Iraqi Journal of Science, 2019, Vol. 60, No.2, pp: 371-380 DOI: 10.24996/ijs.2019.60.2.17

ISSN: 0067-2904

On **µ**-lifting Modules

Enas Mustafa Kamil^{*}, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let *R* be a ring with identity and let *M* be a left *R*-module. *M* is called μ -lifting modulei f for every sub module *A* of *M*, There exists a direct summand *D* of *M* such that $M = D \bigoplus D'$, for some sub module *D'* of *M* such that $A \le D$ and $A \cap D' <<_{\mu} D'$. The aim of this paper is to introduce properties of μ -lifting modules. Especially, we give characterizations of μ -lifting modules. On the other hand, the notion of amply μ -supplemented is studied as a generalization of amply supplemented modules, we show that if *M* is amply μ -supplemented such that every μ -supplement sub module of *M* is a direct summand, then *M* is μ -lifting module. Finally, we give some conditions under which the quotient and direct sum of μ -lifting modules is μ -lifting.

Keywards: μ -coessential sub modules, μ -lifting modules.

حول مقاسات الرفع من النمط−µ إيناس مصطفى كامل*، وسن خالد

قسم الرياضيات، كلية العلوم ، جامعة بغداد، بغداد، العراق

الخلاصة

1. Introduction

Throughout this paper all rings have an identity and all modules will be until left *R*- module Let *M* be a module and let *A* be a sub module of *M*, *A* is called small in *M* (notation A << M) if $M \neq A + B$, for any proper sub module *B* of *M*, see [1] and [2]. As a generalization of small sub modules we introduced the concept of μ - small sub modules, *A* sub module *A* of *M* is called μ - small sub module of *M*

(denoted by $A \ll_{\mu} M$) if whenever M = A + X, $\frac{M}{X}$ is cosingular, then M = X. See [3]. Let $A \le B \le M$.

if $\frac{B}{A} \ll \frac{M}{A}$, then *A* is called a coessential sub module of *B* in M. We introduce μ -coessential sub module as a generalization of coessential sub module as follows. Let *M* be an *R*- module and let *X* and

A be sub modules of M such that $X \le A \le M$, then X is Following, Oshiro [4], An R- module M is called lifting module if for every sub module A of M, there exists a direct summand D of M such that D is coessential sub module of A in M. This concept leads us to introduce the following concept. An R- module M is called μ -lifting module if for every sub module A of M, there exists a direct summand D of M such that $D \le \mu_{\text{Lee}} A$ inM. In this paper, we investigate characterizations and properties of μ -lifting modules.

In section2. We define μ -coessential sub modules. Also we list some of their important properties that are related to our work.

In section3. We define the notion of μ -lifting modules as a generalization of lifting modules with some examples and characterizations and basic properties. Also, we investigate various conditions for a direct sum of μ -lifting modules to be μ -lifting.

2. μ-Coessential submodules

Definition 2.1: Let M be an R- module and let X and A be sub modules of M such that $X{\leq}~A{\leq}M$,

then X is called **µ-coessential sub module** of A in M (briefly $X \leq_{\mu ce} A$ in M) if $\frac{A}{X} \ll_{\mu} \frac{M}{X}$.

Examples and Remarks 2.2

(1) Consider Z_8 as Z- module. It is easy to see that $\{\overline{0}, \overline{4}\} \leq_{\mu ce} \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ in Z_8 .

(2) Considew Z₆ as Z- module. It is clear that
$$\{\overline{0}\}$$
 is not μ -coessential sub module of $\{\overline{0},\overline{3}\}$.

Suppose that
$$\frac{\{0,3\}}{\{\overline{0}\}} \ll_{\mu} \frac{Z_6}{\{\overline{0}\}}$$
, it is easy to see that $\frac{\{0,3\}}{\{\overline{0}\}} \cong \{\overline{0},\overline{3}\}$ and $\frac{Z_6}{\{\overline{0}\}} \cong Z_6$ and hence $\{\overline{0},\overline{3}\}$

 $\leq_{\mu} Z_6$ which is a contradiction.

(3) It is clear that μ -coessential sub module is a generalization of coessential sub module, but the converse is not true in general. For example. Consider Z_6 as Z_6 -module. Since $\{\overline{0}, \overline{3}\} <<_{\mu} Z_6$, then $\{\overline{0}\} \leq_{\mu ce} \{\overline{0}, \overline{3}\}$ in Z_6 but $\{\overline{0}\}$ is not coessential sub module of $\{\overline{0}, \overline{3}\}$ in Z_6 . Note that they are equivalent when M is cosingular module

(4) Let *M* be an *R*- module. Then $A \ll_{\mu} M$ if and only if $\{0\} \leq_{\mu ce} A$ in *M*.

The following proposition gives a characterization of μ -coessential sub module.

Proposition 2.3: Let *M* be an *R*- module and let $A \le B \le M$ where $\frac{M}{A}$ is cosingular, then $A \le_{\mu ce} B$ in *M* if and only if M = B + X implies that M = A + X, for every sub module *X* of *M*.

Proof: Suppose that $A \leq_{\mu ce} B$ in M and let M = B + X, where $X \leq M$, then $\frac{M}{A} = \frac{B}{A} + \frac{X + A}{A}$. Since

$$\frac{M}{A} \text{ is cosingular, then } \frac{M}{A+X} \text{ is cosingular. But } \frac{\frac{M}{A}}{\frac{A+X}{A}} \cong \frac{M}{A+X} \text{ , by third isomorphism theorem,}$$

therefore
$$\frac{\frac{M}{A}}{\frac{A+X}{A}}$$
 is cosingular. But $\frac{B}{A} \ll_{\mu} \frac{M}{A}$, therefore $\frac{M}{A} = \frac{X+A}{A}$. Thus $M = X + A$.

