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Abstract 

       Let R be a ring with identity and let M be a left R-module. M is called µ-lifting 

modulei f for every sub module A of M, There exists a direct summand D of M such 

that M = DD', for some sub module D' of M such that A≤D and AD'<<µ D'. 

The aim of this paper is to introduce properties of µ-lifting modules. Especially, we 

give characterizations of µ-lifting modules. On the other hand, the notion of amply 

µ-supplemented iis studied as a generalization of amply supplemented modules, we 

show that if M is amply µ-supplemented such that every µ-supplement sub module 

of M is a direct summand, then M is µ-lifting module. Finally, we give some 

conditions under which the quotient and direct sum of µ-lifting modules is µ-lifting. 

 

Keywards: µ-coessential sub modules, µ-lifting modules. 

 

µ-حول مقاسات الرفع من النمط  
 

وسن خالد ،إيناس مصطفى كامل*  
 العخاق ،بغجاد ،جامعة بغجاد ،كلية العلهم  ،قسم الخياضيات

 الخلاصة
-مقاس رفع من الظطط Mيجعى  .مقاسا ايسخ معخف عليها  Mحلقة ذات عظصخ محايج و ليكن  Rلتكن      

µ  اذا كان لكل مقاس جدئيA  منM  يهجج مخكبة ججاء مباشخD  منM  بحيث انM = DD'  وD'  هه
الغخض من هحا البحث هه تقجيم خهاص  . 'AD'<<µ Dو Dمقاس جدئي من  Aو  Mمقاس جدئي من 

, من جهة اخخى مهضهع µ-.سهف نعطي مكافئات لطقاسات الخفع من الظطط µ-مقاسات الخفع من الظطط
. سهف  amply)ت كتعطيم للطقاسات الطكطلة من الظطط )س  ر  د   (amply -µ)الطقاسات الطكطلة من الظطط 

 µ-ط طث ان كل مقاس جدئي مكطل من الظيبح (amply-µ) مقاس مكطل من الظطط  Mنبخهن انه اذا كان 
قسطة ال. أخيخا نعطي بعض الشخوط لتكن µ-هه مقاس رفع من الظطط Mججاء مباشخ , فأن هه مخكبة  Mمن 

  .µ-هي ايضا مقاسات رفع من الظطط  µ-و الجطع الطباشخ لطقاسات الخفع من الظطط 

 

1. Introduction  
Throughout this paper all rings have an identity and all modules will be until left R- module Let M be 

a module and let A be a sub module of M, A is called small in M (notation A<<M) if M A+B , for any 

proper sub module B of M, see [1] and [2]. As a generalization of small sub modules we introduced 

the concept of µ- small sub modules, A sub module A of M is called µ- small sub module of M 

(denoted by A<<µ M) if whenever M = A + X , 
X

M
 is cosingular, then M = X. See [3]. Let A ≤ B ≤ M. 

if 
A

B
<<

A

M
, then A is called a coessential sub module of B in M. We introduce µ-coessentialosub 

module as a generalization of coessential sub module as follows. Let M be an R- module and let X and 
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A be sub modules of M such that X≤ A ≤ M , then X is Following , Oshiro [4], An R- module M is 

called lifting module if for every sub module A of M , there exists a direct summand D of M such that 

D is coessential sub module of A in M. This concept leads us to introduce the following concept. An 

R- module M is called µ-lifting module if for every sub module A of M, there exists a direct summand 

D of M such that D≤µce A inM.Inothisopaper,weoinvestigateocharacterizationsmandopropertiesmofmµ-

lifting modules. 

Inmsection2. We define µ-coessential sub modules. Also we list some of their important properties 

that are related to our work. 

In section3. We define the notion of µ-lifting modules as a generalization of lifting modules with some 

examples and characterizations and basic properties. Also, we investigate various conditions for a 

direct sum of µ-lifting modules to be µ-lifting. 

2. µ-Coessential submodules 

Definitionr2.1: Let M be an R- module and let X and A be sub modules of M such that X≤ A ≤ M , 

then X is called µ-coessential sub module of A in M (briefly X ≤µce A in M) if 
X

A
 <<µ 

X

M
 . 

