Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

N—/
Iraqi

Journal of

Science

ISSN: 0067-2904

Improved Weighted 0-1 Knapsack Method (WKM) to Optimize Resource
Allocation

Maha A. Hammood Alrawi*, Israa Tahseen Ali, Olaa Amer Saied
Department of Computer Science, University of Technology, Baghdad, Iraq.

Abstract

In this paper an improved weighted 0-1 knapsack method (WKM) is proposed to
optimize the resource allocation process when the sum of items' weight exceeds the
knapsack total capacity .The improved method depends on a modified weight for
each item to ensure the allocation of the required resources for all the involved
items. The results of the improved WKM are compared to the traditional 0-1
Knapsack Problem (KP). The proposed method dominates on the other one in term
of the total optimal solution value of the knapsack .
Keywords: knapsack problem, dynamic programming ,optimal solution,resource
allocation.

lgall Gamads ALY (WAM) 0-1 Laaadl 4gjsal) Apdald) 48y)b

A jale Mo &Mf-bﬂlc*@jﬂ\ .\J.AA@QJS-“JQQLG-A
el i ¢ Aaml i€l Axalall espulall psle o

-

Laday
G YD 8 3 lsall Ganads LB (0-1) Riwnall Zigypall Ayl Ayl 3850 038 cun il

Anal) Al o3 aaied . Aydall Aad JanY Aiall lhacmi 0 Claiall (sl psena Lo sla
By A (ann Wsadiall Syial) gead TP Ylsall Ganads Glaval e IS 5l Jaes e

Lala) Ll AKEe pe Al dphl Gek ool Al @
Y Jall ded Jlaa) Cun e gAY Aiphll e dagial) Akl Al il ciaaagls 0-1
"..:.

Introduction

Today's world is characterized by technical, economic, social developments, big size of the

installations, and ever changing business environment which led to the complexity and uncertainty.
Rapid developments in various fields made an urgent need for adopting scientific and logical tools
which help in decision making and solving problems that are faced by business organizations.
One of the Dynamic Programming (DP) algorithms is Knapsack Problem method (KP), which enables
decision-makers to derive optimal solutions that effectively contribute to the decision-making process.
In this paper we suggested an improvement on traditional knapsack algorithm to concern with multi
factors and resources that ensure optimal decision.

A problem frequently encountered is how to allocate limited resources to competing, necessary,
and profitable items. These resources are frequently raw materials, workers, manufacturing times, or
money that are needed to produce products. The optimal resource allocation requires specifying the
total amount of the resources and their weights to be distributed for all the required items [1].

*Email: maha_alrawi@yahoo.com
309

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

The Knapsack problem(or rucksack problem) is a general resource allocation model in which a
single resource is assigned to a number of alternatives with the objective of maximizing the total
return. The model is one of the most important classes of applications of DP. The model is a
distribution of effort problem that has a linear objective function and a single linear constraint [2].

Suppose you have a bag that consists of several items (i=1,2,3,...,n) carried in bag ,each item has
a weight (W) and profit (P;) obtained by putting items in bag , all P; and W; are integer positive
numbers. However the sum of weights for all items is less than the capacity (C)of the bag. This model
determines the most valuable items to be carried in the bag and their quantities, weights, and profits
[3].The KP model has been applied to many real life applications either a standalone model or as a
combination of models[4].

Related work

The proposed method is concerned with specific topics of resource allocation that have been
studied in related literatures.

In1996, Yu Gang [5], studied the Max-Min Knapsack (MNK) problem as a NP-hard for an
unbounded number of scenarios and pseudo polynomial solvable for a bounded number of scenarios.
The effective of lower and upper bounds were generated by surrogate relaxation. The ratio of these
two bounds is shown to be bounded by a constant for situations where the data range is limited to be
within a fixed percentage from its mean. A branch-and-bound algorithm has been implemented to
efficiently solve the MNK problem to optimality.

In 2009, Campegiani and Presti [6], suggested a generalization model of the classical 0/1 Knapsack

Problem. They developed a heuristic to obtain very near optimum solutions in a timely manner.
In 2013,Zhang et al. [7], proposed a new bio-inspired model to solve problems. The proposed method
has three main steps. First, the 0-1 knapsack problem is converted into a directed graph by the network
converting algorithm. Then, for the purpose of using the amoeboid organism model, the longest path
problem is transformed into the shortest path problem. Finally, the shortest path problem can be well
handled by the amoeboid organism algorithm. Numerical examples are giving to illustrate the
efficiency of the proposed mode.