Conversely, let $\frac{M}{A} = \frac{B}{A} + \frac{U}{A}$, where $A \le U$ with $\frac{M}{U}$ is cosingular. Then M = B + U and $\frac{M}{U}$ is cosingular. So, by our assumption, we get M = A + U. But $A \le U$, therefore M = U. Thus $A \le_{\mu ce} B$ in M

The following propositions give some properties of μ -coessential sub modules which are needed later.

Proposition 2.4: Let *M* be an *R*- module and let $A \le X \le B \le M$. Then $X \le_{\mu ce} B$ in *M* if and only if $\frac{X}{A}$

$$\leq_{\mu ce} \frac{B}{A} \text{ in } \frac{M}{A}$$
.

Proof: Assume that $X \leq_{\mu ce} B$ in M. Since $\frac{\frac{B}{A}}{\frac{X}{A}} \cong \frac{B}{X}$ and $\frac{\frac{M}{A}}{\frac{X}{A}} \cong \frac{M}{X}$, by (the third isomorphism

theorem) Then $\frac{\frac{B}{A}}{\frac{X}{A}} \ll_{\mu} \frac{\frac{M}{A}}{\frac{X}{A}}$. Thus $\frac{X}{A} \leq_{\mu ce} \frac{B}{A}$ in $\frac{M}{A}$

Conversely, Suppose that $\frac{X}{A} \leq_{\mu ce} \frac{B}{A}$ in $\frac{M}{A}$, Since $\frac{\frac{D}{A}}{\frac{X}{A}} \cong \frac{B}{X}$ and $\frac{\frac{M}{A}}{\frac{X}{A}} \cong \frac{M}{X}$, by (the third

isomorphism theorem) Then $\frac{B}{X} \ll_{\mu} \frac{M}{X}$. Thus $X \leq_{\mu ce} B$ in M.

Proposition 2.5: Let M be an R- module and let $A \le B \le C \le M$. Then $A \le_{\mu ce} C$ in M if and only if $A \le_{\mu ce} B$ in M and $B \le_{\mu ce} C$ in M

Proof: Suppose that $A \leq_{\mu ce} C$ in M. Since $\frac{B}{A} \leq \frac{C}{A} \leq \frac{M}{A}$, then $\frac{B}{A} <<\!\!\!<_{\mu} \frac{M}{A}$ and hence $A \leq_{\mu ce} B$ in M.

Now, define g: $\frac{M}{A} \rightarrow \frac{M}{B}$ by g (m + A)= m + B for all m \in M. early g is an epimorphosis. Since A $\leq_{\mu ce}$ C in M, hence g $(\frac{C}{A}) = \frac{C}{B} <<_{\mu} \frac{M}{B}$. Thus B $\leq_{\mu ce}$ C in M

Conversely, assume that $A \leq_{\mu ce} B$ in M and $B \leq_{\mu ce} C$ in M, to show that $A \leq_{\mu ce} C$ in M. Let $\frac{M}{A} = \frac{C}{A} + \frac{U}{A}$, $\frac{M}{U}$ is cosingular, then M = C + U and hence $\frac{M}{B} = \frac{C+U}{B} = \frac{C}{B} + \frac{U+B}{B}$. Since $\frac{M}{U}$ is cosingular, then $\frac{M}{U+B}$ is cosingular. But $\frac{C}{B} <<_{\mu} \frac{M}{B}$, therefore $\frac{M}{B} = \frac{U+B}{B}$ and hence M = U + B, then $\frac{M}{A} = \frac{U}{A} + \frac{B}{A}$. Since $\frac{B}{A} <<_{\mu} \frac{M}{A}$ and $\frac{M}{U}$ is cosingular, then $\frac{M}{A} = \frac{U}{A}$. Thus M = U. **Proposition 2. 6:** Let M be an R- module. If $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M, then $A + X \leq_{\mu ce} B + C$.

Proposition 2. 6: Let M be an R- module. If $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M, then $A + X \leq_{\mu ce} B + C$ in M

Proof: Suppose that $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M. To show that $A + X \leq_{\mu ce} B + C$ in M, let f: $\frac{M}{A}$ $\rightarrow \frac{M}{A + X}$ be a map defined by f (m + A) = m + (A+X) for each m \in M and g : $\frac{M}{X} \rightarrow \frac{M}{A + X}$ be a map defined by g (m + X) = m + (A+X) for each m \in M. Clearly each f and g are epimorphosis. Since $\frac{B}{A} <<_{\mu} \frac{M}{A}$ and $\frac{C}{X} <<_{\mu} \frac{M}{X}$, then f ($\frac{B}{A}$) = $\frac{(B + X)}{(A + X)} <<_{\mu} \frac{M}{A + X}$ and g ($\frac{C}{X}$) = $\frac{(C + X)}{(A + X)} <<_{\mu} \frac{M}{A + X}$, by [3, prop. (2.14)] and hence $\frac{(B + X)}{(A + X)} + \frac{(C + X)}{(A + X)} = \frac{(B + C)}{(A + X)} <<_{\mu} \frac{M}{A + X}$, by [3, prop. (2.14)]. Thus $A + X \leq_{\mu ce} B + C$ in M

