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Abstract 
In this paper an improved weighted 0-1 knapsack method (WKM) is proposed to 

optimize the resource allocation  process when the sum of items' weight exceeds the 

knapsack total capacity .The improved method depends on a modified weight for 

each item to ensure the allocation of   the required resources for all the involved 

items. The results of the improved WKM are compared to the traditional 0-1 

Knapsack Problem (KP). The proposed method dominates on the other one in term 

of the total optimal  solution value of the knapsack  . 
Keywords: knapsack problem, dynamic programming ,optimal solution,resource 

allocation.   

 

 لأمثمية تخصيص الموارد(WKM)   1-0طريقة الحقيبة الموزونة المحسنة 
 

 سراء تحسين عمي ، علا عامر سعيد، إ*يمها عبد الكريم حمود الراو 
 .بغداد، العراق عموم الحاسوب، الجامعة التكنولوجية ،قسم 

 

 الخلاصة                       
لامثمية تخصيص الموارد في الحالات التي   1-0))نة المحسنة طريقة الحقيبة الموزو اقترحت هذه الورقة      

يتجاوز فيها مجموع اوزان المفردات التي تتضمنها الحقيبة لاجمالي قيمة الحقيبة . تعتمد هذه الطريقة المحسنة 
. وقد المشمولة ضمن المشكمة عمى  تعديل الوزن لكل مفردة لضمان تخصيص الموارد اللازمة لجميع المفردات

 م مقارنة نتائج تطبيق الطريقة المقترحة مع مشكمة الحقيبة  التقميديةت
الطريقة المقترحة عمى الطريقة الاخرى من حيث إجمالي قيمة الحل الامثل  اوضحت النتائج هيمنة ، و 0-1

 .لمحقيبة
 

Introduction 

     Today's world is characterized by technical, economic, social developments, big size of the 

installations, and ever changing business environment which led to the complexity and uncertainty. 
Rapid developments in various fields made an urgent need for adopting scientific and logical tools 

which help in decision making and solving problems that are faced by business organizations. 
One of the Dynamic Programming (DP) algorithms is Knapsack Problem method (KP), which enables 

decision-makers to derive optimal solutions that effectively contribute to the decision-making process. 

In this paper we suggested an improvement on traditional knapsack algorithm to concern with multi 

factors and resources that ensure optimal decision. 

     A problem frequently encountered is how to allocate limited resources to competing, necessary, 

and profitable items. These resources are frequently raw materials, workers, manufacturing times, or 

money that are needed to produce products. The optimal resource allocation requires specifying the 

total amount of the resources and their weights to be distributed for all the required items [1].  
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     The Knapsack problem(or rucksack problem) is a general resource allocation model in which a 

single resource is assigned to a number of alternatives with the objective of maximizing the total 

return. The model is one of the most important classes of applications of DP. The model is a 

distribution of effort problem that has a linear objective function and a single linear constraint [2]. 

     Suppose you have a bag that consists of several  items ( i= 1,2,3,...,n) carried  in bag ,each item has 

a weight (Wi) and profit (Pi ) obtained by putting items in bag , all Pi and Wi  are integer positive 

numbers. However the sum of weights for all items is less than the capacity (C)of the bag. This model 

determines the most valuable items to be carried in the bag and their quantities, weights, and profits 

[3].The KP model has been applied to many real life applications either a standalone model or as a 

combination of models[4]. 

Related work 

     The proposed method is concerned with specific topics of resource allocation that have been 

studied in related  literatures. 

     In1996, Yu Gang [5], studied the Max-Min Knapsack (MNK) problem as a NP-hard for an 

unbounded number of scenarios and pseudo polynomial solvable for a bounded number of scenarios. 

The effective of lower and upper bounds were generated by surrogate relaxation. The ratio of these 

two bounds is shown to be bounded by a constant for situations where the data range is limited to be 

within a fixed percentage from its mean. A branch-and-bound algorithm has been implemented to 

efficiently solve the MNK problem to optimality. 

     In 2009, Campegiani and Presti [6], suggested a generalization model of the classical 0/1 Knapsack 

Problem. They developed a heuristic to obtain very near optimum solutions in a timely manner.  

