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Abstract
Let R be a ring with identity and let M be a left R-module. M is called p-lifting
modulei f for every sub module A of M, There exists a direct summand D of M such

that M = D@ D', for some sub module D' of M such that A<D and A~ D'<<, D",
The aim of this paper is to introduce properties of p-lifting modules. Especially, we
give characterizations of p-lifting modules. On the other hand, the notion of amply
p-supplemented is studied as a generalization of amply supplemented modules, we
show that if M is amply pu-supplemented such that every p-supplement sub module
of M is a direct summand, then M is p-lifting module. Finally, we give some
conditions under which the quotient and direct sum of p-lifting modules is p-lifting.
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1. Introduction

Throughout this paper all rings have an identity and all modules will be until left R- module Let M be
a module and let A be a sub module of M, A is called small in M (notation A<<M) if M# A+B , for any
proper sub module B of M, see [1] and [2]. As a generalization of small sub modules we introduced
the concept of p- small sub modules, A sub module A of M is called p- small sub module of M

M
(denoted by A<<, M) if whenever M = A + X, X is cosingular, then M = X. See [3]. Let A<B <M.

. B M . . . . .
if K <<K , then A is called a coessential sub module of B in M. We introduce p-coessential sub

module as a generalization of coessential sub module as follows. Let M be an R- module and let X and
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A be sub modules of M such that X< A <M, then X is Following , Oshiro [4], An R- module M is
called lifting module if for every sub module A of M , there exists a direct summand D of M such that
D is coessential sub module of A in M. This concept leads us to introduce the following concept. An
R- module M is called p-lifting module if for every sub module A of M, there exists a direct summand
D of M such that D<,¢ A inM.In this paper,we investigate characterizations and properties of p-
lifting modules.

In section2. We define p-coessential sub modules. Also we list some of their important properties
that are related to our work.

In section3. We define the notion of p-lifting modules as a generalization of lifting modules with some
examples and characterizations and basic properties. Also, we investigate various conditions for a
direct sum of p-lifting modules to be p-lifting.

2. u-Coessential submodules

Definition 2.1: Let M be an R- module and let X and A be sub modules of M such that X< A <M,

. . i i . A M
then X is called p-coessential sub module of A in M (briefly X <. A in M) if X <<, <

Examples and Remarks 2.2
(1) Consider Zg as Z- module. It is easy to see that {0 ,4 }<,.. {0,2,4,6 } in Zs.
(2) ConsidewZg as Z- module. It is clear that {0} is not p-coessential sub module of {0,3}.

0,3 Z _ Z _
Suppose that {O’_3} <<MTG, it is easy to see that {OTB} =~ {0,3}and —=> = Zsand hence {0,3
{0} {0} {0} {0}

}<<. Zs which is a contradiction.

(3) It is clear that p-coessential sub module is a generalization of coessential sub module, but the
converse is not true in general. For example. Consider Zg as Zs- module. Since {6 ,:_’,}<<u Zs , then
{03}<.e {0,3} in Zs but {0} is not coessential sub module of {0,3} in Z. Note that they are
equivalent when M is cosingular module

(4) Let M be an R- module. Then A<<, M if and only if {0}<;c. A in M.
The following proposition gives a characterization of p-coessential sub module.

. M . . .
Proposition 2.3: Let M be an R- module and let A <B <M where X is cosingular, then A<, B in M

if and only if M = B + X implies that M = A + X, for every sub module X of M.
B X+A

Proof: Suppose that A<, B in M and let M = B + X, where X < M, then MK: K+ . Since
M
M . . i . A M N i
— is cosingular, then is cosingular. But = , by third isomorphism theorem,
A A+ X A+ X
A
M
therefore — A is cosingular. But B <<y M therefore M_X+A .ThusM=X+A.
A+ X A A
A

Conversely, let M = E + B , where A < U with Mis cosingular. Then M = B + U and M is
A A A U U

cosingular. So, by our assumption , we get M = A + U. But A < U, therefore M = U. Thus A<,. BinM
The following propositions give some properties of p-coessential sub modules which are needed
later.

