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Abstract

Evolutionary algorithms (EAs), as global search methods, are proved to be more
robust than their counterpart local heuristics for detecting protein complexes in
protein-protein interaction (PPI) networks. Typically, the source of robustness of
these EAs comes from their components and parameters. These components are
solution representation, selection, crossover, and mutation. Unfortunately, almost all
EA based complex detection methods suggested in the literature were designed with
only canonical or traditional components. Further, topological structure of the protein
network is the main information that is used in the design of almost all such
components. The main contribution of this paper is to formulate a more robust EA
with more biological consistency. For this purpose, a new crossover operator is
suggested where biological information in terms of both gene semantic similarity and
protein functional similarity is fed into its design. To reflect the heuristic roles of both
semantic and functional similarities, this paper introduces two gene ontology (GO)
aware crossover operators. These are direct annotation-aware and inherited
annotation-aware crossover operators. The first strategy is handled with the direct
gene ontology annotation of the proteins, while the second strategy is handled with
the directed acyclic graph (DAG) of each gene ontology term in the gene product. To
conduct our experiments, the proposed EAs with GO-aware crossover operators are
compared against the state-of-the-art heuristic, canonical EAs with the traditional
crossover operator, and GO-based EAs. Simulation results are evaluated in terms of
recall, precision, and F measure at both complex level and protein level. The results
prove that the new EA design encourages a more reliable treatment of exploration and
exploitation and, thus, improves the detection ability for more accurate protein
complex structures.

Keywords: Evolutionary algorithm; gene ontology; protein complex; protein-protein
interaction network; semantic similarity.
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1. Introduction

Execution of a genetic program, including those with harmful genes and encoded proteins
for example COVID-19, has a very harmful effect. Actually, protein complexes and functional
modules are formed as a physical aggregations and molecular interactions of different protein-
protein interactions (PPIs), and protein-protein interaction networks (PPINS). Thus,
identification of protein complexes (or functional modules) is a critical problem in biology
systems in any living organism. Typically, detecting protein complexes from PPIN, and
generally, the areas of identifying a priori unknown building blocks from complex networks is
known as bi-clustering or co-clustering problem [1, 2]. It is defined as a natural division of a
complex network which follows a general heterogeneous connections rule, known as modules
or communities where a densely intra-connected module of nodes is also sparsely inter-
connected with other modules [3]. Bi-clustering problem is recently reporting an increasing
interest. Unfortunately, akin to many real-world optimization problems, the computational
complexity of protein complex detection problem falls into the category of non-deterministic
polynomial time hard (NP-hard) problems [4, 5].

Unlike heuristic, metaheuristics and evolutionary algorithms (EAs) are proved to be a
sustainable alternative to solve NP-hard problems while accommodating their combinatorial
explosion [6, 7]. For complex detection problem, Pizzuti and Rombo in 2014 [8] were the first
to show that evolutionary based complex detection methods are more robust than other state-
of-the-art heuristic-based complex detection methods. Unfortunately, almost the design of the
main components of all these EA-based complex detection methods is either canonical or
guided by a general topological characteristic of communities and modules. For example,
Pizzuti and Rombo [8] expressed a canonical single objective EAs to detect protein complexes
and showed the encouraging performance of EAs to outperform the counterpart heuristic
methods. Another EA-based complex detection algorithms were proposed in [9] and [10].
However, in both algorithms a topological-based mutation operator is designed. The basic idea
of the designed topology-aware mutation operator is to breakdown the coexistence of a pair of
proteins according to their topological similarity. Their interactions can serve for either intra-
delineation topology or inter-delineation topology. The design of an EA with a topology-based

1976



Abdulateef et al. Iragi Journal of Science, 2023, Vol. 64, No. 4, pp: 1975-1987

component (e.g., mutation operator in [9] and [10]) is proved to harnesses the detection ability
of several single and multi-objective topology-based optimization models (such as modularity,
community fitness, community score, conductance, expansion, internal density, inter-score and
intra-score, normalized cut, negative ration association, and ratio cut).

Unfortunately, the current effort in literature to design evolutionary-based complex detection
methods with gene ontology (GO) aware components is still lagging behind. Only a few works
in literature examine incorporation of GO semantic similarity into design of evolutionary
algorithms. Recently, the authors in [11] adopted the EA of Pizzuti and Rombo [8] with their
single-objective models and the topological-based migration operator of Attea and Q. Z.
Abdullah [9]. However, they reflect similarity values of the Gene Ontology Consistency (GOC)
metric to let the migration operator to find the elected complexes for the mutated proteins.