Proposition 2.7: Let M be an R- module. If $A \leq_{\mu ce} B$ in M and $X \leq M$, then $A+X \leq_{\mu ce} B+X$ in M. The

converse is true if $X \ll_{\mu} M$. **Proof:** Assume that $A \leq_{\mu ce} B$ in M and $X \leq M$. Since $X \leq_{\mu ce} X$ in M, then $A + X \leq_{\mu ce} B + X$ in M, by prop. (2.6). Conversely, Suppose that $A+X \leq_{\mu ce} B+X$ in M and $X \ll_{\mu} M$. To show that $A \leq_{\mu ce} B$ in M, let $\frac{M}{A} = \frac{B}{A}$ + $\frac{U}{A}$, $\frac{M}{U}$ is cosingular, then M = B+U, hence $\frac{M}{A+X} = \frac{(B+X)}{(A+X)} + \frac{(U+X)}{(A+X)}$. Since $\frac{M}{U}$ is cosingular, then $\frac{M}{U+X}$ is cosingular. But $\frac{(B+X)}{(A+X)} \ll_{\mu} \frac{M}{A+X}$, therefore $\frac{M}{A+X} = \frac{(U+X)}{(A+X)}$ and hence M = U+X. Since $\frac{M}{U}$ is cosingular and X << μ M, then M = U. Thus A $\leq_{\mu ce} B$ in M Proposition 2.8: Let M be an R- module and let X << μ M. If A $\leq_{\mu ce} B$ in M, then A $\leq_{\mu ce} B+X$ in M. Proof: Suppose that A $\leq_{\mu ce} B$ in M and X << μ M. To show that A $\leq_{\mu ce} B+X$ in M let $\frac{M}{A} = \frac{B+X}{A} + \frac{U}{A}$, $\frac{M}{U}$ is cosingular. Hence M = B+X+U and $\frac{M}{U+B}$ is cosingular. Since X << μ M, then M = B+U, $\frac{M}{U+B} = \frac{W}{U}$ hence M = U. Thus A $\leq_{\mu} D$ hence A = U. Thus A $\leq_{\mu} D$ hence M = U. Thus A $\leq_{\mu} D$ hence

 $\frac{M}{A} = \frac{B}{A} + \frac{U}{A}$. But $\frac{B}{A} \ll_{\mu} \frac{M}{A}$ and $\frac{M}{U}$ is cosingular, therefore $\frac{M}{A} = \frac{U}{A}$, hence M = U. Thus A $\leq_{\mu ce}$ B+X in M.

Proposition 2.9: Let M and M' be R- modules and let f: $M \to M'$ be an homomorphism, If $A \leq_{\mu ce} B$ in M, then $f(A) \leq_{\mu ce} f(B)$ in f(M).

Proof: Suppose that $A \leq_{\mu ce} B$ in M. To show that $f(A) \leq_{\mu ce} f(B)$ in M', Define $\varphi: \frac{M}{A} \to \frac{f'(M)'}{f(A)}$ by φ (m + A) = f (m) + f (A), for each $m \in M$, Since $\frac{B}{A} \ll_{\mu} \frac{M}{A}$, then $\varphi(\frac{B}{A}) = \frac{f(B)}{f(A)} \ll_{\mu} \varphi(\frac{M}{A}) =$

 $\frac{f(M)}{f(A)}$. Thus we get the result.

Proposition 2.10: Let A, B, C and X be sub modules of an R-module M. The following statements are equivalent

(1) If $A \leq_{\mu ce} A + B$ in M, then $A \cap B \leq_{\mu ce} B$ in M.

(2) If $A \leq_{\mu ce} B$ in M and $Y \leq M$, then $A \cap Y \leq_{\mu ce} B \cap Y$ in M.

(3) If $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M, then $A \cap X \leq_{\mu ce} B \cap C$ in M.

Proof: (1) \Rightarrow (2) Let $A \leq_{\mu ce} B$ in M and $Y \leq M$. Since $A + (B \cap Y) \leq B$, then $A \leq_{\mu ce} A + (B \cap Y)$ in M by prop (2.5) Hence $A \cap (B \cap Y) \leq_{\mu ce} B \cap Y$ in M, by (1). This implies that $A \cap Y \leq_{\mu ce} B \cap Y$ in M. (2) \Rightarrow (3) Let $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M. By (2) $A \cap X \leq_{\mu ce} B \cap Y$ in M. Also $X \leq_{\mu ce} C$ in M.

(2) \Rightarrow (3) Let $A \leq_{\mu ce} B$ in M and $X \leq_{\mu ce} C$ in M. By (2), $A \cap X \leq_{\mu ce} B \cap X$ in M. Also $X \leq_{\mu ce} C$ in M and $B \leq M$, then $B \cap X \leq_{\mu ce} B \cap C$ in M. Thus $A \cap X \leq_{\mu ce} B \cap C$ in M, by prop. (2.5).

 $(3) \Rightarrow (1)$ Let $A \leq_{\mu ce} A+B$ in M. Since $B \leq_{\mu ce} B$ in M, then by $(3) A \cap B \leq_{\mu ce} (A+B) \cap B$. Thus $A \cap B \leq_{\mu ce} B$ in M.

Proposition 2.11: Let M be an R- module and let $A \le B \le M$. If B = A+S and $S <<_{\mu} M$, then $A \le_{\mu ce} B$ in M.