Examples and Remarks 2.2 

(1) Consider Z8 as Z- module. It is easy to see that { 0 , 4 }≤µce { 0 , 2 , 4 , 6 } in Z8. 

(2) ConsidewZ6 as Z- module. It is clear that { 0 } is not µ-coessential sub module of { 0 ,3 }. 

Suppose that  
}0{

}3,0{
 <<µ

}0{

6Z
, it is easy to see that 

}0{

}3,0{
    { 0 , 3 } and 

}0{

6Z
   Z6 and hence { 0 ,3

}<<µ Z6 which is a contradiction. 

(3) It is clear that µ-coessential sub module is a generalization of coessential sub module, but the 

converse is not true in general. For example. Consider Z6 asnZ6-imodule. Since { 0 ,3 }<<µ Z6 , then     

{ 0 }≤µce { 0 , 3 } inkZ6 but { 0 } is not coessential sub module of { 0 , 3 } in Z6. Note that they are 

equivalent when M is cosingular module 

(4) Let M be an R- module. Then A<<µ M if and only if {0}≤µce A in M. 

The following proposition gives a characterization of µ-coessential sub module. 

Proposition 2.3: Let M be an R- module and let A ≤ B ≤ M where 
A

M
 is cosingular, then A≤µce B in M 

if and only if M = B + X implies that M = A + X, for every sub module X of M. 

Proof: Suppose that A≤µce B in M and let M = B + X, where X ≤ M, then 
A

M
= 

A

B
+ 

A

AX 
 . Since 

A

M
 is cosingular, then 

XA

M


 is cosingular. But 

A

XA
A

M


   

XA

M


, by third isomorphism theorem, 

therefore 

A

XA
A

M


 is cosingular. But 

A

B
 <<µ 

A

M
, therefore 

A

M
 = 

A

AX 
 . Thus M = X + A. 

Conversely, let 
A

M
 = 

A

B
 + 

A

U
 , where A ≤ U with 

U

M
is cosingular. Then M = B + U and 

U

M
 is 

cosingular. So, by our assumption , we get M = A + U. But A ≤ U, therefore M = U. Thus A≤µce B in M 

     The following propositions give some properties of µ-coessential sub modules which are needed 

later. 

Proposition 2.4: Let M be an R- module and let A ≤ X ≤ B ≤ M. Then X ≤µce B in M if and only if 
A

X
 

≤µce 
A

B
 in 

A

M
 . 
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Proof: Assume that X ≤µce B in M. Since 

A

X
A

B

   
X

B
 and 

A

X
A

M

   
X

M
 , by (the third isomorphism 

theorem) Then 

A

X
A

B

 <<µ 

A

X
A

M

. Thus
A

X
≤µce 

A

B
 in

A

M
  

Conversely, Suppose that 
A

X
 ≤µce 

A

B
 in

A

M
, Since

A

X
A

B

   
X

B
 and 

A

X
A

M

   
X

M
, by (the third 

isomorphism theorem) Then 
X

B
 <<µ 

X

M
 . Thus X ≤µce B in M. 

Proposition 2.5:  Let M be an R- module and let A ≤ B ≤ C ≤ M. Then A≤µce C in M if and only if A 

≤µce B in M and B≤µce C in M 

Proof: Suppose that A≤µce C in M. Since
A

B
 ≤ 

A

C
 ≤ 

A

M
 , then

A

B
 <<µ 

A

M
and hence A ≤µce B in M. 

Now, define g: 
A

M
 

B

M
 by g (m + A)= m + B for all mM. early g is an epimorphosis. Since A≤µce 

C in M, hence g (
A

C
) = 

B

C
 <<µ

B

M
. Thus B≤µce C in M 

Conversely, assume that A ≤µce B in M and B≤µce C in M, to show that A≤µce C in M. Let
A

M
 =  

A

C
 +

A

U
 , 

U

M
is cosingular, then M = C + U and hence 

B

M
=

B

UC 
=

B

C
+

B

BU 
 . Since 

U

M
 is cosingular , 

then 
BU

M


 is cosingular . But 

B

C
 <<µ 

B

M
 , therefore 

B

M
 = 

B

BU 
 and hence M = U + B , then 

A

M
 

=
A

U
 + 

A

B
 . Since

A

B
 <<µ 

A

M
 and 

U

M
 is cosingular, then 

A

M
 =

A

U
 . Thus M = U. 