. ) . . X
Proposition 2.4: Let M be an R- module and let A< X <B <M. Then X <, B in M if and only if Y
M

<pee — IN — .

A A
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B M
. . A B A M _ .
Proof: Assume that X <. B in M. Since X = Y and ~ = 7 , by (the third isomorphism
A A
B M
A A X B. M
AN LA < — _
theorem) Then X <<, X . Thus o Swee in y
A A
B

, by (the third

< |=Z

X B M B
Conversely, Suppose that — <, — in—, Since = — and
y pp A He A X X

>|x[>|Z
IR

A

. . B M )
isomorphism theorem) Then — <<, — . Thus X <, B in M.
X "X g

Proposition 2.5: Let M be an R- module and let A <B < C <M. Then A<, C in M if and only if A
<uee BiINM and B< e Cin M

. . M B M .
Proof: Suppose that A<, C in M. Since — < % < 7 thenx <<, Kand hence A <. B In M.

>|w

Now, define g: % - % by g (m+ A)=m + B for all me M. early g is an epimorphosis. Since A<,

Cin M, hence g (E) = 9 <<“M. Thus B, Cin M
A B B

Conversely, assume that A <, B in M and B<¢. C in M, to show that A<,c. C in M. Let— = ¢ +
A A

E , Mis cosingular, then M = C + U and hence M: C+U :E+ U+B . Since M is cosingular ,
B B B B u
then is cosingular . But E <<, M , therefore M = U~+8 and hence M =U + B, then M
U+B B B B B A
=E + E .SinceE <<, M and M is cosingular, then M :B . Thus M =U.
A A U A A

Proposition 2. 6: Let M be an R- module. If A <,,e B in M and X<, Cin M, then A + X <,.cB+C
inM

. . M
Proof: Suppose that A <, B in M and X<, C in M. To show that A + X <,.e B+ Cin M, let f: K

%LX be a map defined by f (m + A) = m + (A+X) foreachmeM and g : %—)L be a
+

A+ X

map defined by g (m + X) = m + (A+X) for each me M. Clearly each f and g are epimorphosis. Since
B+ X X

B e Mand & e ™ then £( 2= B Mg Sy C2 X
A A X X A (A+X) A+ X X (A+ X)

B+ X C+X B+C

M , by [3, prop. (2.14)] and hence (B+X) + (€ +X) = (B+C) <<y M , by

A+ X (A+X)  (A+X) (A+X) A+ X

[3,prop. (2.14)]. Thus A + X <ee B+ Ciin M

Proposition 2.7: Let M be an R- module. If A <,.c B in M and X <M, then A+X <, B+X in M. The
converse is true if X<<, M.

Proof: Assume that A <, B in M and X < M. Since X <, X in M, then A+X <, B+X in M, by

prop. (2.6).
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. . M B
Conversely, Suppose that A+X <, B+X in M and X<<, M. To show that A <, B in M, let X = K

B+ X U+X
+B , Mis cosingular, then M = B+U, hence M ( i ) U +X) . Since Mis cosingular,
A U A+ X (A+X) (A+X) U

B+ X X
is cosingular. But (B+X) <<, M , therefore M = U +X)
U+ X (A+X) A+ X A+X (A+X)

then and hence M =

. M . . .
U+X. Since U is cosingular and X<<, M, then M = U. Thus A <,..Bin M

Proposition 2.8: Let M be an R- module and let X<<, M. If A <. Bin M, then A <,.e B+Xin M.
B+ X
+

A

M
Proof: Suppose that A <, B in M and X<<, M. To show that A <. B+X in M let K =

is cosingular. Hence M = B+X+U and is cosingular. Since X<<, M, then M = B+U,

E . But B <<y M andM is cosingular, thereforeM =Y , hence M = U. Thus A <,
A A A U A A

> >|C
11
>|wC|§

B+Xin M.
Proposition 2.9: Let M and M' be R- modules and let f: M — M' be an homomorphism, If A <. B
in M, then f(A) Syee f (B) in f (M).

f(M

Proof: Suppose that A <. B in M. To show that f (A) <, f (B) in M, Define ¢: K - f((A)) by ¢

ince B M B f(B) M
m+ A) = f (m) + f (A), for each me M, Since— <<, — , th — )= << —) =
( ) =f(m)+f(A) A S encP(A) f(A) u(P(A)
f(M
L . Thus we get the result.
f(A)

Proposition 2.10: Let A, B, C and X be sub modules of an R-module M. The following statements are
equivalent

(1) IfA<,.A+Bin M, then AN B<,, Bin M.