Proof: Assume that B = A+S an $S \ll_{\mu} M$. Let $\frac{M}{A} = \frac{B}{A} + \frac{U}{A}$, $\frac{M}{U}$ is cosingular, then M = B+U = M

A+S+U = S+U. But S<< μ M and $\frac{M}{U}$ is cosingular, therefore M = U. Thus A $\leq_{\mu ce}$ B in M.

Lemma 2.12: Let M be a module such that M = A + B and $M = (A \cap B) + C$ for sub modules A, B and C of M. Then $M = (B \cap C) + A = (A \cap C) + B$. **Proof:** See [5, Lemma 1.2]

Theorem 2.13: Let M = A + B be a module with $\frac{M}{B}$ cosingular. Let B \leq C and B $\leq_{\mu ce}$ C in M. Then A \cap B $\leq_{\mu ce}$ A \cap C in M.

Proof: Let $\frac{M}{(A \cap B)} = \frac{(A \cap C)}{(A \cap B)} + \frac{U}{(A \cap B)}$, $\frac{M}{U}$ is cosingular, then $M = (A \cap C) + U$, implies

that M = C + U. By Lemma (2.12), M = (A \cap U) + C, $\frac{M}{B} = \frac{(A \cap U) + B}{B} + \frac{C}{B}$. Since $\frac{M}{B}$ is cosingular, then $\frac{(A \cap U) + B}{B}$ is cosingular. But $\frac{C}{B} <<_{\mu} \frac{M}{B}$, therefore M = (A \cap U) + B. Again by Lemma (2.12), M = (A \cap B) + U = U. Thus $\frac{(A \cap C)}{(A \cap B)} <<_{\mu} \frac{M}{(A \cap B)}$.

Let M be an R- module and let A , B be sub modules of M, B is called μ - supplement of A in M , if M = A+B and $A \cap B \ll_{\mu} B$. If every sub module of M has a μ - supplement, then M is called μ -supplemented module. See [6].

We end this section by the following proposition.

Proposition 2.14: Let A, B and C be sub modules of an R- module M. If A is a μ -supplement of B in M and B is a μ -supplement of C in M with $A \leq C$, then $A \leq_{\mu ce} C$ in M.

Proof: Assume that A is a μ -supplement of B in M and B is a μ -supplement of C in M with $A \leq C$. To show that $A \leq_{\mu ce} C$ in M, let $\frac{M}{A} = \frac{C}{A} + \frac{Y}{A}$, where $\frac{M}{Y}$ is cosingular, then M = C+Y. By modular law $Y = Y \cap M = Y \cap (A+B) = A+(Y \cap B)$. Hence $M = C+Y = C+A+(Y \cap B)$. So by (the second isomorphism theorem) $\frac{B}{Y \cap B} \cong \frac{B+Y}{Y} \leq \frac{M}{Y}$ But $\frac{M}{Y}$ isocosingular, therefore $\frac{B}{Y \cap B}$ is cosingular. Since B is a μ -supplement of C in M that is $B \cap C \ll_{\mu} B$, then $Y \cap B = B$ and hence Y = A+B = M. Thus $A \leq_{\mu ce} C$ in M.

3. μ -Lifting modules

Definition 3.1: An R- module M is called **\mu-lifting module** if for every sub module A of M, there exists a sub module D of A such that $M = D \oplus D'$, $D' \leq M$ and $A \cap D' \ll_{\mu} D'$

Remarks and Examples 3.2:

(1) It is clear that every lifting module is μ -lifting. The converse is not true in general, see [3, example (3.17)]

- (2) Let M be a cosingular module. Then M is lifting if and only if M is μ -lifting module.
- (3) Every μ -hollow is μ -lifting. The converse is not true in general. For example Z₆ as Z- module.
- (4) Z_4 as Z- module is μ -lifting.
- (5) Z as Z- module is not μ -lifting.

(6) Every μ -lifting is \oplus - μ -supplemented module. The converse is not true in general, for example $Z_8 \oplus Z_2$ as Z- module.

(7) μ - lifting modules are closed under isomorphism.

The following propositions give characterizations of µ-lifting modules.

Proposition 3. 3: Let M be an R- module. Then M is μ -lifting if and only if for every sub module A of M, there exists a sub module D of M such that $M = D \oplus D'$, $D' \leq M$ and $A \cap D' \ll_{\mu} M$. **Proof:** Clear.

Proposition 3. 4: Let M be an R-module. The following statements are equivalent.

(1) M is μ -lifting module.

(2) Every sub module A of M can be written as $A=D\oplus S$, where D is a direct summand of M and $S{<<_{\mu}}M.$

(3) For every sub module A of M, there exists a direct summand D of M such that $D \leq A$ and $D \leq_{\mu ce} A$ in M .

Proof: (1) \Rightarrow (2) Suppose that M is a µ-lifting module and let A be a sub module of M, then there exists a sub module D of A such that $M = D \oplus D'$, $D' \leq M$ and $A \cap D' \ll_{\mu} M$, by prop. (3.3). Now, $A = A \cap M = A \cap (D \oplus D') = D \oplus (A \cap D')$. Thus we get the result.