Proposition  2. 6:  Let M be an R- module. If A ≤µce B in M and X≤µce C in M, then A + X ≤µce B + C 

in M 

Proof: Suppose that A ≤µce B in M and X≤µce C in M. To show that A + X ≤µce B + C in M, let f: 
A

M
 


XA

M


 be a map defined by f (m + A) = m + (A+X) for each mM and g : 

X

M


XA

M


 be a 

map defined by g (m + X) = m + (A+X) for each mM. Clearly each f and g are epimorphosis. Since 

A

B
 <<µ 

A

M
 and 

X

C
 <<µ 

X

M
 , then  f ( 

A

B
 ) = 

)(

)(

XA

XB




<<µ 

XA

M


 and g ( 

X

C
) = 

)(

)(

XA

XC




  <<µ 

XA

M


 , by [3, prop. (2.14)]  andnhence 

)(

)(

XA

XB




 + 

)(

)(

XA

XC




 = 

)(

)(

XA

CB




 <<µ 

XA

M


  , by 

[3,prop. (2.14)]. Thus A + X ≤µce B + C in M 

Proposition  2.7: Let M be an R- module. If A ≤µce B in M and X ≤ M , then A+X ≤µce B+X in M. The 

converse is true if X<<µ M. 

Proof: Assume that A ≤µce B in M and X ≤ M. Since X ≤µce X in M, then A+X ≤µce B+X in M , by 

prop. (2.6). 
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Conversely, Suppose that A+X ≤µce B+X in M and X<<µ M. To show that A ≤µce B in M, let 
A

M
 = 

A

B
 

+
A

U
 , 

U

M
is cosingular, then M = B+U, hence

XA

M


=

)(

)(

XA

XB




+

)(

)(

XA

XU




. Since 

U

M
is cosingular, 

then 
XU

M


 is cosingular. But 

)(

)(

XA

XB




 <<µ 

XA

M


, therefore 

XA

M


 = 

)(

)(

XA

XU




 and hence M = 

U+X. Since 
U

M
 is cosingular and X<<µ M, then M = U. Thus A ≤µce B in M 

Proposition 2.8: Let M be an R- module and let X<<µ M. If A ≤µce B in M , then A ≤µce B+X in M. 

Proof: Suppose that A ≤µce B in M and X<<µ M. To show that A ≤µce B+X in M let 
A

M
 = 

A

XB 
 +

A

U
, 

U

M
 is cosingular. Hence M = B+X+U and 

BU

M


is cosingular. Since X<<µ M, then M = B+U, 

A

M
=

A

B
+

A

U
. Buto

A

B
 <<µ 

A

M
 and

U

M
 is cosingular, therefore

A

M
 = 

A

U
, hence M = U. Thus A ≤µce 

B+X in M. 

Proposition 2.9: Let M and M' be R- modules and let f: M M' be an homomorphism, If A ≤µce B 

inoM , then f (A) ≤µce f (B) in f (M). 

Proof: Suppose that A ≤µce B in M. To show that f (A) ≤µce f (B) in M', Define φ: 
A

M
 

)(

)'(

Af

Mf
 by φ 

(m + A) = f (m) + f (A), for each mM, Since
A

B
 <<µ 

A

M
 , then φ (

A

B
 ) = 

)(

)(

Af

Bf
<<µ φ (

A

M
) = 

)(

)(

Af

Mf
. Thus we get the result. 

Proposition 2.10: Let A, B, C and X be sub modules of an R-module M. The following statements are  

equivalent 

(1) If A ≤µce A+B in M, then AB≤µce B in M. 

(2) If A ≤µce B in M and Y ≤ M, then AY ≤µce BY in M. 

(3) If A ≤µce B in M and X ≤µce C in M, then AX ≤µce BC in M. 

Proof: (1) (2) Let A ≤µce B in M and Y ≤ M. Since A + (BY) ≤ B, then A≤µce A + (BY) in M 

by prop (2.5) Hence A (BY) ≤µce BY in M, by (1). This implies that AY ≤µce BY in M. 

(2) (3) Let A ≤µce B in M and X ≤µce C in M. By (2) , AX ≤µce BX in M. Also X≤µce C in M 

and B ≤ M , then BX≤µce BC in M. Thus AX≤µce BC in M , by prop. (2.5). 

