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Abstract 

     Evolutionary algorithms (EAs), as global search methods, are proved to be more 

robust than their counterpart local heuristics for detecting protein complexes in 

protein-protein interaction (PPI) networks. Typically, the source of robustness of 

these EAs comes from their components and parameters. These components are 

solution representation, selection, crossover, and mutation. Unfortunately, almost all 

EA based complex detection methods suggested in the literature were designed with 

only canonical or traditional components. Further, topological structure of the protein 

network is the main information that is used in the design of almost all such 

components. The main contribution of this paper is to formulate a more robust EA 

with more biological consistency. For this purpose, a new crossover operator is 

suggested where biological information in terms of both gene semantic similarity and 

protein functional similarity is fed into its design. To reflect the heuristic roles of both 

semantic and functional similarities, this paper introduces two gene ontology (GO) 

aware crossover operators. These are direct annotation-aware and inherited 

annotation-aware crossover operators. The first strategy is handled with the direct 

gene ontology annotation of the proteins, while the second strategy is handled with 

the directed acyclic graph (DAG) of each gene ontology term in the gene product. To 

conduct our experiments, the proposed EAs with GO-aware crossover operators are 

compared against the state-of-the-art heuristic, canonical EAs with the traditional 

crossover operator, and GO-based EAs. Simulation results are evaluated in terms of 

recall, precision, and F measure at both complex level and protein level. The results 

prove that the new EA design encourages a more reliable treatment of exploration and 

exploitation and, thus, improves the detection ability for more accurate protein 

complex structures. 

 

Keywords: Evolutionary algorithm; gene ontology; protein complex; protein-protein 
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 خلاصة:ال
( ، كطرق بحث عامة ، أنها أكثر قوة من أساليب البحث المحلية  EAsأثبتت الخوارزميات التطورية )        

 ( البروتين  البروتين  تفاعل  شبكات  في  البروتينية  المركبات  هذه  PPIلاكتشاف  قوة  مصدر  يأتي  ما  عادةً   .)
الخوارزميات من مكوناتها. هذه المكونات هي تمثيل الحل، والاختيار، خلط الحلول، والطفرة. مع هذه الأهمية  

تقريبًا    EAيمها في الأدبيات والقائمة على  ولسوء الحظ ، أغلب طرق أكتشاف المركبات البروتينية والتي تم تصم 
الطوبولوجية   البنية  فإن  تقليدية فقط. علاوة على ذلك ،  مُقترحة الأدبيات باستعمال مكونات أساسية أو  كانت 
لشبكة البروتين هي المعلومات الرئيسية المستخدمة في تصميم جميع هذه المكونات تقريبًا. المساهمة الرئيسية  

أكثر قوة مع مزيد من الاتساق البيولوجي. لهذا الغرض، تم اقتراح عامل كخلط    EAصياغة  لهذا البحث هي  
حلول جديد حيث يتم تغذية المعلومات البيولوجية من حيث التشابه الدلالي الجيني والتشابه الوظيفي للبروتين في  

(، ألأول  GOوجود الجيني ) تصميمه. وعلى هذا الأساس، نقدم اثنين من مشغلي خلط الحلول المدركين لعلم ال
يتعامل مع أوجه التشابه الجيني بين البروتينات بشكل  مباشر، بينما يتم التعامل مع الإستراتيجية الثانية باستعمال  

(. لإجراء تجاربنا، تتم مقارنة الخوارزمية المقترحة مع الخوارزميات  DAGالرسم البياني غير الدوري الموجه ) 
  ات التطورية المتعارف عليها مع مشغل خلط الحلول التقليدي و الخوارزمي  اتارزميو لخذات التوجيه المحلي و ا 

على كل من    Fالتطورية المبنية على أساس علم الجينات. يتم تقييم المحاكاة من حيث الاسترجاع والدقة وقياس  
يشجع على معالجة أكثر  الجديد    EAالمستوى المركب البروتيني وعلى مستوى البروتين. أثبتت النتائج أن تصميم  

   موثوقية للاستكشاف والاستغلال ، وبالتالي ، يحسن القدرة على الكشف بأكثر دقة عن الهياكل المركبة للبروتين.
 

1. Introduction 

      Execution of a genetic program, including those with harmful genes and encoded proteins 

for example COVID-19, has a very harmful effect. Actually, protein complexes and functional 

modules are formed as a physical aggregations and molecular interactions of different protein-

protein interactions (PPIs), and protein-protein interaction networks (PPINs). Thus, 

identification of protein complexes (or functional modules) is a critical problem in biology 

systems in any living organism. Typically, detecting protein complexes from PPIN, and 

generally, the areas of identifying a priori unknown building blocks from complex networks is 

known as bi-clustering or co-clustering problem [1, 2]. It is defined as a natural division of a 

complex network which follows a general heterogeneous connections rule, known as modules 

or communities where a densely intra-connected module of nodes is also sparsely inter-

connected with other modules [3]. Bi-clustering problem is recently reporting an increasing 

interest. Unfortunately, akin to many real-world optimization problems, the computational 

complexity of protein complex detection problem falls into the category of non-deterministic 

polynomial time hard (NP-hard) problems [4, 5].  