 $(2) \Rightarrow (3) \text{ Let A be a sub module of M. By (2), A = D \oplus S, where D is a direct summand of M and S<<_{\mu} M. We have to show that <math>\frac{A}{D} <<_{\mu} \frac{M}{D}$, let $\frac{M}{D} = \frac{A}{D} + \frac{U}{D}$, $\frac{M}{U}$ is cosingular, then $\frac{M}{D} = \frac{D+S}{D} + \frac{U}{D}$ and hence M = D+S+U = S+U. But S<<_{\mu} M, therefore M =U. (3) \Rightarrow (1) Let A be a sub module of M. By (3), there exists a direct summand D of M such that D \leq A and D $\leq_{\mu ce}$ A in M. We want to show that $A \cap D' <<_{\mu} D'$, let D' = $(A \cap D')+U$, $\frac{D'}{U}$ is cosingular. Since M = D+D' = D+(A \cap D')+U, then $\frac{M}{D} = \frac{D+(A \cap D')+U}{D} = \frac{D+(A \cap D')}{D} + \frac{U+D}{D}$. Since D \leq D+(A \cap D') \leq A and D $\leq_{\mu ce}$ A in M, then D $\leq_{\mu ce}$ D+(A \cap D') in M, by prop. (2.5) and $\frac{M}{U+D} = \frac{D+D'}{U+D} = \frac{(D+U)+D'}{U+D} \cong \frac{D'}{D' \cap (U+D)} = \frac{D'}{U}$ which is cosingular, hence $\frac{M}{D} = \frac{U+D}{D}$, implies that M = U+D and clearly that U \cap D = 0, then M = U \oplus D, that is U = D'. Thus M is a μ -lifting module. Theorem 3.5: Let M be an R-module. The following statements are equivalent.

(1) M is μ -lifting module.

(2) Every sub module A of M has a μ -supplement B in M such that A \cap B is a direct summand of A.

Proof: (1) \Rightarrow (2) Let M be μ -lifting module and let A be a sub module of M. By prop. 3. 4, there exists a direct summand D of M such that $D \le A$ and $D \le_{\mu ce} A$ in M. Now, $A = A \cap M = A \cap (D \oplus D') = D \oplus (A \cap D')$. Since $D \le A$, then M = A+D', and $A \cap D' <<_{\mu} D'$. Hence D' is μ -supplement of A and A $\cap D'$ is a direct summand of A.

 $(2) \Rightarrow (1)$ Let A be a sub module of M. By (2) A has a μ -supplement B in M such that $A \cap B$ is a direct summand of A. Then M = A+B, $A \cap B \ll_{\mu} B$ and $A = (A \cap B) \oplus Y$, $Y \leq A$. Since $M = A+B = (A \cap B) + Y + B = Y+B$ and $A \cap B \cap Y = B \cap Y = \{0\}$, then $M = B \oplus Y$. It is sufficient to show that

 $Y \leq_{\mu ce} A$ in M. Let $\frac{M}{Y} = \frac{A}{Y} + \frac{U}{Y}$, $\frac{M}{U}$ is cosingular, then $M = A + U = (A \cap B) + Y + U = (A \cap B) + Y$

U. Since $A \cap B <<_{\mu} M$, then M = U, implies that $\frac{A}{Y} <<_{\mu} \frac{M}{Y}$. Thus M is μ -lifting module.

The following proposition gives another characterization of µ-lifting module.

Proposition 3.6: Let M be an R-module. Then M is μ -lifting module if and only if for every sub module A of M, there exists an idempotent $f \in End(M)$ such that $f(M) \leq A$ and $(I-f)(A) \ll_{\mu} (I-f)(M)$.

Proof: (\Rightarrow) Assume that M is a µ-lifting module and let A be a sub module of M. By characterization (3.5) A has a µ-supplement B in M such that $A \cap B$ is a direct summand of A, then M = A+B, $A \cap B <<_{\mu} B$ and $A = (A \cap B) \oplus X$, $X \le A$. Note $M = A+B = (A \cap B)+X + B = X+B$ and $A \cap B \cap X = B \cap X = \{0\}$, implies that $M = B \oplus X$. Now define the following map $f : M \to X$, it is clear that f is an idempotent and $f(M) \le X \le A$. It is sufficient to prove that (I-f) (A) $<<_{\mu}$ (I-f)(M). One can easily show that (I-f) (A) $= A \cap (I-f) (M) = A \cap B <<_{\mu} B = (I-f) (M)$.

(\Leftarrow) Let A be a sub module of M. By our assumption, there exists an idempotent $f \in End (M)$ such that $f(M) \leq A$ and (I-f) (A) \ll_{μ} (I-f) (M), clearly that $M = f(M) \oplus (I-f)(M)$ and $A \cap (I-f)(M) = (I-f)$ (A) $\ll_{\mu} (I-f) (M)$. Thus M is μ -lifting.

Proposition 3.7: Let M be an indecomposable module. Then M is μ -lifting if and only if M is μ -hollow

Proof: Let M be a μ -lifting indecomposable module and let A be a proper sub module of M. Since M is μ -lifting, there exists a sub module D of A such that $M = D \oplus D'$ and $A \cap D' \ll_{\mu} D'$. But M is indecomposable, therefore either D = M or D = 0. If D = M, then A = M which is a contradiction, then D = 0 and hence M = D', implies $A \cap D' = A \ll_{\mu} D' = M$. Thus M is μ -hollow. The converse is clear. **Proposition 3.8:** Any direct summand of μ -lifting is μ -lifting

Proof: Let $M = M_1 \oplus M_2$ be a μ -lifting and let A be a sub module of M_1 , then $A = D \oplus S$, where D is a direct summand of M and $S \ll_{\mu} M$, by characterization (3.4). Since D is a direct summand of M contained in M_1 , then D is a direct summand of M_1 and $S \ll_{\mu} M$, $S \le M_1$ and M_1 is a direct summand of M, then $S \ll_{\mu} M_1$. Thus M_1 is μ -lifting.