The key contribution of this paper is to design an evolutionary-based complex detection
algorithm with GO-aware crossover operator. The proposed crossover operator is viewed with
two different manifestations of GO-based heuristics. The remaining of this paper is organized
as follows. Section 2 presents a brief introduction to the graph and ontology means of PPI
networks. This is followed by Section 3 while introducing the proposed EA with GO-aware
crossover operator. Two formulations are suggested for the proposed GO-aware crossover
operator. The results and discussions are provided in Section 4, demonstrate that it is curious
enough to develop an EA with only non-ontology-based complex detection algorithms. Finally,
conclusions and future directions are provided in Section 5.

2. Preliminary concept

A protein-protein interaction network (PPIN) is generally formulated as a finite
heterogeneous network V' (n, E) of a set of n proteins (i.e. P = {Py, P,, ..., B,}) and a set of m
interactions connecting pairs of proteins (i.e. E = {E;, E,, ..., E.}). Thus, IV is mathematically
expressed as a graph G of a set of n vertices and m edges. For a protein or vertex P;, its degree,
d;, is defined as the number of interactions incorporating P;. Further, the data representation of
the graph G is usually denoted as a square, symmetric and binary matrix called adjacency matrix
A = [a; ;]™™, where protein pair P; and P; are adjacent, and thus a; ; = 1 when there is an
interaction between P; and P;, otherwise, a; ; = 0.

Note that, the adjacency matrix A contains all possible decompositions of the network
into different number of square sub-matrices with different sizes. For complex detection
problem, the main challenge is that the number of complexes, K, used to partition a PPI network
is unknown. However, a protein P; in a complex C can be quantified by the degree of its intra-
connections with other proteins within C and inter-connections with proteins in other complexes

[8] [9]

Gene Ontology (GO) is the most common biology-focused and animated controlled
vocabulary (CV) devoted to the functional annotation of proteins (i.e. gene products) in a
cellular context and a species independent manner [12]. In CV, each GO term, t, is assigned a
unique alphanumeric code (e.g., "YMRO091C’, *YLRO33W’, "'YMRO033W’, *YPR023C’,
’YDRO73W’, *YFL049W’, *YGR275W’, *YJL002C’, "YMR149W’, "YNLO78W’, and
YMLI112W?”) and is used to annotate genes and gene products (i.e. proteins). GO is divided
into three sub-ontologies. These are Molecular Function (MF), Biological Process (BP), and
Cellular Component (CC). Then, the statement of a connection between a type of gene product
and the types designated by terms in the GO is called a GO annotation (GOA) [13, 14]. In other
words, gene products are annotated with GO terms, either directly or through inheritance (true
path rule), since annotation to a given term implies annotation to all of its ancestors.
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Each sub-ontology is represented by a network or an independent directed acyclic graph (DAG),
where individual GO terms that describe components of a gene product function are nodes in
the DAG and connected by directional edges [15]. These directional edges are most commonly
of the types ‘is_a’ and ‘part of”, where the ‘is_a’ denotes a simple class—subclass relationship
and ‘part of” denotes a part—whole relationship. Also, in DAG, each node may have more than
one parent as well as zero, one, or more children. For example, consider the DAG in Figure 1.
The DAG is for a GO term of BP sub-ontology (septum digestion after cytokinesis: 0000920).
It represents the DAG for septum digestion after cytokinesis GO: 0000920 BP term. Other terms
(nodes in the DAG) represent functional feature description, while the directional edges form
relations between the terms.

Two types of semantic similarity can be obtained from n proteins annotated with N GO
terms. These are term semantic similarity (SS) and functional similarity (FS). Term semantic
similarity (SS) quantifies the specificity of terms and the closeness or relatedness and difference
between terms within an ontology. Thus, from N terms, a semantic-based square similarity
matrix S = [SS; ;]¥*" is obtained, where SS; ; quantifies the semantic similarity between GO
term t; and GO term t;. In protein-level annotation, two sets of GO terms within a specific
category (i.e. MF, BP, or CC) are required to assess the functional similarity (FS) between two
proteins. The functional similarity quantifies the functional similarity between pair of proteins
based on their GO terms. Similarly, for n proteins, a functional-based square similarity matrix
F = [FS; ;]™™ can be constructed, where FS; ; quantifies the functional similarity between
protein P; and protein P;.

biological process

GO: 0051301

cellular process cell division

septum digestion
after cytokinesis

Figure 1. DAG for a GO term of BP sub-ontology (septum digestion after cytokinesis:
0000920).