(2) fA<,eBinMandY <M, then ANY <,ee BN Y in M.

(3) IfA<,eBinMand X<y, CinM,then ANX < ee BMNCinM.

Proof: (1)=(2) Let A <. Bin Mand Y <M. Since A+ (BN Y) <B, then A<, A+ (BN Y) in M
by prop (2.5) Hence AN (BN Y) <uce BMY in M, by (1). This implies that ANY <yee BAY in M.
(2)=(3) Let A <ee Bin M and X <ee Cin M. By (2) , AN X <jee BN X in M. Also X<yee Cin M
and B<M, then BN X<, BMCin M. Thus AN X<, BM Cin M, by prop. (2.5).

(3)=(1) Let A <yce A+B in M. Since B<,.e B in M, then by (3) AN B <. (A+B)MB. Thus AN B
<pce BiN M.

Proposition 2.11: Let M be an R- module and let A <B <M. If B=A+S and S<<;, M, then A<
Bin M.

M B M . .
Proof: Assume that B = A+San S<<, M. Let X: K + UK U is cosingular, then M = B+U =

M. . .
A+S+U = S+U. But S<<, M and m is cosingular, therefore M = U. Thus A<, B in M.

Lemma 2.12: Let M be a module such that M = A + B and M = (A B) + C for sub modules A, B
andCof M. ThenM=(BNC)+ A=(ANC) +B.
Proof: See [5, Lemma 1.2]

.. M ) .
Theorem 2.13: Let M = A + B be a module with E cosingular. Let B < C and B<¢. C in M. Then

ANB<ANCin M.
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AnC U
- ) + M is cosingular , then M = (AN C) + U, implies

Proof: Let = ,
(AnB) (AnB) (AnB) U

M _(AnU)+B C . M.
= 4+ — . Sijhce— s
B B B

, therefore M = (A U) + B. Again

that M = C + U. By Lemma (2.12) , M= (ANU) + C,

(AnNU)+B

B
cosingular, then %

. . C
is cosingular. But B <<,

(AnC) e M
(AnB) " (AnB)’

Let M be an R- module and let A, B be sub modules of M, B is called p- supplement of Ain M , if
M = A+B and AMB <<, B. If every sub module of M has a p- supplement, then M is called p-
supplemented module. See [6].

We end this section by the following proposition.

Proposition 2.14: Let A, B and C be sub modules of an R- module M. If A is a p-supplement of B in
M and B is a p-supplement of C in M with A < C , then A <y Cin M.
Proof: Assume that A is a p-supplement of B in M and B is a p-supplement of C in M with A <C. To

. M Y M . .
show that A <, Cin M, let—= E+— , Wwhere— is cosingular, then M = C+Y. By modular law Y =
A A A Y

by Lemma (2.12) , M= (AN B) + U = U. Thus

YNM = YN (A+B) = A+(YB). Hence M = C+Y = C+ A+(YB). So by (the second

. . B B+Y M M. )
isomorphism theorem)Y 3 = y 57 But7|50003|ngular, therefore Y AB
N N

Since B is a p-supplement of C in M that is B C<<, B, then Y M B = B and hence Y = A+B = M.
Thus A <,e C in M.

3. u-Lifting modules

Definition 3.1: An R- module M is called p-lifting module if for every sub module A of M, there
exists a sub module D of Asuchthat M=D@D',D'<Mand AnD'<<, D'

Remarks and Examples 3.2:

(1) It is clear that every lifting module is p-lifting. The converse is not true in general, see [3,
example (3.17)]

(2) Let M be a cosingular module. Then M is lifting if and only if M is p-lifting module.