In 2015, Rooderkerk and Heerde[8],developed a robust approach to optimize retail assortments
since retailers face the difficult task of designing a portfolio of products that balances risk and return.
They proposed a novel, efficient and real-time heuristic depends on 0-1 Knapsack that solves the
problem and offers an optimal balance. The heuristic constructs an approximation of the risk-return
Efficient Frontier of assortments
Problem Statement

The 0-1 knapsack problem is a combinatorial optimization problem . It derives its name from the
problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most
valuable items .Given a set of items, each item has a weight (w;) and a profit (p;), The problem
determines the quantity of each item to be included in a knapsack so that the total weight is less than
or equal to a given limit, and the total capacity value(C)of the problem could be as large as possible.
Ander these assumptions, the general model of KP is formulated as in the following equations [9]:

Maximize g DX eeeeereeereeeaee s st bbb bbb bbb bbb bbb h R bbb r bbbt Q)
SUDJECLE0: D1Thg Wiki S Cevrrrerieieieieicie ettt bbb bbbt 2)
where

1 iftheitemi is selected
Xi-
0 if not.

w;: the unite weight for item i=1,2,3...,n
pi: the unite profit foritem i=1,2,3...n
C: the total capacity of Knapsack.

310

http://repub.eur.nl/ppl/142023
http://repub.eur.nl/ppl/121859

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

One-dimensional 0-1 KP (S,C) could be explained as follows : suppose there is combination S of a 0-1
KP and n various items (i= 1, 2,3. . .,n) . Item (i) obtained a profit p;, weight w; , and a capacity C.
Where p; , w; and C are integer positive numbers, and (w,< C),where(n>1>1) .

Let f,(c) in equation (3) be the optimal solution for the problem [10].

LT LT (o) R AU (oY W Y 3)

This equation can be generalized as follows

folX) = {_Ooo"xioo ... @)
fi(x) = max{fi_1(x), fic1(x = W) + 0}, FOr All X (5)

A Single-processor Machine for the 0-1 knapsack problem in Dynamic Programming Method
Dynamic Programming (DP) solves the problem by producing "f;, f,, ...f.," sequentially. As
mentioned in the previous section, f;(x)is a monotone no lessening basic step work. "f;(x)" may be
exemplified as the set SP; From claiming rows from the coordination of that phase focuses of "f;(x)".
The size of the set Si,(i.e. |[SPi|) , is not greater than "C+1" and rows should be planned in growing
arrangement x while f;(x). The series of sets, "SPy,SP4,...,SP,", is a history of the DP and that should
be backtracked through "Algorithm 2" to get the solution vector x. "Algorithm 1"result sets "SP;,SP,,
...,SP,- as follows:

Algorithm 1: forward part of dynamic programming
Input: Wi, : Weight of each item Py, Profit of each item, C : Capacity
Output: SP : array of subproblem to find an optimal solution,

Stepl: S, < {(0,0)}

Step2: foritem = 1tondo

Spitem < {(P + l:)item' W+ Witem)l(P: W) € Spitem—l' W+ Witem < C}
SPitem < merge(SPitem—l' SPitem)

end for

Here ,(P;) is the value of the profit function "fi1(x)" while a weight "x=C ". The merge procedure
merges two lists (SP;.; and SPi)to create list Si. During the merging, if SPi” USP;; contains two tuples
(P;,W;) and (Py,W,) such that P;<Py and W>W,, i.e. (P, W) dominates (P;,W;), followed by (P;,W,) is
not needed.

The P is the optimal solution , if (P,W) is the end row the solution vector x such using equation(
1& 2) is set by searching out of the sets SP,,,SP,..1, . . ., This task is performed by Algorithm 2[10].

Algorithm?2:backtracking part of dynamic programming
Input: SP : array of subproblem

Output: X : 0 or 1 select item or not

Stepl: (P, W)«—end row in SP

Step2: for item [/n down to 1 do

if (P'Pitem’W'Witem) € SPitem—lthen
xi<—1, We—W- Witern, P<—P-Pitem
else

x<—0

endif

end for

311

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

For the 0—1 Knapsack problem, when we have a single instance of each item, we cannot use the same
relation, while we do not know if item i is already used in the optimal solution SP(P,W). To keep track
of which items are used, we not only look at smaller knapsacks, but also at fewer items. Algorithm (3)
describes this [11].

