child solution. 

Thus, the child solution would normally contain equivalent traits from the two parents.  

 

5.4 The proposed Tri GO-based migration operator  

     For the mutation operator, four formulations are suggested. The essential rule of the 

proposed mutation operator is based on the migration operator of [19, 20]. This topological-

based operator was proved in [19, 20] to harness the performance of the evolutionary based 

community detection algorithms. The migration operator, Ψ, works on allele values (i.e. 

protein neighboring) and alters, with a specified, normally low migration probability 𝑝𝑚, its 

neighbor. In other words, the proposed operator would change the selected protein from its 

home complex to a new one if the protein has denser connections with the proteins of the 

second complex than with the home complex.  

 

      In this paper, we relaxed this migration operator to meet the requirement for the gene 

semantic similarity of the migrated proteins (i.e., the migrated gene products). By this means, 

we introduce four types of gene ontology-based migration operators. The first three 

formulations are based on the three types of gene sub-ontology, i.e., MF, CC, and BP. In each 

type, the migration operator alters the complex-belonging of a mutated protein if it has more 

semantic similarity (in terms of its sub-ontology gene terms) with the proteins of the 

destination complex than with the source or home complex. The fourth formulation is then 

based on the combination of the semantic similarity of the three types. 

  

      Let us consider an individual solution 𝑃𝑖 = {𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑛} corresponding to a candidate 

complex structure 𝒞 = {𝐶1, … , 𝐶𝐾} with 𝐾 complexes. Let protein 𝑗 that corresponds to locus 

𝑗 being positioned in complex 𝑘, where 1 ≤ 𝑘 ≤ 𝐾. Then, protein 𝑗 can be represented as a 

gene product with 𝑆𝑙𝑖𝑚𝑗, such that this slim combines the GO terms in the three sub-

ontologies (Eq. 2). Further, protein 𝑗 inside complex 𝑘 has a gene product similarity, in terms 

of MF terms, CC terms, BP terms, and a combination of the three sub-ontology terms with 
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other proteins in the same complex 𝑘 as expressed in Eq. 3, 4, 5, and 6, respectively. Note that 

the similarity of the combination of the three sub-ontology terms is called functional 

similarity (FS). 

 

𝑆𝑙𝑖𝑚𝑗 = 𝑀𝐹𝑗 ∪ 𝐶𝐶𝑗 ∪ 𝐵𝑃𝑗             (2) 

𝑀𝐹(𝑗, 𝐶𝑘) = ∑
|𝑀𝐹𝑗⋂𝑀𝐹𝑣|

|𝑀𝐹𝑗∪𝑀𝐹𝑣|𝑣∈𝐶𝑘
                                 (3) 

𝐶𝐶(𝑗, 𝐶𝑘) = ∑
|𝐶𝐶𝑗⋂𝐶𝐶𝑣|

|𝐶𝐶𝑗∪𝐶𝐶𝑣|𝑣∈𝐶𝑘
                                  (4) 

𝐵𝑃(𝑗, 𝐶𝑘) = ∑
|𝐵𝑃𝑗⋂𝐵𝑃𝑣|

|𝐵𝑃𝑗∪𝐵𝑃𝑣|𝑣∈𝐶𝑘
                                  (5) 

𝐹𝑆(𝑗, 𝐶𝑘) = ∑
|𝑆𝑙𝑖𝑚𝑗⋂𝑆𝑙𝑖𝑚𝑣|

|𝑆𝑙𝑖𝑚𝑗∪𝑆𝑙𝑖𝑚𝑣|𝑣∈𝐶𝑘
                 (6) 

 

       Note that Jaccard similarity is computed for the GO terms of the pair of proteins 𝑗 and 

each protein 𝑣 in 𝐶𝑘. For example, consider the two first proteins (YNL317W and YDL213C) 

in Table 1 with their GO terms. By their sub-ontologies terms, we have Jaccard similarity 

equals to 0.2500, 0.2500, 0, and 0.1429 for, respectively, 𝑀𝐹, 𝐶𝐶, 𝐵𝑃 and 𝐹𝑆. 