In 2013,Zhang et al. [7], proposed a new bio-inspired model to solve problems. The proposed method 

has three main steps. First, the 0-1 knapsack problem is converted into a directed graph by the network 

converting algorithm. Then, for the purpose of using the amoeboid organism model, the longest path 

problem is transformed into the shortest path problem. Finally, the shortest path problem can be well 

handled by the amoeboid organism algorithm. Numerical examples are giving to illustrate the 

efficiency of the proposed mode. 

     In 2015, Rooderkerk and Heerde[8],developed a robust approach to optimize retail assortments 

since retailers face the difficult task of designing a portfolio of products that balances risk and return. 

They proposed a novel, efficient and real-time heuristic depends on 0-1 Knapsack that solves the 

problem and offers an optimal balance. The heuristic constructs an approximation of the risk-return 

Efficient Frontier of assortments 

Problem Statement 

     The 0-1 knapsack problem is a combinatorial optimization problem . It derives its name from the 

problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most 

valuable items .Given a set of  items, each item has a weight (wi) and a profit (pi), The problem  

determines the quantity of each item to be  included in a knapsack so that the  total weight is less than 

or equal to a given limit, and the  total capacity value(C )of the problem could be as large as possible. 

Ander these assumptions, the general model of KP is formulated as in  the following equations [9]: 

 

Maximize           ∑     
 
   .....................................................................................................................(1) 

 

 

Subject to: ∑              
 
   ................................................................................................................(2) 

 

where 

 1    if the item i is selected  

xi: 

               0   if not. 

 

 

wi: the unite weight for item  i= 1, 2,3. . .,n 

pi: the unite profit  for item  i= 1, 2,3 . . . n 

C: the total capacity of Knapsack. 

http://repub.eur.nl/ppl/142023
http://repub.eur.nl/ppl/121859
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One-dimensional 0-1 KP (S,C) could be explained as follows : suppose there is combination S of a 0-1 

KP and n various items (i= 1, 2,3. . .,n) . Item ( i) obtained a profit pi ,  weight wi , and a capacity C.  

Where pi , wi and C are integer positive numbers, and (wn≤ C),where(n ≥ i ≥1) .  

 

Let fn(c) in equation (3) be the optimal solution for the problem [10]. 

 

fn(c)=max{fn-1* (C), fn-1* (C - wn)+pn} ....................................................................................... (3) 

 

 

This equation can be generalized as follows 

 

  ( )  {
      
      

.............................................................................................................................(4) 

  ( )     *    ( )     (    )    +              ...................................................................... (5) 

Where i=1,2,3.....,n 

 

A Single-processor Machine for the 0-1 knapsack problem in Dynamic Programming Method 
Dynamic Programming (DP) solves the problem by producing "f1, f2, …,fn" sequentially. As 

mentioned in the previous section,   ( )is a monotone no lessening basic step work.    ( )  may be 

exemplified as the set SPi From claiming rows from the coordination of that phase focuses of  fi( ) . 
The size of the set Si,(i.e. |SPi|) , is not greater than "C+1" and rows should be planned in growing 

arrangement x while  fi( ). The series of sets, "SP0,SP1,...,SPn", is a history of the DP and that should 

be backtracked through "Algorithm 2" to get the solution vector x. "Algorithm 1"result sets  "SP1,SP2, 

…,SPn"  as follows: 

 

Algorithm 1: forward part of dynamic programming 

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity 

Output: SP : array of  subproblem to find an optimal solution, 

Step1:    *(   )+ 
Step2:                    

       *(               )|(   )                    + 
            (               ) 
end for 

 

Here ,(Pi ) is the value of the profit function "fi-1(x)" while a weight "x=C ". The merge procedure 

merges two lists (SPi-1 and SPi)to create list Si. During the merging, if SPi´  SPi-1 contains two tuples 

(Pj,Wj) and (Pk,Wk) such that Pj≤Pk and Wj≥Wk, i.e. (Pk,Wk) dominates (Pj,Wj), followed by (Pj,Wj) is 

not needed. 

     The P is the optimal solution ,  if (P,W) is the end row   the solution vector x such using equation( 

1& 2) is set by searching out of the sets SPn,SPn-1, . . . ,This task is performed by Algorithm 2[10]. 