Broadly speaking, functional similarity, FS, can be divided into two approaches: pairwise
and group-wise [15, 16]. In pairwise approaches, F'S between two proteins, P; and P,, with their
annotating terms, Tp, and Tp,, respectively, is evaluated by combining the semantic similarity,

SS, of the pairwise terms in Tp_ and Tp,. Pairwise combination approach could use all pairs or
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best pairs methods. A global FS is then statistically obtained (with average, sum, maximum, or
minimum threshold). Some of the well-known FS closeness measures are average inter-set
similarity, maximum similarity, and average of maximum similarity.

Group-wise similarity measures, on the other hand, can be further classified into set-based,
graph-based, and vector-based. Set-based methods consider only direct annotations for gene
products while holding off the impact of the shared ancestry between GO terms. In set-based
methods, only traditional cardinality-based similarity measures such as Jaccard and Dice
measures are used. Several graph matching methods and set similarity measures such as term
overlap and normalized term overlap are developed for graph-based approaches. In vector-
based approaches, proteins are described as binary or weighted vectors of GO terms. For
example, inverse document frequency is associated as a weight for each GO term counting the
number of occurrence of this GO term in the whole corpus of gene products [17].

3. The proposed EA with GO-aware crossover operator

Any Evolutionary Algorithm (EA) is simply defined as a search mechanism to find the
most applicable solution from a set of all possible solutions for the problem at hand. An EA
searches for good solutions while iteratively evaluates a population of individual solutions, and
performs three main evolutionary operators (i.e. selection, crossover, and mutation). The
canonical design of these operators (particularly crossover and mutation) can be used as general
operators for almost all types of optimization problems. However, for a particular problem, the
problem-specific design of such evolutionary operators would then determine the characteristic
of the adopted EA and would improve its performance. In this section, the definition of an EA
with all its components is defined while the formulation of all its components (including the
crossover operator) is relaxed for the purpose of complex detection problem in PPI networks.

3.1 Canonical EA for complex detection problem

In the adopted EA, the locus-based representation of Handl and Knowles [14] [19] is
adopted. A population, I = {I;, I, ..., Lop—size}, Of pOp — size individual solutions out of the
whole search space size is first identified and then initialized. An individual or chromosome
solution I from I is defined as a complete solution being encoded with a finite set of n genes.
It is worth to mention here that one should distinguish between the term “gene” used as the
smallest sub-solution of a chromosome solution in EA terminology and the term “gene” used
as a set of GO terms to semantically represent a protein or gene product. Each gene in I is
simply the smallest sub-solution from the solution I and is defined by its location or index
(usually known as locus) and its content or value (usually known as allele). Thus, for complex
detection problem, an individual solution I;; 1 <;<pop-size 1S formulated as I; = {I; 1, 1; 2, ..., Ii n},
where each sub-solution (i.e., gene) I; ; is expressed as protein to protein complex-neighbor
sub-solution. I; ; is defined by its locus (protein P;) and its allele (protein P;) where P; and P;
should have an interaction (i.e. a; ; = 1). This will result in locating proteins P; and P; within
the same complex Cy.

The decoding function § of individual I will determine the number of the complexes and
outline their structure, i.e. §(I): ¢ = {C}<,. By its nature, the locus-based representation can
automatically determine the number of complexes, K, being encoded in each individual I.
Consider locus i is assigned with allele j. This means that protein i and protein j will be in the
same complex C. Then, decoding an individual solution I will figure out one complete solution,
C = {Cy,Cy, ..., Cx}, of a set of K complexes from the search space. Recall that the number of
complexes, K, can differ from one solution C; for chromosome I; to another solution C; for
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chromosome I;, where 1 < i,j < pop — size. As an illustrative example, consider Figure 2,
where a PPI network of 990 proteins and 4687 different interactions is encoded into four
different chromosome solutions. These solutions were decoded into their corresponding
phenotype solutions with different number of complexes, K. Further, two complexes in each
solution are also enlarged in the figure to clarify the intra- and inter-connections. One protein
(#79) with its intra- and inter-connections in two candidate solutions is also enlarged in the
figure.