The proposed migration operators, then, moves 𝑗 from its home complex to another complex 

𝑘′, 1 ≤ 𝑘′ ≤ 𝐾 and  𝑘′ ≠ 𝑘 where protein 𝑗 could maintain, in complex 𝑘′, the maximum 

semantic similarity (as in Eq. 6, 7, and 8) and the maximum functional similarity as in Eq. 9. 

Note that when there is more than one complex to accept protein 𝑗 with equal similarity value, 

then Ψ randomly selects any one of these destination complexes.  

 

Ψ𝑀𝐹(𝑗 ∈ 𝐶𝑘, 𝑝𝑚) = max
𝐶𝑘′ ∈ 𝒞

𝑀𝐹(𝑗, 𝐶𝑘′)                                     (7) 

Ψ𝐶𝐶(𝑗 ∈ 𝐶𝑘, 𝑝𝑚) = max
𝐶𝑘′ ∈ 𝒞

𝐶𝐶(𝑗, 𝐶𝑘′)                                     (8) 

Ψ𝐵𝑃(𝑗 ∈ 𝐶𝑘, 𝑝𝑚) = max
𝐶𝑘′ ∈ 𝒞

𝐵𝑃(𝑗, 𝐶𝑘′)                                     (9) 

Ψ𝐹𝑆(𝑗 ∈ 𝐶𝑘, 𝑝𝑚) = max
𝐶𝑘′ ∈ 𝒞

𝐹𝑆(𝑗, 𝐶𝑘′)                                    (10) 

 

5.5 Algorithm layout  

Algorithm 1 outlines the main steps of the proposed algorithm. In the algorithm, each 

individual solution is evolved via three main operators. The parent selection operator 𝑠 selects 

the parents’ population. Afterwards, both recombination and mutation operators are applied to 

generate modified individuals. 

Algorithm 1: 𝐺𝑂-based EA 

1 𝑡 ⟵ 0; 

2 initialize population ℙ(𝑡) ⟵ (𝑃1, 𝑃2, … , 𝑃𝑝𝑜𝑝−𝑠𝑖𝑧𝑒);  

3 for 𝑖 ← 1 to 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 do 

4  evaluate 𝑄(𝑃𝑖(𝑡)); 

5 End 

6 while (𝜄(ℙ(𝑡)) ≠ 𝑡𝑟𝑢𝑒) do 

7  for 𝑖 ← 1 to 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 do 
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8   𝑃𝑖,1(𝑡) ← 𝑠(𝐺𝑖(𝑡)); // select parent 1 for 𝑃𝑖  

9   𝑃𝑖,2(𝑡) ← 𝑠(𝐺𝑖(𝑡)); // select parent 2 for 𝑃𝑖 

1

0 
  𝑃𝑖(𝑡) ← Θ𝑐(𝑃𝑖,1(𝑡), 𝑃𝑖,2(𝑡), 𝑝𝑐)  

1

1 
  𝑃𝑖(𝑡) ← Ψ(𝑃𝑖(𝑡), 𝑝𝑚);  // either Ψ𝑀𝐹 , Ψ𝐶𝐶, Ψ𝐵𝑃, or Ψ𝐹𝑆 

1

2 
  evaluate 𝑄(𝑃𝑖(𝑡)); 

1

3 
 end 

1

4 
 𝑡 ⟵ 𝑡 + 1; 

1

5 
end 

1

6 
return 𝑃∗(𝑡) // the best solution in terms of 𝑄 

 

6. Results and discussions 

     The filtered version of the Yeast Saccharomyces cerevisiae PPI network [21] is proven to 

be a highly effective PPI network for modeling organisms for mammalian biological 

functions and diseases. It contains 4687 interactions for 990 proteins. The MF, CC, and BP 

sub-ontology terms assigned to these 990 proteins are taken from the Saccharomyces Genome 

Database (SGD). They are annotated with a total of 541 MF, 452 CC, and 1245 BP. To 

validate the quality of the predicted complexes, a benchmark gold standard complex set 

drawn from the Munich Information Center for Protein Sequence (MIPS) catalog is used in 

the experiments. This benchmark contains 859 proteins partitioned into 81 protein complexes. 