Note: Let A be a sub module of a μ -lifting R-module M. Then $\frac{M}{A}$ need not be μ -lifting. For example,

Let $M = Z_8 \oplus Z_8$ as Z- module, clearly M is μ -lifting module. Let $\pi \oplus I$: $Z_8 \oplus Z_8 \to Z_2 \oplus Z_8$ is an epimorphism. So $\frac{Z_8 \oplus Z_8}{Ker(\pi \oplus I)} \cong Z_2 \oplus Z_8$ which is not μ -lifting

Next, we give some various conditions under which the quotient of μ -lifting module is μ -lifting. Recall that an R- module M is called distributive if for all A, B and C \leq M, A \cap (B+C) = (A \cap B)+(A \cap C). See [7].

Proposition 3.9: Let M be a μ - lifting R- module and let A be a sub module of M. Then $\frac{M}{A}$ is μ lifting in each of the following cases

(1) For every direct summand D of M, $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$.

(2) M is distributive module.

Proof: (1) Suppose that M is μ -lifting R- module and let $\frac{X}{A}$ be a sub module of $\frac{M}{A}$, then there exists

 $D \le X$ such that $M = D \oplus D'$, $D' \le M$ and $D \le_{\mu ce} X$ in M. By hypothesis, $\frac{D+A}{A}$ is a direct summand

of
$$\frac{M}{A}$$
. By prop. (2.4), $\frac{D+A}{A} \leq_{\mu ce} \frac{X}{A}$ in $\frac{M}{A}$. Thus $\frac{M}{A}$ is μ -lifting.

(2) Suppose that M is distributive module, we use (1) to show that $\frac{M}{A}$ is μ -lifting. Let D be a direct summand of M, M = D \oplus D', D' \leq M, then $\frac{M}{A} = \frac{D+D'}{A} = \frac{D+A}{A} + \frac{D'+A}{A}$ and $\frac{D+A}{A} \cap \frac{D'+A}{A} = \frac{(D+A) \cap D' + [(D+A) \cap A]}{A} = \frac{(A \cap D') + (D \cap A) + A}{A} = A$. Hence $\frac{D+A}{A}$ is a direct summand M

of $\frac{M}{A}$. So, by (1) M is μ -lifting module.

Let M be an R- module. Recall that a sub module A of M is called a fully invariant if $g(A) \le A$, for every $g \in End(M)$ and M is called duo module if every sub module of M is fully invariant. See [8]. Lemma 3.10: [8, lemma 5-4]: Let M be an R-module, if $M = M_1 \oplus M_2$, then $\frac{M}{A} = \frac{A \oplus M_1}{A} \oplus \frac{A + M_2}{A}$, for every fully invariant sub module A of M.

Proposition 3.11: Let M be a μ -lifting module if A is a fully invariant sub module of M, then $\frac{M}{A}$ is a μ -lifting module.

Proof: Let $\frac{X}{A}$ be a sub module of $\frac{M}{A}$. Since M is μ -lifting, there exists a sub module D of X such that $D \leq_{\mu ce} X$ in M and M = D \oplus D', D' \leq M. By lemma (3.10) we have $\frac{M}{A} = \frac{D+A}{A} \oplus \frac{D'+A}{A}$, let f: $\frac{M}{D} \rightarrow \frac{M}{D+A}$ be a map defined by f (m + D) = m + D + A, $\forall m \in M$, it is clear that f is an epimorphosis. Now, since $D \leq_{\mu ce} X$ in M, $\frac{X}{D} \ll_{\mu} \frac{M}{D}$ and f $(\frac{X}{D}) \ll_{\mu}$ f $(\frac{M}{D})$, by [3, prop. (2.14)] which implies that $\frac{X}{D+A} \ll_{\mu} \frac{M}{D+A}$, then D+A $\leq_{\mu ce} X$ in M and hence $\frac{D+A}{A} \leq_{\mu ce} \frac{X}{A}$ in $\frac{M}{A}$, by prop. (2.4). Thus $\frac{M}{A}$ is a μ -lifting module.

Lemma 3.12: Let M = A+B be a μ -lifting module, if $\frac{M}{A}$ is cosingular, then there exists a direct summand D of M such that M = A+D and D $\leq_{\mu ce}$ B in M.

Proof: Let M = A+B be a μ -lifting and assume that $\frac{M}{A}$ is cosingular. Since B \leq M and M is μ -lifting

, there exists a direct summand D of M such that $D \leq_{\mu ce} B$ in M. Then $\frac{M}{D} = \frac{A+B}{D} = \frac{A+D}{D} + \frac{B}{D}$.

Since $\frac{M}{A}$ is cosingular, then $\frac{M}{A+D}$ is cosingular and hence $\frac{D}{\frac{A+D}{D}}$ is cosingular, by third

isomorphism theorem. But $\frac{B}{D} \ll_{\mu} \frac{M}{D}$, then $\frac{M}{D} = \frac{A+D}{D}$ which implies that M = A+D. So, we get

the result.

Let M be an R- module. M is called amply μ -supplemented if for any sub modules A and B of M with M = A+B, there exists a μ -supplement X of A contained in B. See [6].