  

      Unlike heuristic, metaheuristics and evolutionary algorithms (EAs) are proved to be a 

sustainable alternative to solve NP-hard problems while accommodating their combinatorial 

explosion [6, 7]. For complex detection problem, Pizzuti and Rombo in 2014 [8] were the first 

to show that evolutionary based complex detection methods are more robust than other state-

of-the-art heuristic-based complex detection methods. Unfortunately, almost the design of the 

main components of all these EA-based complex detection methods is either canonical or 

guided by a general topological characteristic of communities and modules. For example, 

Pizzuti and Rombo [8] expressed a canonical single objective EAs to detect protein complexes 

and showed the encouraging performance of EAs to outperform the counterpart heuristic 

methods. Another EA-based complex detection algorithms were proposed in [9] and [10]. 

However, in both algorithms a topological-based mutation operator is designed. The basic idea 

of the designed topology-aware mutation operator is to breakdown the coexistence of a pair of 

proteins according to their topological similarity. Their interactions can serve for either intra-

delineation topology or inter-delineation topology. The design of an EA with a topology-based 
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component (e.g., mutation operator in [9] and [10]) is proved to harnesses the detection ability 

of several single and multi-objective topology-based optimization models (such as modularity, 

community fitness, community score, conductance, expansion, internal density, inter-score and 

intra-score, normalized cut, negative ration association, and ratio cut).  

Unfortunately, the current effort in literature to design evolutionary-based complex detection 

methods with gene ontology (GO) aware components is still lagging behind. Only a few works 

in literature examine incorporation of GO semantic similarity into design of evolutionary 

algorithms. Recently, the authors in [11] adopted the EA of Pizzuti and Rombo [8] with their 

single-objective models and the topological-based migration operator of Attea and Q. Z. 

Abdullah [9]. However, they reflect similarity values of the Gene Ontology Consistency (GOC) 

metric to let the migration operator to find the elected complexes for the mutated proteins.       

 

      The key contribution of this paper is to design an evolutionary-based complex detection 

algorithm with GO-aware crossover operator. The proposed crossover operator is viewed with 

two different manifestations of GO-based heuristics. The remaining of this paper is organized 

as follows. Section 2 presents a brief introduction to the graph and ontology means of PPI 

networks. This is followed by Section 3 while introducing the proposed EA with GO-aware 

crossover operator. Two formulations are suggested for the proposed GO-aware crossover 

operator. The results and discussions are provided in Section 4, demonstrate that it is curious 

enough to develop an EA with only non-ontology-based complex detection algorithms. Finally, 

conclusions and future directions are provided in Section 5. 

 

2. Preliminary concept 

      A protein-protein interaction network (PPIN) is generally formulated as a finite 

heterogeneous network 𝒩(𝑛, 𝔼) of a set of 𝑛 proteins (i.e. ℙ = {𝑃1, 𝑃2, … , 𝑃𝑛}) and a set of 𝑚 

interactions connecting pairs of proteins (i.e. 𝔼 = {𝐸1, 𝐸2, … , 𝐸𝑚}). Thus,  𝒩 is mathematically 

expressed as a graph 𝒢 of a set of 𝑛 vertices and 𝑚 edges. For a protein or vertex 𝑃𝑖, its degree, 

𝑑𝑖, is defined as the number of interactions incorporating 𝑃𝑖. Further, the data representation of 

the graph 𝒢 is usually denoted as a square, symmetric and binary matrix called adjacency matrix 

Α = [𝑎𝑖,𝑗]𝑛×𝑛, where protein pair 𝑃𝑖 and 𝑃𝑗 are adjacent, and thus 𝑎𝑖,𝑗 = 1 when there is an 

interaction between 𝑃𝑖 and 𝑃𝑗, otherwise, 𝑎𝑖,𝑗 = 0.  

 

      Note that, the adjacency matrix Α contains all possible decompositions of the network 𝒩 

into different number of square sub-matrices with different sizes. For complex detection 

problem, the main challenge is that the number of complexes, 𝐾, used to partition a PPI network 

is unknown. However, a protein 𝑃𝑖 in a complex 𝐶 can be quantified by the degree of its intra-

connections with other proteins within 𝐶 and inter-connections with proteins in other complexes 

[8] [9].   