The common measures of recall, precision, and cumulative F measure at both complex and 

protein levels are used in the evaluation. The detected set of complexes 𝒞 = {𝐶1, 𝐶2, … , 𝐶𝐾} 

obtained from the best solution of each of the tested algorithms is compared with the standard 

true complexes 𝒞∗ = {𝐶1
∗, 𝐶2

∗, … , 𝐶𝐾∗
∗ } obtained from the MIPS. A detected complex 𝐶𝑖 in the 

solution 𝒞 overlaps, in terms of protein, a true complex 𝐶𝑗
∗ with an overlapping score (𝑂𝑆) 

(Eq. 10). Complex 𝐶𝑖 matches the true complex 𝐶𝑗
∗ if 𝑂𝑆 is equal or larger than a specified 

threshold, 𝜎𝑂𝑆.  

𝑂𝑆(𝐶𝑖, 𝐶𝑗
∗) =

|𝐶𝑖∩𝐶𝑗
∗|

𝟐

|𝐶𝑖||𝐶𝑗
∗|

           (11) 

where |∙| is the number of proteins common to both 𝐶𝑖 and 𝐶𝑗
∗. 

𝑚𝑎𝑡𝑐ℎ(𝐶𝑖, 𝐶𝑗
∗) = {

1 𝑖𝑓 𝑂𝑆(𝐶𝑖, 𝐶𝑗
∗) ≥ 𝜎𝑂𝑆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
                   (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝐶𝑖

∗: 𝐶𝑖
∗∈𝒞∗ ⋀ ∃𝐶𝑗∈𝒞→𝑚𝑎𝑡𝑐ℎ(𝐶𝑖

∗,𝐶𝑗)|

𝐾∗
        (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐶𝑖: 𝐶𝑖∈𝒞 ⋀∃𝐶𝑗

∗∈𝒞∗→𝑚𝑎𝑡𝑐ℎ(𝐶𝑖,𝐶𝑗
∗)|

𝐾𝒞
        (14) 

 

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
         (15) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑁 =
∑ |𝑚𝑖|𝐾∗

𝑖=1  

∑ |𝐶𝑖
∗|𝐾∗

𝑖=1

           (16) 
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where |𝑚𝑖| = 𝑚𝑎𝑥𝐶𝑗∈𝒞|𝑚𝑎𝑡𝑐ℎ(𝐶𝑖
∗, 𝐶𝑗). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 =
∑ |𝑚𝑖|

𝐾𝒞
𝑖=1

 

∑ |𝐶𝑖|
𝐾𝒞
𝑖=1

          (17)  

where |𝑚𝑖| = 𝑚𝑎𝑥𝐶𝑗
∗∈𝒞∗|𝑚𝑎𝑡𝑐ℎ(𝐶𝑖, 𝐶𝑗

∗). 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁 =
2∗𝑟𝑒𝑐𝑎𝑙𝑙𝑁∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁

𝑟𝑒𝑐𝑎𝑙𝑙𝑁+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁
         (18) 

 

      Figures 3-5 depict the performance of the EA with the proposed migration operators based 

on semantic similarities (𝐸𝐴𝐺𝑂𝑚𝑀𝐹 , 𝐸𝐴𝐺𝑂𝑚𝐶𝐶 , and 𝐸𝐴𝐺𝑂𝑚𝐵𝑃) and functional similarity based 

on Jaccard (𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑) against the canonical EA (𝐸𝐴) for an average of 30 different runs. 

Here, all algorithms were tested while setting their parameters to one common setting. 

Population size was set to 100. The evolutionary process was stopped at a maximum number 

of 100 generations. The Probability of uniform crossover was 𝑝𝑐 = 0.6, and the probability of 

the canonical mutation operator and the proposed heuristic GO-based migration operators 

were 𝑝𝑚 = 0.2. 