Figure 2: An illustrative example clarifying the partitioning of Yeast PPI network with 990. 1)
Top: the phenotypic representation of four different chromosome solutions in a form of network
partitions with varying number of complexes (K). Middle: the enlargement of two complexes
with blue and red colors. Bottom: the enlargement of the intra-connections (blue) and inter-
connections (red) of one protein (protein number 79)

For a PPI network V' of n proteins and m interactions, first, the population I is initialized
randomly, such that in each locus and in each chromosome (i.e., I; j| 1<i<pop-size n1<j<n), the
allele is randomly initialized, such that P; has an actual interaction with protein P;.

Once the population is created, their individuals are evaluated according to the complex
detection problem. The general characteristic a complex structure follows a complex
community or module. Newman-Girvan modularity (Q) [20] for a candidate complex solution
C with K complexes is defined as:
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Q) = Bf, [ (Frecaye] &)

where m (as defined previously) is the total number of interactions in ', ™(Cy) is the
number of intra-connection within complex C, and m; is the number of interactions (degree)
of protein P;. Thus, the main characteristic of Q is its implicit definition for a single intra-
complex score rather than a single intra- and inter-complex score.

Then, a set of good set of parent solutions is selected using binary tournament selection and
used to evolve by perturbation (i.e., crossover, ¥, and mutation, ¥,,, operators) further
solutions to create better child individuals. The combined sequence of evaluation, selection,
crossover, and mutation is then applied for a maximum number of generations, gen,,,, and
the best individual solution I, (with its decoded complex structure C,.s;) reached in gen,
is finally adopted as the required solution to the problem.

The canonical definition of uniform crossover, W, can be expressed as follows: Consider
two chromosomes Iy:(Iyq,112, ., 11) and Ip:(Ip4,155, ..., 1,) to be the two parents
participating in the crossover. With a specified crossover probability, p., a child
I': (I3, 13, ..., I,) can be generated from the two parents by mixing their alleles, uniformly (i.e.
with equal chance), at each gene. This can be formally defined by: Wy: (I3, I, px) = I
Vij1<i<n:

I =

4

{Il,i lf r<0.5 (2)

I, ; otherwise

where r~[0,1] is a uniform random number. Generally, crossover probability, p,, is set
high, e.g., px = 0.6.

For mutation operator, ¥,,, a small variation could occur to the generated child I; after
crossover. The canonical mutation operator imitates the traditional allele-aware mutation
operator to change, with typically a small mutation probability, p,,, the allele value of a selected
locus ; ; to another neighborhood protein. Again, the new allele value should represent one of
the proteins that have interactions with protein P; This can formally be specified as:

me: (Iil 1<i<pop-—size’ pm) - Iil
Vill<j<sn Ar < pp:
Ii;=Jj1(,j) €E

3)

where r~[0,1] is a uniform random number.

3.2 An EA with the proposed GO-aware crossover operator

Designing an EA with appropriate operators that are tailored specially for complex
detection problem is essential and can harness performance of the algorithm. Unfortunately,
little effort is found in literature for designing EAs with GO-aware operators. The canonical
crossover operator formulated in Eq. 2 is used in almost all EA-based complex detection
algorithms. Actually, it is a variation operator working on the genotype representation,
completely overpassing the semantic code. It uniformly inherits the topological information
from two individual parents. However, to let this uniform crossover to respect the semantic and,
thus, the functional information of the encoded parents, one can re-define the uniform crossover
as a GO-based crossover, W _x, as follows:

Weo-x: (1, I, px) = I’
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vijl1<i<n

L if FSp,1,, > FSp,1,,
7| I, otherwise
where FS is the functional similarity between two proteins.

!

(4)

In the proposed GO-aware crossover operator, two types for finding FS are used. These are:
1- Direct annotation scheme, which directly annotates each protein based on its direct GO terms.
2- Direct and inherited annotation scheme, which annotates each protein based on its direct GO
terms and their ancestors in the DAGs.
For the first type of annotation, Jaccard similarity (Eq. 5) and Dice similarity (Eq. 6) are used
to compute the functional similarity between two sets of GO terms, T; and T}, of, respectively,
two proteins, P; and P; [16].