 

       Gene Ontology (GO) is the most common biology-focused and animated controlled 

vocabulary (CV) devoted to the functional annotation of proteins (i.e. gene products) in a 

cellular context and a species independent manner [12]. In CV, each GO term, 𝑡, is assigned a 

unique alphanumeric code (e.g., ’YMR091C’,   ’YLR033W’, ’YMR033W’, ’YPR023C’, 

’YDR073W’, ’YFL049W’, ’YGR275W’, ’YJL002C’, ’YMR149W’, ’YNL078W’,  and  

’YML112W’) and is used to annotate genes and gene products (i.e. proteins). GO is divided 

into three sub-ontologies. These are Molecular Function (MF), Biological Process (BP), and 

Cellular Component (CC). Then, the statement of a connection between a type of gene product 

and the types designated by terms in the GO is called a GO annotation (GOA) [13, 14]. In other 

words, gene products are annotated with GO terms, either directly or through inheritance (true 

path rule), since annotation to a given term implies annotation to all of its ancestors.  
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Each sub-ontology is represented by a network or an independent directed acyclic graph (DAG), 

where individual GO terms that describe components of a gene product function are nodes in 

the DAG and connected by directional edges [15]. These directional edges are most commonly 

of the types ‘is_a’ and ‘part of’, where the ‘is_a’ denotes a simple class–subclass relationship 

and ‘part of’ denotes a part–whole relationship. Also, in DAG, each node may have more than 

one parent as well as zero, one, or more children. For example, consider the DAG in Figure 1. 

The DAG is for a GO term of BP sub-ontology (septum digestion after cytokinesis: 0000920). 

It represents the DAG for septum digestion after cytokinesis GO: 0000920 BP term. Other terms 

(nodes in the DAG) represent functional feature description, while the directional edges form 

relations between the terms. 

  

       Two types of semantic similarity can be obtained from 𝑛 proteins annotated with 𝑁 GO 

terms. These are term semantic similarity (𝑆𝑆) and functional similarity (𝐹𝑆). Term semantic 

similarity (𝑆𝑆) quantifies the specificity of terms and the closeness or relatedness and difference 

between terms within an ontology. Thus, from 𝑁 terms, a semantic-based square similarity 

matrix 𝑆 = [𝑆𝑆𝑖,𝑗]𝑁×𝑁 is obtained, where 𝑆𝑆𝑖,𝑗 quantifies the semantic similarity between GO 

term 𝑡𝑖 and GO term 𝑡𝑗. In protein-level annotation, two sets of GO terms within a specific 

category (i.e. MF, BP, or CC) are required to assess the functional similarity (𝐹𝑆) between two 

proteins. The functional similarity quantifies the functional similarity between pair of proteins 

based on their GO terms. Similarly, for 𝑛 proteins, a functional-based square similarity matrix 

𝐹 = [𝐹𝑆𝑖,𝑗]𝑛×𝑛 can be constructed, where 𝐹𝑆𝑖,𝑗 quantifies the functional similarity between 

protein 𝑃𝑖 and protein 𝑃𝑗.  

 

 
 

Figure 1: DAG for a GO term of BP sub-ontology (septum digestion after cytokinesis: 

0000920). 

 

      Broadly speaking, functional similarity, 𝐹𝑆, can be divided into two approaches: pairwise 

and group-wise [15, 16]. In pairwise approaches, 𝐹𝑆 between two proteins, 𝑃1 and 𝑃2, with their 

annotating terms, 𝑇𝑃1
 and 𝑇𝑃2

, respectively, is evaluated by combining the semantic similarity, 

𝑆𝑆, of the pairwise terms in 𝑇𝑃1
 and 𝑇𝑃2

. Pairwise combination approach could use all pairs or 
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best pairs methods. A global 𝐹𝑆 is then statistically obtained (with average, sum, maximum, or 

minimum threshold). Some of the well-known 𝐹𝑆 closeness measures are average inter-set 

similarity, maximum similarity, and average of maximum similarity. 

 

      Group-wise similarity measures, on the other hand, can be further classified into set-based, 

graph-based, and vector-based. Set-based methods consider only direct annotations for gene 

products while holding off the impact of the shared ancestry between GO terms. In set-based 

methods, only traditional cardinality-based similarity measures such as Jaccard and Dice 

measures are used. Several graph matching methods and set similarity measures such as term 

overlap and normalized term overlap are developed for graph-based approaches. In vector-

based approaches, proteins are described as binary or weighted vectors of GO terms. For 

example, inverse document frequency is associated as a weight for each GO term counting the 

number of occurrence of this GO term in the whole corpus of gene products [17]. 