(3) (1) Let A ≤µce A+B in M. Since B≤µce B in M , then by (3) AB ≤µce (A+B)B. Thus AB 

≤µce B in M. 

Proposition 2.11: LetnM be annR- modulenand let A ≤ B ≤ M. If B = A+S andnS<<µ M , then A≤µce 

B innM. 

Proof:  Assumemthat B = A+S anmS<<µ M. Let 
A

M
= 

A

B
 + 

A

U
, 

U

M
 is cosingular, then M = B+U = 

A+S+U = S+U. ButxS<<µ M and 
U

M
is cosingular, therefore M = U. Thus A≤µce B in M. 

Lemma 2.12: Let M be a module such that M = A + B and M = (AB) + C for sub modules A, B 

and C of M. Then M = (BC)+ A = (AC) + B. 

Proof: See [5, Lemmad1.2] 

Theorem 2.13: Let M = A + B be a module with 
B

M
 cosingular. Let B ≤ C and B≤µce C in M. Then  

AB ≤µce AC innM. 
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Proof: Let 
)( BA

M


 = 

)(

)(

BA

CA




 + 

)( BA

U


 , 

U

M
is cosingular , then M = (AC) + U , implies 

that M = C + U. By Lemma (2.12) , M = (AU) + C , 
B

M
 = 

B

BUA  )(
 + 

B

C
 . Since

B

M
is 

cosingular, then  
B

BUA  )(
 is cosingular. But 

B

C
 <<µ 

B

M
 , therefore M = (AU) + B. Again 

by Lemma (2.12) , M = (AB) + U = U. Thus
)(

)(

BA

CA




 <<µ 

)( BA

M


. 

    Let M be an R- module and let A , B be sub modules of M, B is called µ- supplement of A in M , if 

M = A+B and AB <<µ B. If every sub module of M has a µ- supplement, then M is called µ- 

supplemented module. See [6]. 

    We end this section by the following proposition. 

Proposition 2.14: Let A, B and C be sub modules of an R- module M. If A is a µ-supplement of B in 

M and B is a µ-supplement of C in M with A ≤ C , then A ≤µce C in M. 

Proof: Assume that A is a µ-supplement of B in M and Bois a µ-supplement of C in M with A ≤ C. To 

show that A ≤µce C in M, let
A

M
= 

A

C
+

A

Y
, where

Y

M
is cosingular, then M = C+Y. By modular law Y = 

YM = Y (A+B) = A+(YB). Hence M = C+Y = C+ A+(YB). So by (the second 

isomorphism theorem)
BY

B


  

Y

YB 
≤

Y

M
 But

Y

M
isocosingular, therefore 

BY

B


is cosingular. 

Since B is a µ-supplement of C in M that is BC<<µ B, then YB = B and hence Y = A+B = M. 

Thus A ≤µce C in M.   

3. µ-Lifting modules 

Definition 3.1: An R- module M is called µ-lifting module if for every sub module A of M, there 

exists a sub module D of A such that M = DD' , D' ≤ M and AD'<<µ D' 

Remarks and Examples 3.2: 

(1) It is clear that every lifting module is µ-lifting. The converse is not true in general, see [3, 

example (3.17)] 

(2) Let M be a cosingular module. Then M is lifting if and only if M is µ-lifting module. 

(3) Every µ-hollow is µ-lifting. The converse is not true in general. For example Z6 as Z- module. 

(4) Z4 as Z- module is µ-lifting. 

(5) Z as Z- module is not µ-lifting. 

(6) Every µ-lifting is  -µ-supplemented module. The converse is not true in general, for example 

Z8Z2 as Z- module. 

(7) µ- lifting modules are closed under isomorphism. 

    The following propositions give characterizations of µ-lifting modules. 

Proposition 3. 3: Let M be an R- module. Then M is µ-lifting if and only if for every sub module A of 

M , there exists a sub module D of M such that M = D  D' , D' ≤ M and AD'<<µ M. 

Proof: Clear. 

 

Proposition 3. 4: Let M be an R-module. The following statements are equivalent. 

(1) M is µ-lifting module. 