_ |TinT)

FSeues = o ©
_2x|TinTy]

FSpip; = IT;1+|T)] ©)

The second type, however, Wang et al. [21] method is used to compute semantic
similarity between two GO terms. A GO term t is assigned with a semantic value
S(t) from the aggregation of the semantic contribution, SC(DAG(t)) of all its
ancestors passing their best weighted paths to t. The best weighted path of each
ancestor is the path with the maximum product of the weights on its edges (they

set 0.8 and 0.6 for ‘isa’ and ‘part of’, respectively). Then, the semantic similarity (5S¢ ¢2)
between two GO terms, t;and t,, is defined as the ratio of the semantic contributions of all
common terms (i.e. intersecting terms) in the DAGs of t,and ¢, to the semantic values of ¢t;and
t,. For the functional similarity, on the other hand, four different types are adopted to

calculate FS. These are: best match average similarity (BMA), average of best match similarity
(ABM), maximum similarity (Max), and average inter-set similarity (Avg) in Eq. 7 — Eq. 10
[16]. The overall component of the proposed EA with the proposed heuristic model is then
presented in Algorithm 1.

maxyeier; LvezeT; SSta,t2 +MaAxvezer Ltier; SSta ez

FSPi,P]' = |Ti|+|Tj| (7)

FS _ Lveiery maX(SSm,tz|t2eTj)+2vtzeTj max(sstl,t2|tleTi) g

Pi’Pj - |Ti|+|Tj| ( )

FSp.p; = max(SS;y ;) [t1 €T, t2 € T 9)
Yvt1eT; t2€T ; SSe1 2

FSp p. = - 10

Pl’P] |Tl'|X|T]'| ( )

Algorithm 1: EA with GO-aware crossover operator
Input: 1) PPI network: V'(n, E), GO database
2) population size: pop — size and maximum number of generations gen,,, 4

1982



Abdulateef et al. Iragi Journal of Science, 2023, Vol. 64, No. 4, pp: 1975-1987

3) EA operators and their probabilities: s, Wy, ¥y, Px, Pm
Output: Best individual solution I,,.;

1 initialize T «— {Iy, Iy, ..., Ipop—size}:

2 gen «0;

3 evaluate Q for each individual in the population {Q;, Q,, .., Qpop—size };
4 while (gen < geny,,,) do

5 for i « 1to pop — size do

6 1; 1(t) < select(l;(gen)); /I select parent 1 for I;
7 I;5(t) « select(I;(gen)); /I select parent 2 for I;
8 I;(gen) « Weox (i1 (gen), I;2(gen), px);

9 Ii(gen) « Wi, (I;(gen), pm);

10 evaluate Q(I;(gen));

11 end for

12 gen «— gen + 1,

13 end while

14 return I, € I(gen) with maximum Q;

4. Results and discussions
A vyeast Saccharomyces cerevisiae PPI network is used in the performance

evaluation. The filtered version of this network contains m = 4687 interactions for
n =990 proteins. The GO terms assigned to the proteins are taken from the
Saccharomyces Genome Database (SGD). The 990 proteins are annotated with GO
terms for a total of 1245 BP, 452 CC, and 541 MF. To validate the quality of the
predicted complexes, a benchmark gold standard complex set drawn from the
Munich Information Center for Protein Sequence (MIPS) catalog is used in the
experiments. This benchmark standard complex set contains 859 proteins
partitioned into 81 protein complexes. The GO terms assigned to the proteins and

their DAGs were downloaded from the Saccharomyces Genome Database (SGD) in
URL.: http://genome-www.stanford.edu/Saccharomyces/ in the period June 2021 - April 2022.

The common measures of recall, precision, and cumulative F measure at both
complex and protein levels are used in the evaluation. Figures 2 and 3 clarify the

performance of the tested algorithms for average of 30 different runs. Note that

Jaccard similarity score between a benchmark complex C* and a predicted complex C (which
is defined as the ratio of mutual proteins in C* and C to the size of the set that contains all
lc ncs)?
¢ Jic+l”

Then C is said to be a true predicted complex. In other words, OS scores how effectively a
predicted complex matched a complex from the benchmark set of complexes. In the
experiments, OS is set from 0.1 to 0.8 in increment steps of 0.05.

proteins of C+ and C) should be at least equals an overlapping score 0S(C ,C *) =

For the performance comparison of EAs with the proposed GO-aware crossover

operators, the results depicted in Figures 3 and 4 were obtained. The EAs with the
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two variants of the proposed GO-aware crossover operators outperform the
canonical EA (with the simple topological-based crossover operator) in almost all
evaluation metrics and at both complex level and protein level due to the additional
improvement capabilities introduced by the functional information. The
hybridization capabilities of the GO-based crossover operator and other topological
or canonical based operators, in the results, is proved to sufficiently locate more
accurate complex partitions, in terms of functional structures, from the search space
and to regulate the average size of complexes under more desirable functional

structures.