 

3. The proposed EA with GO-aware crossover operator 

       Any Evolutionary Algorithm (EA) is simply defined as a search mechanism to find the 

most applicable solution from a set of all possible solutions for the problem at hand. An EA 

searches for good solutions while iteratively evaluates a population of individual solutions, and 

performs three main evolutionary operators (i.e. selection, crossover, and mutation). The 

canonical design of these operators (particularly crossover and mutation) can be used as general 

operators for almost all types of optimization problems. However, for a particular problem, the 

problem-specific design of such evolutionary operators would then determine the characteristic 

of the adopted EA and would improve its performance. In this section, the definition of an EA 

with all its components is defined while the formulation of all its components (including the 

crossover operator) is relaxed for the purpose of complex detection problem in PPI networks.  

 

3.1 Canonical EA for complex detection problem 

     In the adopted EA, the locus-based representation of Handl and Knowles [14] [19] is 

adopted. A population, 𝕀 = {𝐼1, 𝐼2, … , 𝐼𝑝𝑜𝑝−𝑠𝑖𝑧𝑒}, of 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 individual solutions out of the 

whole search space size is first identified and then initialized. An individual or chromosome 

solution 𝐼 from 𝕀 is defined as a complete solution being encoded with a finite set of 𝑛 genes. 

It is worth to mention here that one should distinguish between the term “gene” used as the 

smallest sub-solution of a chromosome solution in EA terminology and the term “gene” used 

as a set of GO terms to semantically represent a protein or gene product. Each gene in 𝐼 is 

simply the smallest sub-solution from the solution 𝐼 and is defined by its location or index 

(usually known as locus) and its content or value (usually known as allele). Thus, for complex 

detection problem, an individual solution 𝐼𝑖| 1≤𝑖≤𝑝𝑜𝑝−𝑠𝑖𝑧𝑒 is formulated as 𝐼𝑖 = {𝐼𝑖,1, 𝐼𝑖,2, … , 𝐼𝑖,𝑛}, 

where each sub-solution (i.e., gene) 𝐼𝑖,𝑗 is expressed as protein to protein complex-neighbor 

sub-solution.  𝐼𝑖,𝑗 is defined by its locus (protein 𝑃𝑖) and its allele (protein 𝑃𝑗) where 𝑃𝑖 and 𝑃𝑗 

should have an interaction (i.e. 𝑎𝑖,𝑗 = 1). This will result in locating proteins 𝑃𝑖 and 𝑃𝑗 within 

the same complex 𝐶𝑘.  

 

      The decoding function 𝛿 of individual 𝐼 will determine the number of the complexes and 

outline their structure, i.e. 𝛿(𝐼): 𝒞 = {𝐶}𝑖=1
𝐾 . By its nature, the locus-based representation can 

automatically determine the number of complexes, 𝐾, being encoded in each individual 𝐼. 

Consider locus 𝑖 is assigned with allele 𝑗. This means that protein 𝑖 and protein 𝑗 will be in the 

same complex 𝐶.  Then, decoding an individual solution 𝐼 will figure out one complete solution, 

𝒞 = {𝐶1, 𝐶2, … , 𝐶𝐾}, of a set of 𝐾 complexes from the search space. Recall that the number of 

complexes, 𝐾, can differ from one solution 𝒞𝑖 for chromosome 𝐼𝑖 to another solution 𝒞𝑗 for 
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chromosome  𝐼𝑗, where 1 ≤ 𝑖, 𝑗 ≤ 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒.  As an illustrative example, consider Figure 2, 

where a PPI network of 990 proteins and 4687 different interactions is encoded into four 

different chromosome solutions. These solutions were decoded into their corresponding 

phenotype solutions with different number of complexes, 𝐾. Further, two complexes in each 

solution are also enlarged in the figure to clarify the intra- and inter-connections. One protein 

(#79) with its intra- and inter-connections in two candidate solutions is also enlarged in the 

figure. 

 

   
 

Figure 2: An illustrative example clarifying the partitioning of Yeast PPI network with 990. 1) 

Top: the phenotypic representation of four different chromosome solutions in a form of network 

partitions with varying number of complexes (𝐾). Middle: the enlargement of two complexes 

with blue and red colors. Bottom: the enlargement of the intra-connections (blue) and inter-

connections (red) of one protein (protein number 79)  

 

      For a PPI network 𝒩 of 𝑛 proteins and 𝑚 interactions, first, the population 𝕀 is initialized 

randomly, such that in each locus and in each chromosome (i.e., 𝐼𝑖,𝑗| 1≤𝑖≤𝑝𝑜𝑝−𝑠𝑖𝑧𝑒 ∧1≤𝑗≤𝑛), the 

allele is randomly initialized, such that 𝑃𝑖 has an actual interaction with protein 𝑃𝑗.   