(2) Every sub module A of M can be written as A = DS , where D is a direct summand of M and 

S<<µ M. 

(3) For every sub module A of M, there exists a direct summand D of M such that D ≤ A and D≤µce A 

in M . 

Proof: (1) (2) Suppose that M is a µ-lifting module and let A be a sub module of M , then there 

exists a sub module D of A such that M = DD' , D' ≤ M and AD' <<µ M , by prop. (3.3). Now, A 

= AM = A ( DD') = D ( AD'). Thus we get the result. 
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(2) (3) Let A be a sub module of M. By (2) , A = DS , where D is a direct summand of M and 

S<<µ M. We have to show that 
D

A
 <<µ 

D

M
 , let 

D

M
 = 

D

A
 + 

D

U
 , 

U

M
is cosingular, then

D

M
 = 

D

SD 
+ 

D

U
 and hence M = D+S+U = S+U. But S<<µ M, therefore M =U. 

(3) (1) Let A be a sub module of M. By (3), there exists a direct summand D of M such that D ≤ A 

and D ≤ µce A in M . We want  to show that AD' <<µ D'  , let D' = (AD')+U , 
U

D '
is cosingular. 

Since M = D+D' = D+(AD')+U , then
D

M
= 

D

UDAD  )'(
= 

D

DAD )'( 
+ 

D

DU 
 . 

Since D≤ D+(AD')≤ A and D≤µce A in M , then D≤µce D+(AD') in M , by prop. (2.5)  and

DU

M


 = 

DU

DD



 '
=

DU

DUD



 ')(
   

)('

'

DUD

D


= 

U

D '
 which is cosingular, hence

D

M
=

D

DU 
, 

implies that M = U+D and clearly that UD = 0, then M = UD, that is U = D'. Thus M is a µ-

lifting module. 

Theorem 3.5: Let M be an R-module. The following statements are equivalent. 

(1) M is µ-lifting module. 

(2) Every sub module A of M has a µ-supplement B in M such that AB is a direct summand of A. 

Proof: (1) (2) Let M be µ-lifting module and let A be a sub module of M. By prop. 3. 4, there exists 

a direct summand D of M such that D ≤ A and D≤µce A in M. Now, A = AM = A  (DD') =        

D  (AD'). Since D ≤ A, then M = A+D', and AD'<<µ D'. Hence D' is µ-supplement of A and A

D' is a direct summand of A. 

(2) (1) Let A be a sub module of M . By (2) A has a µ-supplement B in M such that AB is a 

direct summand of A. Then M = A+B, AB <<µ B and A = (AB)Y , Y≤ A. Since M = A+B = 

(AB) + Y+ B = Y+B and ABY = BY ={0} , then M = BY. It is sufficient to show that 

Y≤µce A in M. Let 
Y

M
 = 

Y

A
+

Y

U
 , 

U

M
is cosingular, then M = A+U = (AB) + Y + U = (AB) + 

U. Since AB<<µ M, then M = U, implies that 
Y

A
 <<µ 

Y

M
 . Thus M is µ-lifting module. 

    The following proposition gives another characterization of µ-lifting module. 

Proposition 3.6:  Let M be an R-module. Then M is µ-lifting module if and only if for every sub 

module A of M , there exists an idempotent  f   End(M) such that     f (M) ≤ A and (I-f )(A) <<µ (I-f 

)(M). 

Proof: ( ) Assume that M is a µ-lifting module and let A be a sub module of M. By characterization 

(3.5) A has a µ-supplement B in M such that AB is a direct summand of A , then M = A+B , A
B<<µ B and A = (AB)X , X≤ A. Note M = A+B = (AB)+X +B = X+B and ABX = B

X = {0} , implies that M = BX. Now define the following map   f : M X , it is clear that f  is an 

idempotent and f (M) ≤ X ≤ A . It is sufficient to prove that (I-f) (A) <<µ (I-f)(M). One can easily 

show that (I-f ) (A)  = A (I-f ) (M) = AB<<µ B = (I-f ) (M). 

() Let A be a sub module of M. By our assumption, there exists an idempotent f End (M) such 

that f (M) ≤ A and (I-f) (A) <<µ (I-f) (M) , clearly that M = f (M) (I-f)(M) and A (I-f )(M) = (I-f ) 

(A) <<µ (I-f) (M). Thus M is µ-lifting. 