Although, EA with the canonical operators seemingly better in terms of Precision
(Figure 3) at the complex level, this behavior is not completely valid. To be more
precise, the complex needs to be examined at a closer level, i.e., at the protein level.
Then, the results in Figure 4 reveal that the introduction of GO information has no

difficulties to achieve high values in all evaluation metrics at the protein level.

Further, the results in Table 1 report additional results which interpret the
benefit that can come from designing GO-aware EA operators. The results in Table
1 compare the performance of the proposed GO-aware EA against other state-of-
the-art non EAs, EAs with topological-aware operators proposed in [9], and a recent
EA with different single-objective models and GO-based mutation operator

proposed in [11]. Here, all EA-based methods are set to the following, more or less,

commonly used settings. Population size, pop — size, is set to 100. The maximum number of
generations used to stop the evolutionary process is set to 100 (i.e. 10000 function evaluations).
Control parameters for the main evolutionary operators are set to the following: the probability
of the uniform crossover, pc = 0.8, the probability of the mutation operator, pm = 0.2, and the

probability of the GO-based mutation operator is also set to pm = 0.2. Further, for the
proposed GO-aware EA, the results are reported using Jaccard semantic similarity.

The first and second best results in each evaluation metric are indicated with bold.
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Figure 4: Performance comparison in terms of protein level Recall (left), Precision (middle),
and F measure (right) for average of 30 different runs of canonical EA with topology aware
crossover (denoted as EA) against the proposed EAs with GO aware crossover operators: with
Jaccard similarity (EA-Xjaccard), With Dice similarity (EA-Xpice), With best match average
similarity (EA-Xgwma), With average of best match similarity (EA-Xasm), With maximum
similarity (EA-Xwmax), and with average similarity (EA-Xavg).

The results reflect that the investment in the functional domain reinforces the

proposed EA with GO-aware crossover to outperform the counterpart algorithms.
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In other words, this indicates the implicit ability of the proposed GO-based
crossover operator to maintain an adequate partitioning of the proteins into more
accurate complex structures. More interestingly, the proposed GO-based EA with
modularity-based model outperforms (in terms of Recall and F measure) the
counterpart GO-based EAs proposed in [11], even, with other single-objective

models.

Table 1: Comparison of performance in terms of complex level Recall, Precision, and F

measure with overlapping score equals to 0.2. Here, 1% group: some well-known non EAs, 2"
group: topological-based based EAs proposed in [9], 3" group: GO-based EAs proposed in

|11|, and the EroEosed EA with GO-based crossover operator.

name Year [Ref.] recall precision F Measure
RNSC 2004[22] 08490  0.2650 0.4039
MCODE  2003[23] 06700  0.6250 0.6467
MCL 2002 [24] 08230  0.5390 0.6514
LC 2010[25] 04950  0.0410 0.0757
0CG 2012[26] 08380  0.6150 0.7094
RanCoC  2012[27]  0.0000  0.0000 0.0000
CPM 2005[28] 05850  0.6170 0.6006
ELC 2013[29] 05910  0.6479 0.6181
NDOCD  2016[30] 0.7830  0.7000 0.7392
EA-Q 2014[8] 08103  0.6453 0.7181
EA-CO 07462  0.6793 0.7108
EA-EX 0.8474  0.6073 0.7073
EA-CR 07538  0.6742 0.7110
EA-NC 07513  0.6839 0.7157
EA-ID 08282  0.6139 0.7048
EA-CS 08564  0.6196 0.7188
EA-Q 2020 [11] 07910  0.7473 0.7682
EA-CO 07923  0.7583 0.7744
EA-EX
EA-CR 07577  0.7567 0.7569
EA-NC 07821  0.7567 0.7687
EA-ID 0.7885  0.7643 0.7760
08256  0.6940 0.7533
EA-Qx 08610  0.6890 0.8650

5. Conclusions
Although the need for GO heuristic operators to improve the performance of

evolutionary-based complex detection algorithms is unquestionable, this trend of

researching is seldom examined in the literature. In this paper, an EA with a GO-
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aware crossover operator is proposed in an attempt reach more reliable results.
From the results, future research can be recommended while underscoring new
design methodology. These new research directions would help to fill up the
relatively empty map between the biological domain and the topological domain
for protein complexes. For example, semantic similarity measures can be studied
and applied to other biological ontologies, such as Sequence Ontology, Microarray
and Gene Expression Data Ontology. For example, the availability of time course
gene expression profile enables us to uncover the dynamics of molecular networks

and improve the detection of protein complexes.
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