 

Algorithm2:backtracking part of dynamic programming 

Input: SP : array of subproblem  

Output: X : 0 or 1 select item  or not 

Step1: (P,W)←end row in SP 

 

Step2: for n down to 1 do 

if (P-     ,W-     )          then 

xi←1, W←W-      , P←P-      

else 

x←0 

endif 

end for 
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For the 0–1 Knapsack problem, when we have a single instance of each item, we cannot use the same 

relation, while we do not know if item i is already used in the optimal solution SP(P,W). To keep track 

of which items are used, we not only look at smaller knapsacks, but also at fewer items. Algorithm (3) 

describes this [11]. 

 

Algorithm 3- traditional 0-1 Knapsack Algorithm 

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity 

Output: SP : array of  subproblem to find an optimal solution, X : 0 or 1 select item or not 

Step1:       *(   )+  // item :  number of item , TN :total number of item 

Step2                     //        : Capacity count 

                       

                            //SP : subproblem  

            ,                     -    ,               -     

                   ,             -           ,           - 
else 

                  ,             -      ,               - 
Endif 

else 

           ,             -      ,               -     // Witem>C 

Endif 

end for //          
end for // item 

Step3: item←TN,        ←C 

Step4: while item  and         > 0 

       if  SP[item1,        ]  SP[item,        ] then 

                  item← item1,         ←        -Witem 

Xitem=1  
       else  

 item←item1 

Xitem=0  
 

endif 

endwhile 

 

Improved Weighted 0-1 Knapsack Method (WKM) 

     Our proposed  method provides an optimal solution for resources allocation as a DP problem when 

the total items weights exceed the total capacity. First , a fraction of capacity to total original weights 

(  ) is calculated as  in equation (6). The improved weight that is proposed in WKM  (   ) is a 

ratio of original weight  as in equation (7)  . The benefit of the new proposed weight (   ) ensures 

allocating the available  resources for all items.  

    
 

∑    
   

........................................................................................................................................(6) 

 

         ...................................................................................................................................(7) 

 

By applying these equations (6 and 7) to algorithm 4, the value of NWi will be the optimal weight to 

ensure allocating  the required resources for all the involved items. 
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Algorithm 4-  Improved 0-1 Knapsack Algorithm 

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity 

Output: W : new weight before update , SP : array of  subproblem to find an optimal solution, 

  X : 0 or 1 select item or not 

Step1:       *(   )+  // item :  number of item , TN :total number of item 

Step2:                     

sum ←sum + Witem 

   end for 

fraction ← C  / sum 

                     
Witem←Witem * fraction 

End for 

Step3                    //        : Capacity count 

                       

                            // 

           ,                     -    ,               -     

                  ,             -           ,           - 
else 

                  ,             -      ,               - 
Endif 

else 

           ,             -      ,               -     // Witem>C 

Endif 

end for //          
end for // item 

Step4: item←TN,        ←C 

Step5: while item  and         > 0 

if  SP[item1,        ]  SP[item,        ] then 

                  item← item1,         ←        -Witem 

Xitem=1  
       else  

 item←item1 

Xitem=0  
 

endif 

endwhile 

 

Experimental Results and Discussions 
     In this section, the results obtained by implementing the improved algorithm WKM will be 

discussed  in details to explain  the role of the new proposed  weight (   ) clearly. 

     Consider the problem (X) with the following given data in Table-1, where n is  number of items 

(n=4) and C is  the total capacity (C=8). Each item (i) has a knapsack weight (Wi) , and a knapsack 

profit (Pi) obtained by allocating required resource to the specified item i. All Pi ’s and Wi ’s are 

positive integer numbers. Then, the subproblem SP[TN ,        - in algorithm 4 will be computed to 

find optimal solution for the list (SP) of the n  items 

Table 1- problem (X) 

Weight profit Item 

1 15 1 

5 10 2 

3 9 3 

4 5 4 

Capacity=8 
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After implementing algorithm (3)(traditional 0-1 Knapsack Algorithm)using the considered problem 

(X) in Table-1, set of results are obtained experimentally as displayed in Table-2   

 

Table -2-Experimental results for forward computations of  algorithm (3) 