Algorithm 3- traditional 0-1 Knapsack Algorithm
Input:Wien : Weight of each item Py, Profit of each item, C : Capacity
Output: SP : array of subproblem to find an optimal solution, X : 0 or 1 select item or not
Stepl: SP; « {(0,0)} //item : number of item, TN :total number of item
Step2: for item = 1 to TN do //Capcount: Capacity count
for Capcount < 0 to C do
if Witem < C then //SP : subproblem
if Pitery + SPD[item — 1, Capcount — Wer,] > SP[item — 1, Capcount]then
SPD[item, Capcount] < Pjeyy + SP[i — 1,j — Witem]

else
SP[item, Capcount] « SP[item — 1, Capcount]
Endif
else
SP[item, Capcount] < SP[item — 1,Capcount] // Wie,>C
Endif

end for // Capcount
end for // item
Step3: item«—TN,Capcount«—C
Step4: while item and Capcount> 0

if SP[item—1,Capcount] # SP[item,Capcount] then

item« item-1, Capcount<Capcount-Wign

Xitem=1

else

item—item-1

Xitem=O

endif
endwhile

Improved Weighted 0-1 Knapsack Method (WKM)

Our proposed method provides an optimal solution for resources allocation as a DP problem when
the total items weights exceed the total capacity. First , a fraction of capacity to total original weights
(Wf)is calculated as in equation (6). The improved weight that is proposed in WKM (NW;) is a
ratio of original weight as in equation (7) . The benefit of the new proposed weight (NW;) ensures
allocating the available resources for all items.

Wf = ettt (6)

By applying these equations (6 and 7) to algorithm 4, the value of NW; will be the optimal weight to
ensure allocating the required resources for all the involved items.

312

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

Algorithm 4- Improved 0-1 Knapsack Algorithm
Input:Wiem, : Weight of each item Py, Profit of each item, C : Capacity
Output: W : new weight before update , SP : array of subproblem to find an optimal solution,

X :0or 1 select item or not
Stepl: SP; « {(0,0)} //item : number of item, TN :total number of item
Step2:foritem = 1 toTN — 1 do
sum «—sum + Wigem

end for
fraction < C /sum
foritem = 1toTN — 1 do
Witem<—Wiem * fraction
End for
Step3: for item = 1 toTN do //Capcount: Capacity count
for Capcount < 0 to C do

if Witery, < Cthen //
if Pteyy + SP[item — 1, Capcount — Wjter,| > SP[item — 1, Capcount]then
SP[item, Capcount] < Pyem + SP[i — 1,j — Witem]

else
SP[item, Capcount] « SP[item — 1, Capcount]
Endif
else
SP[item, Capcount] < SP[item — 1,Capcount] // Win,>C
Endif

end for // Capcount
end for // item
Step4: item«—TN,Capcount«—C
Step5: while item and Capcount> 0
if SP[item-1,Capcount] # SP[item,Capcount] then
item« item-1, Capcount—Capcount-Wign
Xitem=1
else
item—item-1
Xitem=O

endif
endwhile

Experimental Results and Discussions

In this section, the results obtained by implementing the improved algorithm WKM will be
discussed in details to explain the role of the new proposed weight (NW;) clearly.

Consider the problem (X) with the following given data in Table-1, where n is number of items
(n=4) and C is the total capacity (C=8). Each item (i) has a knapsack weight (W;) , and a knapsack
profit (P;) obtained by allocating required resource to the specified item i. All P; ’s and W; ’s are
positive integer numbers. Then, the subproblem SP[TN ,Capcount] in algorithm 4 will be computed to
find optimal solution for the list (SP) of the n items

Table 1- problem (X)

Item profit Weight
1 15 1
2 10 5
3 9 3
4 5 4
Capacity=8

313

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

After implementing algorithm (3)(traditional 0-1 Knapsack Algorithm)using the considered problem
(X) in Table-1, set of results are obtained experimentally as displayed in Table-2

Table -2-Experimental results for forward computations of algorithm (3)
ltem Capacity remaining
K=0 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8
Initial 0 0 0 0 0 0 0 0 0
i=1 0 15 15 15 15 15 15 15 15
i=2 0 15 15 15 15 15 25 25 25
i=3 0 15 15 15 24 24 25 25 25
i=4 0 15 15 15 24 24 25 25 29

The step by step backtracking computations of algorithm (3) is shown as bellow :

K=8
i=4 —>SP(4,8) # SP(3,8) - x =1

K=eK-w—>8-4=4
i=3— SP(3,4) # SP(2,4)— x=1
K=K-w—>4-3=1
i=2— SP(2,1)=SP(1,1) - x=0
K=K-0—1
i=1 —>SP(1,1) # SP(0,1)— x=1
K=K-w—1-1=0
x=(1,0,1,1) ,select item 1,3,4 , the optimal solution value 29.

On the other hand, when the Improved knapsack (WKM) algorithm (4) is implemented using
problem (X) that shown in Table-1, the fractional weights (Wf) will be calculated as in equations (6)
and (7) . So, the new improved weights (NW;) are shown in Table-3
To show the mechanism of applying equations (6) and (7) , consider items 1 and 2 .
sum of weights =13

Wf=8/13=0.6 as in equations (6)
NW;=1*0.6 =0.6round=1 as in equations (7)
NW,= 5*0.6 = 3 as shown in Table-3
Table 3- problem (X) with NW;
Item profit Wight New Weight
1 15 1 1
2 10) 3
3 9 3 2
4 5 4 2
Capacity=8

After the improved calculated knapsack the new weights as shown in Table-3 , the optimal
solution value as shown in Table -4 is improved equal to 39 but before implementing knapsack the
optimal solution value as shown in Table -2 was 29 . This is illustrated, when this clarify that the
update on the weights values lead to a better solution, in addition to the benefit from the largest
number of items.