(3) Every p-hollow is p-lifting. The converse is not true in general. For example Zg as Z- module.

(4) Z,as Z- module is p-lifting.

(5) Zas Z- module is not p-lifting.

(6) Every p-lifting is @ -p-supplemented module. The converse is not true in general, for example

Zs @ Z, as Z- module.
(7) p- lifting modules are closed under isomorphism.
The following propositions give characterizations of p-lifting modules.
Proposition 3. 3: Let M be an R- module. Then M is p-lifting if and only if for every sub module A of
M, there exists a sub module D of M suchthat M=D@® D', D'<M and AnD'<<, M.
Proof: Clear.

is cosingular.

Proposition 3. 4: Let M be an R-module. The following statements are equivalent.

(1) Mis p-lifting module.

(2) Every sub module A of M can be written as A =D®S , where D is a direct summand of M and
S<<, M.

(3) For every sub module A of M, there exists a direct summand D of M such that D < A and D<ce A
inM.

Proof: (1)=(2) Suppose that M is a p-lifting module and let A be a sub module of M , then there
exists a sub module D of A suchthat M =D@®D', D'<M and AnD' <<, M, by prop. (3.3). Now, A
=ANM=AN(D®D)=D®(AND). Thus we get the result.
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(2)=(3) Let A be a sub module of M. By (2) , A=D@®S, where D is a direct summand of M and

S<<, M. We have to show that A <<y M , let M = A + E , Mis cosingular, thenM =
D D D D D U D

D+3 + UB and hence M = D+S+U = S+U. But S<<, M, therefore M =U.

(3)=(1) Let A be a sub module of M. By (3), there exists a direct summand D of M such that D < A

. D'. .
and D < . Ain M . We want to show that AnD'<<, D" ,letD'=(AND)+U, U is cosingular.

Since M = D+D' = DHAND)+U , then .= PF(AND)+U_D+(AnD), U+D
D D D D

Since D< D+AMD')< A and D<yee A in M, then D<yee D+(AMD’) in M, by prop. (2.5) and

M D+D' (D+U)+D D' D" .. . M U+D
= = = = — which is cosingular, hence — = ,

U+D U+D U+D DNn(U+D) U D D

implies that M = U+D and clearly that UNnD = 0, then M = U®D, that is U = D'. Thus M is a p-

lifting module.

Theorem 3.5: Let M be an R-module. The following statements are equivalent.

(1) Mis p-lifting module.

(2) Every sub module A of M has a p-supplement B in M such that A B is a direct summand of A.

Proof: (1)=> (2) Let M be p-lifting module and let A be a sub module of M. By prop. 3. 4, there exists

a direct summand D of M such that D < A and D<¢e A in M. Now, A= AnM =A Nn(D®D') =

D @(AND). Since D <A, then M = A+D', and AN D'<<, D". Hence D' is p-supplement of A and A

M D'is a direct summand of A.

(2)=(1) Let A be a sub module of M . By (2) A has a p-supplement B in M such that ANB is a

direct summand of A. Then M = A+B, AnB <<, Band A = (ANB)®Y , Y<A. Since M = A+B =

(ANB)+Y+B=Y+Band ANBNY =BNY ={0} , then M= B@®Y. It is sufficient to show that

M A U

Y<ieAiINM. Let — = —+— | M is cosingular, then M = A+U=(ANB)+Y+U=(ANB) +
Y Y Y U

. N A M i -
U. Since AN B<<, M, then M = U, implies that v <<, v Thus M is p-lifting module.