Proposition 3.13: Let M be an amply μ -supplemented module such that every μ -supplement sub module of M is a direct summand, then M is a μ -lifting.

Proof: Suppose the M is amply μ -supplemented module and let A be a sub module of M, then A has a μ - supplement B in M, hence M = A+B and A \cap B $<<_{\mu}$ B. Since M is amply μ -supplemented and M = A+B, then A contains a μ -supplement X of B. By our assumption, X is a direct summand of M, so M = X \oplus Y, Y \leq M. Now, A = A \cap M = A \cap (X+Y) = X + (A \cap Y), by modularity. Since X is a μ -supplement of B in M, then M = X+B, hence A = A \cap M = A \cap (X+B) = X+ (A \cap B). Now, consider the projection map P : M \rightarrow Y, P(A) = P (X+(A \cap Y)) = A \cap Y and also P(A) = P(X+(A \cap B)) = P(A \cap B), hence P(A \cap B) = A \cap Y Since A \cap B $<<_{\mu}$ M, then P(A \cap B) = A \cap Y $<<_{\mu}$ Y. Thus M is μ -lifting module.

Let M be an R- module and let A be a sub module of M, we say that A is a μ -coclosed sub module of M denoted by (A $\leq_{\mu cc}$ M) if whenever $\frac{A}{X}$ is cosingular and X $\leq_{\mu cc}$ A in M for some sub module X of

A, we have X = A. See [3].

Proposition 3.14: Let M be a μ -lifting module. Then every cosingular μ -coclosed sub module of M is a direct summand.

Proof: Let A be a cosingular μ -coclosed sub module of M. Since M is μ -lifting, there exists a sub module D of A such that $M = D \oplus D'$, $D' \leq M$ and $A \cap D' \ll_{\mu} M$. Since A is μ -coclosed sub module of

M, Then
$$A \cap D' \ll_{\mu} A$$
, by [6, prop. (3.4)]. Now, $A = A \cap M = A \cap (D+D') = D + (A \cap D')$ and $\frac{A}{D}$ is

cosingular , hence A = D. Thus A is a direct summand of M.

Remark A direct sum of μ -lifting modules need not be μ -lifting module as the following example shows.

Let $M = Z_8 \oplus Z_2$ as Z- module. It is clear that Z_8 and Z_2 are μ -lifting Z- modules, but M is not μ -lifting module.

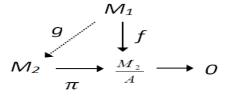
Now, we give various conditions under which a direct sum of μ - lifting modules is μ - lifting. **Proposition 3.15:** Let $M = M_1 \bigoplus M_2$ be an R- module such that ann $(M_1) + ann(M_2) = R$, if M_1 and M_2 are μ -lifting, then M is μ -lifting. **Proof:** Let A be a sub module of M. By [9, prop. 4.2], $A = A_1 \oplus A_2$, where $A_1 \le M_1$ and $A_2 \le M_2$. Since M_1 and M_2 are μ -lifting modules, then $A_1 = B_1 \oplus S_1$ and $A_2 = B_2 \oplus S_2$, where B_1 and B_2 are direct summands of M_1 and M_2 respectively and S_1 , S_2 are μ -small sub modules of M_1 and M_2 respectively, by prop. 3.4. Note, $A = A_1 \oplus A_2 = B_1 \oplus S_1 \oplus B_2 \oplus S_2 = (B_1 \oplus B_2) \oplus (S_1 \oplus S_2)$, where $B_1 \oplus B_2$ is a direct summand of M and $S_1 \oplus S_2$ is μ -small sub module of M, by [3,prop. (2.14)]. Thus M is μ -lifting module.

Proposition 3.16: Let $M = M_1 \oplus M_2$ be a duo module such that M_1 and M_2 are μ -lifting modules, then M is μ -lifting.

Proof: Let $M = M_1 \oplus M_2$ be a duo module and let A be a sub module of M, then A is a fully invariant. Hence $A = A \cap M = A \cap (M_1 \oplus M_2) = (A \cap M_1) \oplus (A \cap M_2)$. Since M_1 and M_2 are μ -lifting modules, then $A \cap M_1 = A_1 \oplus A_2$ and $A \cap M_2 = A_3 \oplus A_4$, where A_1 and A_3 are direct summands of M_1 and M_2 respectively and A_2 , A_4 are μ -small sub modules of M_1 and M_2 respectively, by prop. (3.4). It is clear that $A_1 \oplus A_3$ is a direct summand of M and $A_2 \oplus A_4$ is μ -small sub module of M. Thus M is μ -lifting.

Let M_1 and M_2 be R-modules. Recall that M_1 is M_2 -projective if for every sub module A of M_2 and any homomorphism $f: M_1 \rightarrow \frac{M_2}{A}$, there is a homomorphism: $M_1 \rightarrow M_2$ such that $\pi \circ g = f$,

where $\pi: M_2 \rightarrow \frac{M_2}{A}$ is the natural epimorphosis, see [2].



 M_1 and M_2 are said to be relatively projective if M_1 is M_2 - projective and M_2 is M_1 -projective.

Proposition 3.17: For $M = M_1 \oplus M_2$, where M_1 be a μ -lifting module and let M_2 is M_1 -projective. Then the following statements are equivalent.

(1) M is μ -lifting module.

(2) For every sub module A of M such that $M \neq A+M_1$, there exists a direct summand D of M such that $D\leq_{\mu ce} A$ in M.