 

      Once the population is created, their individuals are evaluated according to the complex 

detection problem. The general characteristic a complex structure follows a complex 

community or module. Newman-Girvan modularity (𝑄) [20] for a candidate complex solution 

𝒞 with 𝐾 complexes is defined as: 
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𝑄(𝒞) = ∑ [
(𝐶𝑘)−

𝑚

𝑚
− (

∑ 𝑚𝑖𝑃𝑖∈𝐶𝑘

2𝑚
)2]𝐾

𝑘=1               (1) 

 

     where 𝑚 (as defined previously) is the total number of interactions in 𝒩, (𝐶𝑘)−
𝑚  is the 

number of intra-connection within complex 𝐶𝑘, and 𝑚𝑖 is the number of interactions (degree) 

of protein 𝑃𝑖. Thus, the main characteristic of 𝑄 is its implicit definition for a single intra-

complex score rather than a single intra- and inter-complex score.    

 

      Then, a set of good set of parent solutions is selected using binary tournament selection and 

used to evolve by perturbation (i.e., crossover, Ψ×, and mutation, Ψ𝑚, operators) further 

solutions to create better child individuals. The combined sequence of evaluation, selection, 

crossover, and mutation is then applied for a maximum number of generations, 𝑔𝑒𝑛𝑚𝑎𝑥, and 

the best individual solution 𝐼𝑏𝑒𝑠𝑡 (with its decoded complex structure  𝒞𝑏𝑒𝑠𝑡) reached in 𝑔𝑒𝑛𝑚𝑎𝑥 

is finally adopted as the required solution to the problem.  

 

      The canonical definition of uniform crossover, Ψ×, can be expressed as follows: Consider 

two chromosomes 𝐼1: (𝐼1,1, 𝐼1,2, … , 𝐼1,𝑛) and 𝐼2: (𝐼2,1, 𝐼2,2, … , 𝐼2,𝑛) to be the two parents 

participating in the crossover. With a specified crossover probability, 𝑝×, a child 

𝐼′: (𝐼1
′ , 𝐼2

′ , … , 𝐼𝑛
′ ) can be generated from the two parents by mixing their alleles, uniformly (i.e. 

with equal chance), at each  gene. This can be formally defined by: Ψ×: (𝐼1, 𝐼2, 𝑝×) → 𝐼′  

∀𝑖| 1 ≤ 𝑖 ≤ 𝑛: 

𝐼𝑖
′ = {

𝐼1,𝑖   𝑖𝑓 𝑟 ≤ 0.5

 𝐼2,𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (2) 

 

     where 𝑟~[0,1] is a uniform random number. Generally, crossover probability, 𝑝×, is set 

high, e.g., 𝑝× = 0.6. 

 

       For mutation operator, Ψ𝑚, a small variation could occur to the generated child 𝐼𝑖 after 

crossover. The canonical mutation operator imitates the traditional allele-aware mutation 

operator to change, with typically a small mutation probability, 𝑝𝑚, the allele value of a selected 

locus 𝐼𝑖,𝑗  to another neighborhood protein. Again, the new allele value should represent one of 

the proteins that have interactions with protein 𝑃𝑗  This can formally be specified as: 

Ψ𝑚: (𝐼𝑖| 1≤𝑖≤𝑝𝑜𝑝−𝑠𝑖𝑧𝑒 , 𝑝𝑚) → 𝐼𝑖
′  

∀𝑗|1 ≤ 𝑗 ≤ 𝑛 ⋀ 𝑟 ≤ 𝑝𝑚: 

 𝐼𝑖,𝑗
′ = 𝑗′|(𝑖, 𝑗′) ∈ 𝔼                   

(3) 

where 𝑟~[0,1] is a uniform random number.  

 

3.2 An EA with the proposed GO-aware crossover operator  

       Designing an EA with appropriate operators that are tailored specially for complex 

detection problem is essential and can harness performance of the algorithm. Unfortunately, 

little effort is found in literature for designing EAs with GO-aware operators. The canonical 

crossover operator formulated in Eq. 2 is used in almost all EA-based complex detection 

algorithms. Actually, it is a variation operator working on the genotype representation, 

completely overpassing the semantic code. It uniformly inherits the topological information 

from two individual parents. However, to let this uniform crossover to respect the semantic and, 

thus, the functional information of the encoded parents, one can re-define the uniform crossover 

as a GO-based crossover, Ψ𝐺𝑂−×, as follows:  

Ψ𝐺𝑂−×: (𝐼1, 𝐼2, 𝑝×) → 𝐼′  
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∀𝑖| 1 ≤ 𝑖 ≤ 𝑛:  

 

𝐼𝑖
′ = {

𝐼1,𝑖   𝑖𝑓 𝐹𝑆𝑃𝑖,𝐼1,𝑖
> 𝐹𝑆𝑃𝑖,𝐼2,𝑖

 𝐼2,𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
              (4) 

where 𝐹𝑆 is the functional similarity between two proteins.  