The following proposition gives another characterization of p-lifting module.
Proposition 3.6: Let M be an R-module. Then M is p-lifting module if and only if for every sub
module A of M , there exists an idempotent f € End(M) such that (M) < A and (I-f )(A) <<, (I-f
)(M).
Proof: (=) Assume that M is a p-lifting module and let A be a sub module of M. By characterization
(3.5) A has a p-supplement B in M such that AN B is a direct summand of A , then M = A+B , AN
B<<,Band A= (ANB)®X, X< A. Note M = A+B = (ANB)+X +B = X+B and ANBNX =BnN
X = {0}, implies that M = B@® X. Now define the following map f: M — X, itis clear that f is an
idempotent and f (M) < X < A . It is sufficient to prove that (I-f) (A) <<, (I-f)(M). One can easily
show that (I-f) (A) = An(I-f) (M) = AnB<<, B =(I-f) (M).
(<) Let A be a sub module of M. By our assumption, there exists an idempotent f € End (M) such
that f (M) < A and (I-f) (A) <<, (I-f) (M), clearly that M = f (M) @ (I-f)(M) and AN (I-f )(M) = (I-f)
(A) <<, (I-f) (M). Thus M is p-lifting.
Proposition 3.7: Let M be an indecomposable module. Then M is p-lifting if and only if M is p-
hollow
Proof: Let M be a p-lifting indecomposable module and let A be a proper sub module of M. Since M
is p-lifting, there exists a sub module D of A such that M = D@D and AND' <<, D'. But M is
indecomposable, therefore either D = M or D = 0. If D = M, then A= M which is a contradiction, then
D = 0and hence M = D', implies AN D' =A <<, D' = M. Thus M is p-hollow. The converse is clear.
Proposition 3.8: Any direct summand of p-lifting is p-lifting
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Proof: Let M = M; @ M, be a p-lifting and let A be a sub module of My, then A=D@®S, where D is a
direct summand of M and S<<, M, by characterization (3.4). Since D is a direct summand of M
contained in My, then D is a direct summand of M; and S<<, M, S <M, and M, is a direct summand
of M, then S<<, M;. Thus M, is p-lifting.

Note: Let A be a sub module of a p-lifting R-module M. ThenMK need not be p-lifting. For example,

Let M = Zg@® Zg as Z- module, clearly M is p-lifting module. Let n@ |: Zg@ Zg— Z, P Zg is an
imorphism. S 2, ©Z, Z, D Zg which is not p-lifti

epimorphism. S0 ———— = which is not p-liftin

p p Ker(z®1) 2 8 H g9

Next, we give some various conditions under which the quotient of p-lifting module is p-lifting.
Recall that an R- module M is called distributive if for all A, B and C <M, AN (B+C) = (AN
B)+(AMC). See [7].

Proposition 3.9: Let M be a p- lifting R- module and let A be a sub module of M. Then % is -
lifting in each of the following cases

. D
(1) For every direct summand D of M, hl

A is a direct summand of% .
(2) M is distributive module.

Proof: (1) Suppose that M is p-lifting R- module and let % be a sub module ofMK , then there exists

. . D+A . .
D <X suchthat M=D@®@D', D'<M and D <. X in M. By hypothesis, hi is a direct summand

M D+A X M M
of — . By prop. (2.4), <ie — N — . Thus — is p-lifting.
A y prop. (2.4) A e N A SH g

(2) Suppose that M is distributive module, we use (1) to show that % is p-lifting. Let D be a direct

summand of M, M = D®D', D' < M, then M = D+D = I:)JFA+D+AandDJrAm D+A=
A A A A A A
(D+A)A D;F(DJF A)mA]:(Am D )+)(A\DQA)+ A=A. Hence Ais a direct summand

of%. So, by (1) M is p-lifting module.

Let M be an R- module. Recall that a sub module A of M is called a fully invariant if g (A) <A,
for every g € End(M) and M is called duo module if every sub module of M is fully invariant. See [8].

Lemma 3.10: [8, lemma 5-4]: Let M be an R-module, if M =M;® M, , then MK = A®AM1

A+ M, , for every fully invariant sub module A of M.

Proposition 3.11: Let M be a p-lifting module if A is a fully invariant sub module of M, then % isa
p-lifting module.