Proposition 3.7: Let M be an indecomposable module. Then M is µ-lifting if and only if M is µ-

hollow 

Proof: Let M be a µ-lifting indecomposable module and let A be a proper sub module of M. Since M 

is µ-lifting, there exists a sub module D of A such that M = DD' and AD' <<µ D'. But M is 

indecomposable, therefore either D = M or D = 0. If D = M, then A= M which is a contradiction, then 

D = 0 and hence M = D', implies AD' =A <<µ D' = M. Thus M is µ-hollow. The converse is clear. 

Proposition 3.8:  Any direct summand of µ-lifting is µ-lifting 
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Proof: Let M = M1M2 be a µ-lifting and let A be a sub module of M1, then A = DS, where D is a 

direct summand of M and S<<µ M, by characterization (3.4). Since D is a direct summand of M 

contained in M1, then D is a direct summand of M1 and S<<µ M, S ≤ M1 andoM1 is a direct summand 

of M, then S<<µ M1. Thus M1 is µ-lifting. 

Note: Let A be a sub module of a µ-lifting R-module M. Then
A

M
 need not be µ-lifting. For example, 

Let M = Z8Z8 as Z- module, clearly M is µ-lifting module. Let   I: Z8Z8Z2Z8 is an 

epimorphism. So 
)(

88

IKer

ZZ






  Z2Z8 which is not µ-lifting 

     Next, we give some various conditions under which the quotient of µ-lifting module is µ-lifting. 

    Recall that an R- module M is called distributive if for all A, B and C ≤M, A (B+C) = (A
B)+(AC). See [7]. 

Proposition 3.9: Let M be a µ- lifting R- module and let A be a sub module of M. Then 
A

M
is µ-

lifting in each of the following cases 

(1) For every direct summand D of M, 
A

AD 
is a direct summand of

A

M
. 

(2) M is distributive module. 

Proof: (1) Suppose that M is µ-lifting R- module and let 
A

X
  be a sub module of

A

M
, then there exists 

D ≤ X such that M = DD', D' ≤ M and   ≤µce X in M. By hypothesis, 
A

AD 
  is a direct summand 

of
A

M
 . By prop. (2.4), 

A

AD 
 ≤µce 

A

X
 in 

A

M
. Thus 

A

M
is µ-lifting. 

(2) Suppose that M is distributive module, we use (1) to show that 
A

M
 is µ-lifting. Let D be a direct 

summand of M, M = DD', D' ≤ M, then 
A

M
 = 

A

DD '
= 

A

AD 
+

A

AD '
and

A

AD 


A

AD '
=

A

AADDAD ])[(')( 
=

A

AADDA  )()'(
=A. Hence 

A

AD 
is a direct summand 

of
A

M
. So, by (1) M is µ-lifting module. 

     Let M be an R- module. Recall that a sub module A of M is called a fully invariant if g (A) ≤ A , 

for every g End(M) and M is called duo module if every sub module of M is fully invariant. See [8]. 

Lemma 3.10: [8, lemma 5-4]: Let M be an R-module, if M =M1M2 , then 
A

M
 = 

A

MA 1


A

MA 2
, for every fully invariant sub module A of M. 

Proposition 3.11: Let M be a µ-lifting module if A is a fully invariant sub module of M, then 
A

M
 is a 

µ-lifting module. 

Proof: Let 
A

X
  be a sub module of

A

M
. Since M is µ-lifting, there exists a sub module D of X such 

that D≤µce X in M and M = DD', D'≤M. By lemma (3.10) we have 
A

M
=

A

AD 


A

AD '
, let f: 

D

M


AD

M


 be a map defined by f (m + D) = m + D + A, mM, it is clear that f is an 
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epimorphosis. Now, since D≤µce X in M, 
D

X
<<µ 

D

M
 and f (

D

X
 ) <<µ f (

D

M
), by [3, prop. (2.14)] 

which implies that 
AD

X


 <<µ 

AD

M


 , then D+A ≤µce  X in M and hence 

A

AD 
≤µce 

A

X
 in 

A

M
, 

by prop. (2.4). Thus 
A

M
 is a µ-lifting module. 

