
Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

*Email: maha_alrawi@yahoo.com

309

Improved Weighted 0-1 Knapsack Method (WKM) to Optimize Resource

Allocation

Maha A. Hammood Alrawi*

, Israa Tahseen Ali, Olaa Amer Saied

Department of Computer Science, University of Technology, Baghdad, Iraq.

Abstract
In this paper an improved weighted 0-1 knapsack method (WKM) is proposed to

optimize the resource allocation process when the sum of items' weight exceeds the

knapsack total capacity .The improved method depends on a modified weight for

each item to ensure the allocation of the required resources for all the involved

items. The results of the improved WKM are compared to the traditional 0-1

Knapsack Problem (KP). The proposed method dominates on the other one in term

of the total optimal solution value of the knapsack .
Keywords: knapsack problem, dynamic programming ,optimal solution,resource

allocation.

 لأمثمية تخصيص الموارد(WKM) 1-0طريقة الحقيبة الموزونة المحسنة

 سراء تحسين عمي ، علا عامر سعيد، إ*يمها عبد الكريم حمود الراو
 .بغداد، العراق عموم الحاسوب، الجامعة التكنولوجية ،قسم

 الخلاصة
لامثمية تخصيص الموارد في الحالات التي 1-0))نة المحسنة طريقة الحقيبة الموزو اقترحت هذه الورقة

يتجاوز فيها مجموع اوزان المفردات التي تتضمنها الحقيبة لاجمالي قيمة الحقيبة . تعتمد هذه الطريقة المحسنة
. وقد المشمولة ضمن المشكمة عمى تعديل الوزن لكل مفردة لضمان تخصيص الموارد اللازمة لجميع المفردات

 م مقارنة نتائج تطبيق الطريقة المقترحة مع مشكمة الحقيبة التقميديةت
الطريقة المقترحة عمى الطريقة الاخرى من حيث إجمالي قيمة الحل الامثل اوضحت النتائج هيمنة ، و 0-1

 .لمحقيبة

Introduction

 Today's world is characterized by technical, economic, social developments, big size of the

installations, and ever changing business environment which led to the complexity and uncertainty.
Rapid developments in various fields made an urgent need for adopting scientific and logical tools

which help in decision making and solving problems that are faced by business organizations.
One of the Dynamic Programming (DP) algorithms is Knapsack Problem method (KP), which enables

decision-makers to derive optimal solutions that effectively contribute to the decision-making process.

In this paper we suggested an improvement on traditional knapsack algorithm to concern with multi

factors and resources that ensure optimal decision.

 A problem frequently encountered is how to allocate limited resources to competing, necessary,

and profitable items. These resources are frequently raw materials, workers, manufacturing times, or

money that are needed to produce products. The optimal resource allocation requires specifying the

total amount of the resources and their weights to be distributed for all the required items [1].

ISSN: 0067-2904

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

013

 The Knapsack problem(or rucksack problem) is a general resource allocation model in which a

single resource is assigned to a number of alternatives with the objective of maximizing the total

return. The model is one of the most important classes of applications of DP. The model is a

distribution of effort problem that has a linear objective function and a single linear constraint [2].

 Suppose you have a bag that consists of several items (i= 1,2,3,...,n) carried in bag ,each item has

a weight (Wi) and profit (Pi) obtained by putting items in bag , all Pi and Wi are integer positive

numbers. However the sum of weights for all items is less than the capacity (C)of the bag. This model

determines the most valuable items to be carried in the bag and their quantities, weights, and profits

[3].The KP model has been applied to many real life applications either a standalone model or as a

combination of models[4].

Related work

 The proposed method is concerned with specific topics of resource allocation that have been

studied in related literatures.

 In1996, Yu Gang [5], studied the Max-Min Knapsack (MNK) problem as a NP-hard for an

unbounded number of scenarios and pseudo polynomial solvable for a bounded number of scenarios.

The effective of lower and upper bounds were generated by surrogate relaxation. The ratio of these

two bounds is shown to be bounded by a constant for situations where the data range is limited to be

within a fixed percentage from its mean. A branch-and-bound algorithm has been implemented to

efficiently solve the MNK problem to optimality.

 In 2009, Campegiani and Presti [6], suggested a generalization model of the classical 0/1 Knapsack

Problem. They developed a heuristic to obtain very near optimum solutions in a timely manner.

In 2013,Zhang et al. [7], proposed a new bio-inspired model to solve problems. The proposed method

has three main steps. First, the 0-1 knapsack problem is converted into a directed graph by the network

converting algorithm. Then, for the purpose of using the amoeboid organism model, the longest path

problem is transformed into the shortest path problem. Finally, the shortest path problem can be well

handled by the amoeboid organism algorithm. Numerical examples are giving to illustrate the

efficiency of the proposed mode.