 

      In the proposed GO-aware crossover operator, two types for finding 𝐹𝑆 are used. These are:  

1- Direct annotation scheme, which directly annotates each protein based on its direct GO terms. 

2- Direct and inherited annotation scheme, which annotates each protein based on its direct GO 

terms and their ancestors in the DAGs.  

For the first type of annotation, Jaccard similarity (Eq. 5) and Dice similarity (Eq. 6) are used 

to compute the functional similarity between two sets of GO terms, 𝑇𝑖 and 𝑇𝑗, of, respectively, 

two proteins, 𝑃𝑖 and 𝑃𝑗 [16].  

𝐹𝑆𝑃𝑖,𝑃𝑗
=

|𝑇𝑖∩𝑇𝑗|

|𝑇𝑖∪𝑇𝑗|
                 (5) 

 

𝐹𝑆𝑃𝑖,𝑃𝑗
=

2×|𝑇𝑖∩𝑇𝑗|

|𝑇𝑖|+|𝑇𝑗|
                                                    (6) 

     The second type, however, Wang et al. [21] method is used to compute semantic 

similarity between two GO terms. A GO term 𝑡 is assigned with a semantic value 

𝑆(𝑡) from the aggregation of the semantic contribution, 𝑆𝐶(𝐷𝐴𝐺(𝑡)) of all its 

ancestors passing their best weighted paths to 𝑡. The best weighted path of each 

ancestor is the path with the maximum product of the weights on its edges (they 

set 0.8 and 0.6 for ‘is a’ and ‘part of’, respectively). Then, the semantic similarity (𝑆𝑆𝑡1,𝑡2) 

between two GO terms, 𝑡1and 𝑡2, is defined as the ratio of the semantic contributions of all 

common terms (i.e. intersecting terms) in the DAGs of 𝑡1and 𝑡2 to the semantic values of 𝑡1and 

𝑡2. For the functional similarity, on the other hand, four different types are adopted to 

calculate 𝐹𝑆. These are: best match average similarity (𝐵𝑀𝐴), average of best match similarity 

(𝐴𝐵𝑀), maximum similarity (𝑀𝑎𝑥), and average inter-set similarity (𝐴𝑣𝑔) in Eq.  7 – Eq. 10 

[16]. The overall component of the proposed EA with the proposed heuristic model is then 

presented in Algorithm 1. 

 

𝐹𝑆𝑃𝑖,𝑃𝑗
=

𝑚𝑎𝑥∀𝑡1∈𝑇𝑖
∑ 𝑆𝑆𝑡1,𝑡2+𝑚𝑎𝑥∀𝑡2∈𝑇𝑗

∑ 𝑆𝑆𝑡1,𝑡2∀𝑡𝑖∈𝑇𝑖∀𝑡2∈𝑇𝑗

|𝑇𝑖|+|𝑇𝑗|
              (7) 

𝐹𝑆𝑃𝑖,𝑃𝑗
=

∑ max(𝑆𝑆𝑡1,𝑡2|𝑡2∈𝑇𝑗
)+∑ max(𝑆𝑆𝑡1,𝑡2|𝑡1∈𝑇𝑖

)∀𝑡2∈𝑇𝑗∀𝑡1∈𝑇𝑖

|𝑇𝑖|+|𝑇𝑗|
             (8) 

𝐹𝑆𝑃𝑖,𝑃𝑗
= max(𝑆𝑆𝑡1,𝑡2) |𝑡1 ∈ 𝑇𝑖, 𝑡2 ∈ 𝑇𝑗              (9) 

𝐹𝑆𝑃𝑖,𝑃𝑗
=

∑ 𝑆𝑆𝑡1,𝑡2∀𝑡1∈𝑇𝑖,𝑡2∈𝑇𝑗

|𝑇𝑖|×|𝑇𝑗|
              (10) 

 

 

Algorithm 1: EA with GO-aware crossover operator 

Input: 1) PPI network: 𝒩(𝑛, 𝐸), GO database  

            2) population size: 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 and maximum number of generations 𝑔𝑒𝑛𝑚𝑎𝑥 
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            3) EA operators and their probabilities: 𝑠, Ψ×, Ψ𝑚, 𝑝×, 𝑝𝑚 

Output: Best individual solution  𝐼𝑏𝑒𝑠𝑡 

1 initialize 𝕀 ⟵ {I1, I2, … , I𝑝𝑜𝑝−𝑠𝑖𝑧𝑒};  

2 𝑔𝑒𝑛 ⟵ 0; 

3 evaluate 𝑄 for each individual in the population {𝑄1, 𝑄2, … , 𝑄𝑝𝑜𝑝−𝑠𝑖𝑧𝑒};  