Lemma 3.12: Let M = A+B be a µ-lifting module, if 
A

M
 is cosingular, then there exists a direct 

summand D of M such that M = A+D and D ≤µce B in M. 

Proof: Let M = A+B be a µ-lifting and assume that 
A

M
 is cosingular.  Since B ≤ M and M is µ-lifting 

, there exists a direct summand D of M such that D≤µce B in M. Then
D

M
 = 

D

BA 
 = 

D

DA 
+

D

B
. 

Since
A

M
is cosingular, then

DA

M


 is cosingular and hence 

D

DA
D

M


 is cosingular, by third 

isomorphism theorem. But 
D

B
 <<µ 

D

M
 , then 

D

M
 = 

D

DA 
which implies that M = A+D. So, we get 

the result. 

      Let M be an R- module. M is called amply µ-supplemented if for any sub modules A and B of M 

with M = A+B , there exists a µ-supplement X of A contained in B. See [6]. 

Proposition 3.13: Let M be an amply µ-supplemented module such that every µ-supplement sub 

module of M is a direct summand, then M is a µ-lifting. 

Proof: Suppose the M is amply µ-supplemented module and let A be a sub module of M, then A has a 

µ- supplement B in M , hence M = A+B and AB <<µ B. Since M is amply µ-supplemented and M = 

A+B, then A contains a µ-supplement X of B. By our assumption, X is a direct summand of M, so M 

= XY, Y ≤ M. Now, A = AM = A (X+Y) = X + (AY), by modularity. Since X is a µ-

supplement of B in M, then M = X+B, hence A = AM = A (X+B) = X+ (AB). Now, consider 

the projection map P : M Y , P(A) = P (X+(AY)) = AY and also P(A) = P(X+(AB)) = P(A

B), hence P(AB) = AY Since AB <<µ M , then P(AB) = AY<<µ Y. Thus M is µ-

lifting module. 

   Let M be an R- module and let A be a sub module of M , we say that A is a µ-coclosed sub module 

of M denoted by (A≤µcc M) if whenever 
X

A
 is cosingular and X≤µce A in M for some sub module X of 

A , we have X = A. See [3]. 

Proposition  3.14:  Let M be a µ-lifting module. Then every cosingular µ-coclosed sub module of M 

is a direct summand. 

Proof: Let A be a cosingular µ-coclosed sub module of M. Since M is µ-lifting, there exists a sub 

module D of A such that M = DD' , D' ≤ M and AD' <<µ M. Since A is µ-coclosed sub module of 

M, Then AD' <<µ A, by [6, prop. (3.4)]. Now, A = AM = A (D+D') = D + (AD') and
D

A
 is 

cosingular , hence A = D. Thus A is a direct summand of M. 

Remark A direct sum of µ-lifting modules need not be µ-lifting module as the following example 

shows. 

     Let M = Z8Z2 as Z- module. It is clear that Z8 and Z2 are µ-lifting Z- modules, but M is not µ- 

lifting module.  

    Now, we give various conditions under which a direct sum of µ- lifting modules is µ- lifting. 

Proposition 3.15: Let M = M1M2 be an R- module such that ann (M1) + ann(M2) = R, ifiM1 and M2 

are µ-lifting , then M is µ-lifting.  
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Proof: Let A be a sub module of M. By [9, prop. 4.2], A = A1A2, where A1 ≤ M1 and A2 ≤ M2. 

SinceoM1 and M2 are µ-lifting modules, then A1 = B1S1 andoA2 = B2S2, whereoB1 and B2 are 

direct summands of M1 andoM2 respectively and S1, S2 are µ-small sub modules of M1 and M2 

respectively, by prop. 3.4. Note, A = A1A2 = B1S1B2S2 = (B1B2) (S1S2)  , where B1

B2 is a direct summand of M andmS1S2 is µ-small sub module of M , by [3,prop. (2.14)]. Thus M 

is µ-lifting module. 

Proposition 3.16: Let M = M1M2 be a duo module such that M1 andoM2 are µ-lifting modules, then 

M is µ-lifting. 