Proof: (1) \Rightarrow (2) Clear.

(2) \Rightarrow (1) Let A be a sub module of M and let M = A+M₁. Since M₂ is M₁-projective, then there exists a sub module A₁ \leq A such that M = A₁ \oplus M₁, by [10, lemma 5]. But M₁ is µ-lifting and $\frac{M}{A}$ =

$$\frac{A_1 + M_1}{A_1} \cong \frac{M_1}{A_1 \cap M_1} = M_1, \text{ by (the second isomorphism theorem), therefore } \frac{M}{A_1} \text{ is } \mu\text{-lifting, so}$$

there exists a direct summand $\frac{D}{A_1}$ of $\frac{M}{A_1}$ such that $\frac{D}{A_1} \leq_{\mu ce} \frac{A}{A_1}$ in $\frac{M}{A_1}$. Hence $D \leq_{\mu ce} A$ in M, by prop.

(2.5). Now,
$$D = D \cap M = D \cap (A_1 \oplus M_1) = A_1 \oplus (D \cap M_1)$$
, by modular law. But $\frac{D}{A_1}$ is a direct

summand of $\frac{M}{A_1}$, so $\frac{A_1 \oplus (D \cap M_1)}{A_1}$ is a direct summand of $\frac{A_1 \oplus M_1}{A_1}$. Hence $D \cap M_1$ is a direct

summand of M₁, by (the second isomorphism theorem). Let $M_1 = (D \cap M_1) \oplus Y$, for some sub module Y of M. Thus $M = A_1 \oplus M_1 = A_1 \oplus (D \cap M_1) \oplus Y = D \oplus Y$ and hence M is μ -lifting module.

Proposition (3.18): Let M_1 and M_2 be μ -lifting modules such that M_i is M_j -projective (i, j = 1, 2). Then $M = M_1 \oplus M_2$ is μ -lifting.

Proof: Assume that M_1 and M_2 are μ -lifting modules. To show that M is μ -lifting, let A be a sub module of M, Consider the sub module $M_1 \cap (A+M_2)$ of M_1 . Since M_1 is μ -lifting, there exists decomposition $M_1 = A_1 \oplus B_1$ such that $A_1 \leq M_1 \cap (A+M_2)$ and $[M_1 \cap (A+M_2)] \cap B_1 = B_1 \cap (A+M_2) < <_{\mu} B_1$. Therefore $M = M_1 \oplus M_2 = A_1 \oplus B_1 \oplus M_2 = M_1 \cap (A+M_2) + B_1 + M_2 = (A+M_2) + B_1 + M_2 = A_+(M_2 \oplus B_1)$. Since $M_2 \cap (A+B_1) \leq M_2$ and M_2 is μ -lifting , there exists a decomposition $M_2 = A_2 \oplus B_2$ such that $A_2 \leq M_2 \cap (A+B_1)$ and $B_2 \cap (M_2 \cap (A+B_1)) = B_2 \cap (A+B_1) < <_{\mu} B_2$. We have $M = A + (B_1 \oplus M_2) = A + B_1 + A_2 + B_2 = A + (B_1 \oplus B_2)$, so $M = (A_1 \oplus A_2) \oplus (B_1 \oplus B_2)$. Since M_i is M_j -projective, then M_1 is M_j -projective and M_2 is M_j -projective (j = 1, 2) and hence A_1 is B_j -projective and A_2 is B_j -projective. Hence $A_1 \oplus A_2$ is $B_1 \oplus B_2$ -projective, by [11, prop. 2-1-6]. Then there exists $Y \leq A$ such that $M = Y \oplus (B_1 \oplus B_2)$ by [10, lemma5]. Since $B_1 \cap (A+M_2) < <_{\mu} B_1$ and $B_2 \cap (A+B_1) < <_{\mu} B_2$, then $[B_1 \cap (A+M_2) \oplus B_2 \cap (A+B_1)] < <_{\mu} B_1 \oplus B_2$. Thus M is μ -lifting.

References

- 1. Inoue, T. 1983. Sum of hollow modules, Osaka J. Math., : 331-336.
- **2.** Mohamed S.H. and Muller B. J. **1990**. *Continuous and discrete Modules*, London Math. Soc. LNS 147 Cambridgeo University Press, Cambridge.
- 3. Khalid Kamil E. M. 2018. On a generalization of small sub modules, Sci. Int. (Lahore), : 359-365.
- **4.** Oshiro, K. **1984**. Lifting modules, Extending modules and their applications to QF-rings, *Hokkaido Math. J.*, **13**: 3310-338.
- 5. Keskin, D. 2000. On lifting modules, Comm. Algebra, : 3427-3440.
- **6.** Kamil, E. M. and Khalid, W. **2018.** On μ-supplemented and cofinitely μ- supplemented, *Sci. Int.* (Lahore), : 567-572.
- 7. Erdogdu, V. 1987. Distributive Modules, Can. Math. Bull ,: 248-254,
- 8. Orhan, N., Tutuncu, D. K. and Tribak, R. 2007. On Hollow-lifting Modules, *Taiwanese J. Math*, : 545-568.
- 9. Abass, M. S. 1991. On fully stable modules, Ph.D. Thesis, University of Baghdad.
- 10. Kasch, F. 1982. Modules and Rings, Acad. Press, London,
- 11. Abdelkader B. H. 2001. On lifting modules, M. Sc. thesis, University of Baghdad .