Proof: Let % be a sub module Of%. Since M is p-lifting, there exists a sub module D of X such

M _D+A __ D+A

that D<;ce X in M and M = D®D', D'<M. By lemma (3.10) we have A @ o let f:
M - be a map defined by f (m + D) =m + D + A, VmeM, it is clear that f is an
D D+A
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epimorphosis. Now, since D<¢e X in M, %«u % and f (% ) <<, f (%), by [3, prop. (2.14)]
which implies that <<, , then D+A <, X in M and hence D+ Aﬁuce é in M
+ A D+A A A A

by prop. (2.4). Thus % is a p-lifting module.

Lemma 3.12: Let M = A+B be a p-lifting module, if % is cosingular, then there exists a direct
summand D of M such that M = A+D and D <. B in M.

Proof: Let M = A+B be a p-lifting and assume that MK is cosingular. Since B <M and M is p-lifting

, there exists a direct summand D of M such that D<,.. B in M. Then% = A+B = A+D +E

D D D
M
SinceMis cosingular, then is cosingular and hence D is cosingular, by third
A A+D A+D
D

isomorphism theorem. But % <<y % , then M = A+D

D

which implies that M = A+D. So, we get

the result.
Let M be an R- module. M is called amply p-supplemented if for any sub modules A and B of M

with M = A+B , there exists a p-supplement X of A contained in B. See [6].
Proposition 3.13: Let M be an amply p-supplemented module such that every p-supplement sub
module of M is a direct summand, then M is a p-lifting.
Proof: Suppose the M is amply p-supplemented module and let A be a sub module of M, then A has a
- supplement B in M , hence M = A+B and AN B <<, B. Since M is amply p-supplemented and M =
A+B, then A contains a p-supplement X of B. By our assumption, X is a direct summand of M, so M
= X®Y,Y <M. Now, A = AnM = AN (X+Y) = X + (ANY), by modularity. Since X is a p-
supplement of B in M, then M = X+B, hence A = AnM = AN (X+B) = X+ (AN B). Now, consider
the projectionmapP: M =Y , P(A) =P (X+(ANY)) = ANY and also P(A) = P(X+(ANB)) = P(A
M B), hence P(ANB) = ANY Since ANB <<, M, then P(ANB) = ANY<<, Y. Thus M is p-
lifting module.

Let M be an R- module and let A be a sub module of M, we say that A is a p-coclosed sub module

. A . .
of M denoted by (A<,c M) if whenever Y is cosingular and X<,ce A in M for some sub module X of

A, we have X = A. See [3].

Proposition 3.14: Let M be a p-lifting module. Then every cosingular p-coclosed sub module of M
is a direct summand.

Proof: Let A be a cosingular p-coclosed sub module of M. Since M is p-lifting, there exists a sub
module D of A suchthat M =D@®D', D'<M and AN D' <<, M. Since A is p-coclosed sub module of

M, Then AND' <<, A, by [6, prop. (3.4)]. Now, A= AnM=AN(D+D) =D + (AND) and% is

cosingular , hence A = D. Thus A is a direct summand of M.
Remark A direct sum of p-lifting modules need not be p-lifting module as the following example
shows.

Let M = Zg® Z, as Z- module. It is clear that Zg and Z, are p-lifting Z- modules, but M is not p-
lifting module.

Now, we give various conditions under which a direct sum of p- lifting modules is p- lifting.
Proposition 3.15: Let M = M; @ M; be an R- module such that ann (M,) + ann(M,) = R, if My and M,
are p-lifting , then M is p-lifting.
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Proof: Let A be a sub module of M. By [9, prop. 4.2], A = A1@ A,, where A; <M; and A, < M,.
Since M; and M, are p-lifting modules, then A; = B;®S; and A, = B,®S,, where B; and B, are
direct summands of M; and M, respectively and S;, S, are p-small sub modules of M; and M,
respectively, by prop. 3.4. Note, A= Ai® A, =B, ®S; ®B, DS, = (B1®B,)D(S:DS,) , where B,
@By is a direct summand of Mand S; @ S; is u-small sub module of M, by [3,prop. (2.14)]. Thus M
is p-lifting module.
Proposition 3.16: Let M = M; @ M, be a duo module such that M; and M, are p-lifting modules, then
M is p-lifting.
Proof: Let M = M;®M, be a duo module and let A be a sub module of M, then A is a fully
invariant. Hence A = AnM = An( Mi®@My) = (ANM) D ( AnM,). Since M; and M, are p-
lifting modules, then ANM; = A; @ A; and AN M,= A;® A4, where A; and Aj; are direct summands
of M; and M, respectively and A, , A, are p-small sub modules of M; and M, respectively, by prop.
(3.4). It is clear that A; @ Az is a direct summand of M and A, ® A, is p-small sub module of M. Thus
M is p-lifting.