Proof:  Let M = M1M2 be a duo module and let A be a sub module of M, then A is a fully  

invariant. Hence A = AM = A ( M1M2) = (AM1) ( AM2). Since M1oandoM2 are µ-

lifting modules, then AM1 = A1A2 and AM2= A3A4, whereoA1 and A3 are direct summands 

of M1 andoM2 respectively and A2 , A4 are µ-small sub modules ofoM1 and M2 respectively, by prop. 

(3.4). It is clear that A1A3 is a direct summand of M and A2A4 is µ-small sub module of M. Thus 

M is µ-lifting. 

    Let M1 and M2nbe R-modules. Recall that M1 ismM2-projectiveoif for every sub module A of 

M2mand any homomorphism f : M1
A

M 2 , there is a homomorphism: M1M2 such that π g = f, 

where π : M2
A

M 2 is the natural epimorphosis, see [2]. 

 

 

 

         

 

 

 

M1oandoM2 are said to be relatively projective if M1 isyM2- projectiverandvM2 is M1-projective. 

Proposition 3.17: For M = M1M2, whereuM1 be a µ-lifting module and let M2 is M1-projective. 

Then the following statements are equivalent. 

(1) M is µ-lifting module. 

(2) For every sub module A of M such that M A+M1, there exists a direct summand D of M such 

that D≤µce A in M. 

Proof: (1) (2) Clear. 

(2) (1) Let A be a sub module of M and let M = A+M1. SincemM2 is M1-projective, then there 

exists a sub module A1 ≤ A such that M = A1M1, by [10, lemma 5]. ButoM1 is µ-lifting and 
1A

M
= 

1

11

A

MA 
  

11

1

MA

M


= M1, by (the second isomorphisim theorem), therefore 

1A

M
is µ-lifting, so 

there exists a direct summand 
1A

D
of 

1A

M
such that 

1A

D
≤µce 

1A

A
in 

1A

M
. Hence D ≤µce A in M, by prop. 

(2.5). Now, D = DM = D ( A1M1) = A1 (DM1), by modular law. But
1A

D
is a direct 

summand of
1A

M
 , so 

1

11 )(

A

MDA 
 is a direct summand of

1

11

A

MA 
. Hence DM1 is a direct 

summand of M1, by (the second isomorphism theorem). Let M1 = (DM1)Y, for some sub module 

Y of M. Thus M = A1M1=A1 (DM1)Y = DY and hence M is µ-lifting module. 

Proposition (3.18):  LetoM1 andoM2 be µ-lifting modules such that Mi is Mj-projective (i, j = 1, 2). 

Then M = M1M2 is µ-lifting. 
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Proof: Assume that M1 andnM2 are µ-lifting modules. To show that M is µ-lifting, let A be a sub 

module of M, Consider the sub module M1  (A+M2) of M1. Since M1 is µ-lifting, there exists 

decomposition M1 = A1B1 such that A1≤ M1  (A+M2) and [M1  (A+M2)]B1 = B1 (A+M2) 

<<µ B1. Therefore M = M1M2 = A1B1M2 = M1  (A+M2) + B1+M2 = (A+M2)+B1+M2 = 

A+(M2B1). Since M2  (A+B1) ≤ M2 and M2 is µ-lifting , there exists a decomposition M2 = A2
B2 such that A2 ≤ M2 (A+B1) andoB2 (M2 (A+B1)) = B2 (A+B1) <<µ B2. We have M = A + (B1

M2) = A+B1+A2+B2 = A + (B1B2), so M = (A1A2) (B1B2). Since Mi is Mj- projective, 

thenoM1 is Mj-projective and M2 is Mj-projective (j = 1, 2) and hence A1 is Bj-projective and A2 is Bj-

projective (j = 1,2) , by [11 , prop. 2-1-6]. So by [11, prop. 2-1-7] A1 is B1B2 –projective and A2 is 

B1B2 -projective. HenceoA1A2 is B1B2 -projective, by [11, prop. 2-1-6]. Then there exists Y ≤ 

A such that M = Y  (B1B2) by [10, lemma5]. Since B1  (A+M2) <<µ B1 and B2  (A+B1) <<µ B2, 

then [B1  (A+M2)  B2  (A+B1)] <<µ B1B2, Since A  (B1B2) ≤ [B1  (A+M2)  B2 

(A+B1)] <<µ B1B2, then A  ( B1B2) <<µ B1B2. Thus M is µ-lifting. 
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