 

       The results show the positive impact of exploiting the gene ontology information in the 

formulation of the mutation operator at both the complex level and protein level. This can be 

turned back to the additional information injected into the algorithm. Further, the results 

clarify the additional improvement capabilities introduced by injecting the functional 

information of the three ontology types ( i.e., 𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑).  

  

     Additional results are also provided in Table 2. The results report the performance of the 

proposed evolutionary algorithm against some of the well-known heuristic methods and the 

canonical EA. These are Molecular Complex Detection (MCODE) [22], Restricted 

Neighborhood Search Clustering (RNSC) [23], Clique Percolation Method (𝐶𝑃𝑀) [24], link 

clustering (𝐿𝐶)  [25], Markov Cluster Algorithm (MCL) [26], Overlapping Cluster Generator 

(𝑂𝐶𝐺)  [27], Extended Link Clustering method (ELC) [28], and network decomposition for 

overlapping community detection algorithm (NDOCD) [29].  
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Figure 3: Performance comparison at both complex level (top) and protein level (bottom) in 

terms of Recall (top) and RecallN (bottom) for an average of 30 different runs of the proposed 

EAGOmMF, EAGOmCC, EAGOmBP and 𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑 against the EA. 
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Figure 4: Performance comparison at both complex level (top) and protein level (bottom) in 

terms of Precision (top) and PrecisionN (bottom) for an average of 30 different runs of the 

proposed EAGOmMF, EAGOmCC, EAGOmBP and 𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑 against the EA. 
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Figure 5: Performance comparison at both complex level (top) and protein level (bottom) in 

terms of Recall (top) and FmeasureN (bottom) for an average of 30 different runs of the 

proposed EAGOmMF, EAGOmCC, EAGOmBP and 𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑 against the EA. 

 

       The results clearly reflect the positive investment of the GO information and the 

functional domain to improve the detection ability of the single objective evolutionary 

algorithm (𝐸𝐴𝐺𝑂𝑚). In all metrics, 𝐸𝐴𝐺𝑂𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑 outperforms the canonical EA. Further, in 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒, the proposed GO based evolutionary algorithm outperforms all 

the heuristic based complex detection algorithms. For 𝑅𝑒𝑐𝑎𝑙𝑙, on the other hand, 𝐸𝐴𝐺𝑂𝑚 

performs better than almost all the heuristic methods with exception to the performance of 

RNSC, MCL, and OCG. These algorithms, however, provide inferior solutions in terms of  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒.  

 

Table 2: Comparison of performance in terms of 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 where 

overlapping score with 𝑂𝑆 = 0.2. The best result in each validation metric is provided in 

bold.  

Algorithm 𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭-𝒎𝒆𝒂𝒔𝒖𝒓𝒆 

MCODE 0.6700 0.6250 0.6467 

RNSC 0.8490 0.2650 0.4039 

CPM 0.5850 0.6170 0.6006 

LC 0.4950 0.0410 0.0757 

MCL 0.8230 0.5390 0.6514 

OCG 0.8380 0.6150 0.7094 

ELC 0.5910 0.6479 0.6181 

NDOCD 0.7830 0.7000 0.7392 

𝑬𝑨 0.7050 0.7100 0.7050 

𝑬𝑨𝑮𝑶𝒎𝑱𝒂𝒄𝒄𝒂𝒓𝒅 0.7490 0.7750 0.7550 
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7. Conclusions  

     Complex detection is proved to be an NP-hard combinatorial optimization problem where 

meta-heuristic algorithms are proved to be beneficial over heuristic based approaches. One of 

the main contributions of bioinformatics to molecular biology is the introduction of ontologies 

for genome annotation. However, we found a lack of interest in the literature in designing an 

effective meta-heuristic algorithm. In this paper, a gene ontology based migration operator is 

proposed to further fine tune the EA-based generated complex structure. Four types of 

migration operators are formulated. The formulations are based on the three different types of 

gene sub-ontology (MF, CC, and BP) and their combinations. The results report a positive 

argument in favor of the proposed formulations against the canonical EA. Further 

improvement can be achieved while examining other EA components, e.g., objective function 

and crossover operator.   
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