314

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

Table -4-Experimental results of forward computations of algorithm (4)
ltem Capacity remaining
K=0 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8

1=0 0 0 0 0 0 0 0 0 0
i=1 0 15 15 15 15 15 15 15 15
i=2 0 15 15 15 25 25 25 25 25
i=3 0 15 15 24 25 25 34 34 34
i=4 0 15 15 24 25 29 34 34 39

The backtracking computations of algorithm (4)
K=8

i=4 —»SP(4,8) # SP(3,8) » x =1
KeK-w—8-2=6

i=3— SP(3,4) # SP2,4)— x =1
KeK-w—6-2=4

i=2—>SP(2,1) #SP(1,1) > x =1
KeK-w—4-3=1

i=1 —»SP(1,1) # SP(0,1)— x =1
K=K-w—1-1=0

x=(1,1,1,1) ,select item 1,2,3,4 , the optimal solution value 39.

Depending on modifying each item weight through equation (3) , this led to Increase the value
optimal solution of SP(P,W) from Table -2 equal 29 by algorithm (3) from Table -4 equal 39 by
algorithm (4). The new optimal solution allows to allocate the required resources to more items
included in the KP .

Conclusions and future works

In this paper, a modified 0-1 Knapsack method called Weighted 0-1 Knapsack Method (WKM) is
proposed. The proposed method provides an optimal solution for resources allocation as compared
with traditional 0-1 KP , when the sum of items weights exceeds the total capacity. A fraction of
capacity to total original weights . The improved weight that proposed in WKM is a ratio of original
weight The benefit of the new proposed weight ensures allocating the available resources for all
items. The proposed new weight ensures allocating resources for all items involved in dynamic
programming problem using 0-1 Knapsack method.

As a future work, we could gain more optimality by using multi-objective knapsack or online
knapsack problems to solve resource allocation problems .Network distribution systems can be used
too to implement more than one task at a time which yields to decrease the time spent in resource
allocation .

References

1. Sanford, M. Roberts .1964. Dynamic Programming in Chemical Engineering and Process
Control, Publisher: Academic Press Inc., U.S, 1st Edition.

2. Taha, H.A. 2008. Operations Research: An introduction. India: Prentice-Hall publishers ,8th
Edition.

3. Smith, D.K. 1991. Dynamic Programming: A practical Introduction, London, England: Ellis
Horwood publishers.

4. Owoloko, E. A., Sagoe E.T. 2010. Optimal advert placement slot — using the knapsack problem
model. American Journal of Scientific and Industrial Research, 1(1): 51-55 .

5. Yu, Gang .1996. On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications ,
Journal Operations Research, 44(2): 407-415.

6. Paolo, Campegiani, Francesco, Lo Presti .2009. A General Model for Virtual Machines Resources
Allocation in Multi-tier Distributed Systems, ICAS '09. Fifth International Conference on
Autonomic and Autonomous Systems, vol. 00, no. undefined, pp: 162-167.

315

https://www.cambridge.org/core/journals/mathematical-gazette/volume/journal-mag-volume-76/797251F92F3F820517F132C5E29F5738
https://www.cambridge.org/core/journals/mathematical-gazette/issue/journal-mag-volume-76-issue-476/7C8328825F1D8BFDC18C88F3AE248BE4

Alrawi et al. Iragi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

7. Zhang, X., Huang, Sh., Hub, Y., Zhang Y., Mahadevan, S. and Deng, Y. 2013, Solving 0-1
knapsack problems based on amoeboid organism algorithm. Applied Mathematics and
Computation, 219(19): 9959-9970.

8. Robert, R. P. and Van Heerde, H.J. 2016. Robust Optimization of the 0-1 Knapsack Problem:
Balancing Risk and Return in Assortment Optimization. European Journal of Operational
Research, 250(3): 842-854 .

9. Jong, Lee, Eugene, Shragowitz and Sartaj, Sahni .1988. A hypercube algorithm for the 0/1
knapsack problem. Journal of Parallel and Distributed Computing, 5(4): 438-456.

10. Jelke, J. and van Hoorn. 2016. Dynamic Programming for Routing and Scheduling: optimizing
sequences of decisions. Ph.D. thesis, VU University, Amsterdam.

316

http://www.sciencedirect.com/science/journal/00963003/219/19
http://repub.eur.nl/ppl/142023
http://repub.eur.nl/ppl/121859
http://www.sciencedirect.com/science/journal/07437315