Capacity remaining 
Item 

K=8 K=7 K=6 K=5 K=4 K=3 K=2 K=1 K=0 

0 0 0 0 0 0 0 0 0 Initial 

15 15 15 15 15 15 15 15 0 i=1 

25 25 25 15 15 15 15 15 0 i=2 

25 25 25 24 24 15 15 15 0 i=3 

29 25 25 24 24 15 15 15 0 i=4 

 

     The step by step backtracking computations of algorithm (3) is shown as bellow : 

K=8  

i=4 →SP(4,8) ≠ SP(3,8) →   = 1 

  K= K - w → 8-4 = 4  

i=3→ SP(3,4) ≠ SP(2,4)→    = 1  

K= K - w → 4-3 = 1  

i=2→ SP(2,1) = SP(1,1) →    = 0 

K= K - 0 → 1  

i=1 →SP(1,1) ≠ SP(0,1)→    = 1 

K= K - w → 1-1 = 0 

x = (1,0,1,1) ,select item 1,3,4 , the optimal solution value 29. 

 

     On the other hand, when the Improved knapsack (WKM) algorithm (4) is implemented using 

problem (X) that shown in Table-1, the fractional weights (Wf)  will be calculated as  in equations (6) 

and (7) . So , the new improved weights (NWi) are shown in Table-3  

To show the mechanism of applying equations (6) and (7) , consider items 1 and 2 .  

sum of weights =13 

Wf= 8/13= 0.6 ......... as in equations (6)  

NW1 = 1*0.6 = 0.6 round = 1 ........... as in equations (7)  

NW2= 5*0.6 = 3 as shown in Table-3   

 

Table 3- problem (X) with NWi 

New  Weight Wight profit Item 

1 1 15 1 

3 5 10 2 

2 3 9 3 

2 4 5 4 

Capacity=8 

 

     After the improved calculated  knapsack the new  weights as shown in Table-3 , the optimal 

solution value as shown in Table -4 is improved equal  to 39 but before implementing  knapsack the 

optimal solution value as shown in Table -2 was  29 . This is illustrated, when this clarify that the 

update on the weights values lead to a better  solution, in addition to  the benefit from the largest 

number of items. 
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Table -4-Experimental  results of forward computations of  algorithm (4) 

Capacity remaining 
Item 

K=8 K=7 K=6 K=5 K=4 K=3 K=2 K=1 K=0 

0 0 0 0 0 0 0 0 0 I=0 

15 15 15 15 15 15 15 15 0 i=1 

25 25 25 25 25 15 15 15 0 i=2 

34 34 34 25 25 24 15 15 0 i=3 

39 34 34 29 25 24 15 15 0 i=4 

 

The backtracking  computations of algorithm (4) 

K=8  

i=4 →SP(4,8) ≠ SP(3,8) →   = 1 

K= K - w → 8-2 = 6  

i=3→ SP(3,4) ≠ SP(2,4)→    = 1  

K= K - w → 6-2 = 4  

i=2→SP(2,1) ≠ SP(1,1) →    = 1 

K= K - w → 4-3 = 1  

i=1 →SP(1,1) ≠ SP(0,1)→    = 1 

K= K - w → 1-1 = 0 

x = (1,1,1,1) ,select item 1,2,3,4 , the optimal solution value 39. 

 

     Depending on modifying each item weight through equation (3) , this led to Increase the value 

optimal solution of SP(P,W) from Table -2 equal 29 by algorithm (3) from Table -4  equal 39 by 

algorithm (4). The new optimal solution allows to allocate the required resources to  more items 

included in the KP . 

Conclusions and future works 

     In this paper, a modified 0-1 Knapsack method called Weighted 0-1 Knapsack Method (WKM) is 

proposed. The proposed method provides an optimal solution for resources allocation as compared 

with traditional 0-1 KP , when the sum of  items weights exceeds the total capacity. A fraction of 

capacity to total original weights . The improved weight that proposed in WKM   is a ratio of original 

weight The benefit of the new proposed weight ensures allocating the available  resources for all 

items. The proposed new weight ensures allocating resources for all items involved  in dynamic 

programming problem using 0-1 Knapsack method. 

     As a future work, we could gain more optimality by using multi-objective knapsack or online 

knapsack problems to solve resource allocation problems .Network distribution systems can be used 

too to implement more than one task at a time which  yields to decrease the time spent in resource 

allocation . 
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