Let M; and M, be R-modules. Recall that M; is M,-projective if for every sub module A of

. M . .
M, and any homomorphism f: M; — TZ there is a homomorphism: M; = M, such that tog = f,

M, . . .
where w: M, —> TZ is the natural epimorphosis, see [2].

N 1
N> » AL > O
T A

M; and M; are said to be relatively projective if M is M,- projective and M; is M;-projective.
Proposition 3.17: For M = M; @ M,, where M; be a p-lifting module and let M, is M;-projective.
Then the following statements are equivalent.

(1) Mis p-lifting module.

(2) For every sub module A of M such that M # A+My, there exists a direct summand D of M such
that D<;ce A in M.

Proof: (1)=(2) Clear.

(2)=(1) Let A be a sub module of M and let M = A+M;. Since M, is M;-projective, then there

M
exists a sub module A; < A such that M = A; @ My, by [10, lemma 5]. But M, is p-lifting and E =

A1+M1~ 1
A ANM,

. . D M D A M .
there exists a direct summand — of — such that E <uce E in — . Hence D <, A in M, by prop.

M
= My, by (the second isomorphisim theorem), therefore E is p-lifting, so

D
(2.5). Now, D = DM = DN ( A;®M;) = A;® (DN M;), by modular law. ButEis a direct

®(DNM ®M
summand ofM , SO Al ( l) Al

A, A
summand of My, by (the second isomorphism theorem). Let M; = (DN M;) @'Y, for some sub module
Y of M. Thus M= A;®M=A; @ (DNM,))@Y =D@Y and hence M is p-lifting module.
Proposition (3.18): Let M; and M, be p-lifting modules such that M; is M;-projective (i, j = 1, 2).
Then M = M; @ M; is p-lifting.

L Hence DN M, is a direct

is a direct summand of
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Proof: Assume that M; and M, are p-lifting modules. To show that M is p-lifting, let A be a sub
module of M, Consider the sub module M; N (A+M,) of M;. Since M, is p-lifting, there exists
decomposition M; = A; @ B; such that A< M; N (A+M,) and [M; N (A+My)]NB; = BiN (A+M,)
<<, B;. Therefore M = M;@®M; = A;®B,®M; = M; N(A+M,) + Bi+M; = (A+Myp)+B;+M, =
A+(M2(-D B,). Since M, N (A+B;) <M, and M, is p-lifting , there exists a decomposition M, = A, ®
B, such that A, < M, N (A+B;) and B,N (M, (A+B;)) = B, (A+B;) <<, B,. We have M = A + (B,
®M,) = A+B;+A+B, = A + (B1®B,), so M = (A; DA, ® (B, DB,). Since M; is M;- projective,
then M, is Mj-projective and M, is Mj-projective (j = 1, 2) and hence A, is Bj-projective and A; is B;-
projective (j = 1,2) , by [11, prop. 2-1-6]. So by [11, prop. 2-1-7] A; is B;©® B, —projective and A, is
B, ® B, -projective. Hence A;® A; is B; @ B, -projective, by [11, prop. 2-1-6]. Then there exists Y <
AsuchthatM =Y @ (B;® B,) by [10, lemma5]. Since B; N (A+M,) <<, B; and B, N (A+B,) <<, B,
then [B; N(A+M,)@ B, N (A+B,)] <<, Bi®B,, Since A N (B;®B,) < [B; N(A+M;)@ B, N
(A+B)] <<, B1® By, then A N ( B1 @ B;) <<, B;® B,. Thus M is p-lifting.
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