4 while (𝑔𝑒𝑛 ≤ 𝑔𝑒𝑛𝑚𝑎𝑥) do 

5  for 𝑖 ← 1 to 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 do 

6   𝐼𝑖,1(𝑡) ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝕀𝑖(𝑔𝑒𝑛)); // select parent 1 for 𝐼𝑖  

7   𝐼𝑖,2(𝑡) ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝕀𝑖(𝑔𝑒𝑛)); // select parent 2 for 𝐼𝑖 

8   𝐼𝑖(𝑔𝑒𝑛) ← Ψ𝐺𝑂×(𝐼𝑖,1(𝑔𝑒𝑛), 𝐼𝑖,2(𝑔𝑒𝑛), 𝑝×);    
9   𝐼𝑖(𝑔𝑒𝑛) ← Ψ𝑚(𝐼𝑖(𝑔𝑒𝑛), 𝑝𝑚);  

10   evaluate 𝑄(𝐼𝑖(𝑔𝑒𝑛)); 
11  end for 

12  𝑔𝑒𝑛 ⟵ 𝑔𝑒𝑛 + 1; 
13 end while 

14 return 𝐼𝑏𝑒𝑠𝑡 ∈ 𝕀(𝑔𝑒𝑛) with maximum 𝑄; 

 

4. Results and discussions 

     A yeast Saccharomyces cerevisiae PPI network is used in the performance 

evaluation. The filtered version of this network contains 𝑚 = 4687 interactions for 

𝑛 = 990 proteins. The GO terms assigned to the proteins are taken from the 

Saccharomyces Genome Database (SGD). The 990 proteins are annotated with GO 

terms for a total of 1245 BP, 452 CC, and 541 MF. To validate the quality of the 

predicted complexes, a benchmark gold standard complex set drawn from the 

Munich Information Center for Protein Sequence (MIPS) catalog is used in the 

experiments. This benchmark standard complex set contains 859 proteins 

partitioned into 81 protein complexes. The GO terms assigned to the proteins and 

their DAGs were downloaded from the Saccharomyces Genome Database (SGD) in 

URL: http://genome-www.stanford.edu/Saccharomyces/ in the period June 2021 - April 2022. 

The common measures of recall, precision, and cumulative F measure at both 

complex and protein levels are used in the evaluation. Figures 2 and 3 clarify the 

performance of the tested algorithms for average of 30 different runs. Note that 

Jaccard similarity score between a benchmark complex 𝐶∗ and a predicted complex 𝐶 (which 
is defined as the ratio of mutual proteins in 𝐶∗ and 𝐶 to the size of the set that contains all 

proteins of 𝐶∗ and 𝐶) should be at least equals an overlapping score 𝑂𝑆(𝐶 , C ∗) =
|𝐶 ∩C∗|

𝟐

|𝐶 ||C∗|
. 

      Then 𝐶 is said to be a true predicted complex. In other words, OS scores how effectively a 

predicted complex matched a complex from the benchmark set of complexes. In the 

experiments, OS is set from 0.1 to 0.8 in increment steps of 0.05. 

      For the performance comparison of EAs with the proposed GO-aware crossover 

operators, the results depicted in Figures 3 and 4 were obtained. The EAs with the 
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two variants of the proposed GO-aware crossover operators outperform the 

canonical EA (with the simple topological-based crossover operator) in almost all 

evaluation metrics and at both complex level and protein level due to the additional 

improvement capabilities introduced by the functional information. The 

hybridization capabilities of the GO-based crossover operator and other topological 

or canonical based operators, in the results, is proved to sufficiently locate more 

accurate complex partitions, in terms of functional structures, from the search space 

and to regulate the average size of complexes under more desirable functional 

structures.  

 

      Although, EA with the canonical operators seemingly better in terms of Precision 

(Figure 3) at the complex level, this behavior is not completely valid. To be more 

precise, the complex needs to be examined at a closer level, i.e., at the protein level. 

Then, the results in Figure 4 reveal that the introduction of GO information has no 

difficulties to achieve high values in all evaluation metrics at the protein level.  

 

        Further, the results in Table 1 report additional results which interpret the 

benefit that can come from designing GO-aware EA operators. The results in Table 

1 compare the performance of the proposed GO-aware EA against other state-of-

the-art non EAs, EAs with topological-aware operators proposed in [9], and a recent 

EA with different single-objective models and GO-based mutation operator 

proposed in [11]. Here, all EA-based methods are set to the following, more or less, 

commonly used settings. Population size, 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒, is set to 100. The maximum number of 

generations used to stop the evolutionary process is set to 100 (i.e. 10000 function evaluations). 

Control parameters for the main evolutionary operators are set to the following: the probability 

of the uniform crossover, 𝑝𝑐 = 0.8, the probability of the mutation operator, 𝑝𝑚 = 0.2, and the 

probability of the GO-based mutation operator is also set to 𝑝𝑚 = 0.2. Further, for the 

proposed GO-aware EA, the results are reported using Jaccard semantic similarity. 

The first and second best results in each evaluation metric are indicated with bold. 
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Figure 3: Performance comparison in terms of complex level Recall (left), Precision (middle), 

and F measure (right) for average of 30 different runs of canonical EA with topology aware 

crossover (denoted as EA) against the proposed EAs with GO aware crossover operators: with 

Jaccard similarity (EA-XJaccard), with Dice similarity (EA-XDice), with best match average 

similarity (EA-XBMA), with average of best match similarity (EA-XABM), with maximum 

similarity (EA-XMax), and with average similarity (EA-XAvg). 
 
 
 

 
 
Figure 4: Performance comparison in terms of protein level Recall (left), Precision (middle), 

and F measure (right) for average of 30 different runs of canonical EA with topology aware 

crossover (denoted as EA) against the proposed EAs with GO aware crossover operators: with 

Jaccard similarity (EA-XJaccard), with Dice similarity (EA-XDice), with best match average 

similarity (EA-XBMA), with average of best match similarity (EA-XABM), with maximum 

similarity (EA-XMax), and with average similarity (EA-XAvg). 

 

  

     The results reflect that the investment in the functional domain reinforces the 

proposed EA with GO-aware crossover to outperform the counterpart algorithms. 
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In other words, this indicates the implicit ability of the proposed GO-based 

crossover operator to maintain an adequate partitioning of the proteins into more 

accurate complex structures. More interestingly, the proposed GO-based EA with 

modularity-based model outperforms (in terms of Recall and F measure) the 

counterpart GO-based EAs proposed in [11], even, with other single-objective 

models.    

 

Table 1: Comparison of performance in terms of complex level Recall, Precision, and F 

measure with overlapping score equals to 0.2. Here, 1st group: some well-known non EAs, 2nd 

group: topological-based based EAs proposed in [9], 3rd group: GO-based EAs proposed in 

[11], and the proposed EA with GO-based crossover operator.  

                              𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 Metric 

Class name Year [Ref.] 𝒓𝒆𝒄𝒂𝒍𝒍 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

Non EA 

𝐑𝐍𝐒𝐂 2004 [22] 0.8490 0.2650 0.4039 

𝐌𝐂𝐎𝐃𝐄 2003 [23] 0.6700 0.6250 0.6467 

𝐌𝐂𝐋 2002 [24] 0.8230 0.5390 0.6514 

𝐋𝐂 2010 [25] 0.4950 0.0410 0.0757 

𝐎𝐂𝐆 2012 [26] 0.8380 0.6150 0.7094 

𝐑𝐚𝐧𝐂𝐨𝐂 2012 [27] 0.0000 0.0000 0.0000 

𝐂𝐏𝐌 2005 [28] 0.5850 0.6170 0.6006 

𝐄𝐋𝐂 2013 [29] 0.5910 0.6479 0.6181 

𝐍𝐃𝐎𝐂𝐃 2016 [30] 0.7830 0.7000 0.7392 

Topological-based based EA EA-Q 2014 [8] 0.8103 0.6453 0.7181 

EA-CO 0.7462 0.6793 0.7108 

EA-EX 0.8474 0.6073 0.7073 

EA-CR 0.7538 0.6742 0.7110 

EA-NC 0.7513 0.6839 0.7157 

EA-ID 0.8282 0.6139 0.7048 

EA-CS 0.8564 0.6196 0.7188 

GO-based EA EA-Q 

EA-CO 

EA-EX 

EA-CR 

EA-NC 

EA-ID 

2020 [11] 0.7910  0.7473 0.7682 

0.7923 0.7583 0.7744 

0.7577 0.7567 0.7569 

0.7821 0.7567 0.7687 

0.7885 0.7643 0.7760 

0.8256   0.6940 0.7533 

EA with GO-aware crossover EA-Qx  0.8610 0.6890 0.8650 

   

5. Conclusions 

    Although the need for GO heuristic operators to improve the performance of 

evolutionary-based complex detection algorithms is unquestionable, this trend of 

researching is seldom examined in the literature. In this paper, an EA with a GO-
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aware crossover operator is proposed in an attempt reach more reliable results. 

From the results, future research can be recommended while underscoring new 

design methodology. These new research directions would help to fill up the 

relatively empty map between the biological domain and the topological domain 

for protein complexes. For example, semantic similarity measures can be studied 

and applied to other biological ontologies, such as Sequence Ontology, Microarray 

and Gene Expression Data Ontology. For example, the availability of time course 

gene expression profile enables us to uncover the dynamics of molecular networks 

and improve the detection of protein complexes. 
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