 In 2015, Rooderkerk and Heerde[8],developed a robust approach to optimize retail assortments

since retailers face the difficult task of designing a portfolio of products that balances risk and return.

They proposed a novel, efficient and real-time heuristic depends on 0-1 Knapsack that solves the

problem and offers an optimal balance. The heuristic constructs an approximation of the risk-return

Efficient Frontier of assortments

Problem Statement

 The 0-1 knapsack problem is a combinatorial optimization problem . It derives its name from the

problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most

valuable items .Given a set of items, each item has a weight (wi) and a profit (pi), The problem

determines the quantity of each item to be included in a knapsack so that the total weight is less than

or equal to a given limit, and the total capacity value(C)of the problem could be as large as possible.

Ander these assumptions, the general model of KP is formulated as in the following equations [9]:

Maximize ∑

 ...(1)

Subject to: ∑

 ..(2)

where

 1 if the item i is selected

xi:

 0 if not.

wi: the unite weight for item i= 1, 2,3. . .,n

pi: the unite profit for item i= 1, 2,3 . . . n

C: the total capacity of Knapsack.

http://repub.eur.nl/ppl/142023
http://repub.eur.nl/ppl/121859

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

011

One-dimensional 0-1 KP (S,C) could be explained as follows : suppose there is combination S of a 0-1

KP and n various items (i= 1, 2,3. . .,n) . Item (i) obtained a profit pi , weight wi , and a capacity C.

Where pi , wi and C are integer positive numbers, and (wn≤ C),where(n ≥ i ≥1) .

Let fn(c) in equation (3) be the optimal solution for the problem [10].

fn(c)=max{fn-1* (C), fn-1* (C - wn)+pn} ... (3)

This equation can be generalized as follows

 () {

...(4)

 () * () () + .. (5)

Where i=1,2,3.....,n

A Single-processor Machine for the 0-1 knapsack problem in Dynamic Programming Method
Dynamic Programming (DP) solves the problem by producing "f1, f2, …,fn" sequentially. As

mentioned in the previous section, ()is a monotone no lessening basic step work. () may be

exemplified as the set SPi From claiming rows from the coordination of that phase focuses of fi() .
The size of the set Si,(i.e. |SPi|) , is not greater than "C+1" and rows should be planned in growing

arrangement x while fi(). The series of sets, "SP0,SP1,...,SPn", is a history of the DP and that should

be backtracked through "Algorithm 2" to get the solution vector x. "Algorithm 1"result sets "SP1,SP2,

…,SPn" as follows:

Algorithm 1: forward part of dynamic programming

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity

Output: SP : array of subproblem to find an optimal solution,

Step1: *()+
Step2:

 *()|() +
 ()
end for

Here ,(Pi) is the value of the profit function "fi-1(x)" while a weight "x=C ". The merge procedure

merges two lists (SPi-1 and SPi)to create list Si. During the merging, if SPi´ SPi-1 contains two tuples

(Pj,Wj) and (Pk,Wk) such that Pj≤Pk and Wj≥Wk, i.e. (Pk,Wk) dominates (Pj,Wj), followed by (Pj,Wj) is

not needed.

 The P is the optimal solution , if (P,W) is the end row the solution vector x such using equation(

1& 2) is set by searching out of the sets SPn,SPn-1, . . . ,This task is performed by Algorithm 2[10].

Algorithm2:backtracking part of dynamic programming

Input: SP : array of subproblem

Output: X : 0 or 1 select item or not

Step1: (P,W)←end row in SP

Step2: for n down to 1 do

if (P- ,W-) then

xi←1, W←W- , P←P-

else

x←0

endif

end for

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

013

For the 0–1 Knapsack problem, when we have a single instance of each item, we cannot use the same

relation, while we do not know if item i is already used in the optimal solution SP(P,W). To keep track

of which items are used, we not only look at smaller knapsacks, but also at fewer items. Algorithm (3)

describes this [11].

Algorithm 3- traditional 0-1 Knapsack Algorithm

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity

Output: SP : array of subproblem to find an optimal solution, X : 0 or 1 select item or not

Step1: *()+ // item : number of item , TN :total number of item

Step2 // : Capacity count

 //SP : subproblem

 , - , -

 , - , -
else

 , - , -
Endif

else

 , - , - // Witem>C

Endif

end for //
end for // item

Step3: item←TN, ←C

Step4: while item and > 0

 if SP[item1,]  SP[item,] then

 item← item1, ← -Witem

Xitem=1
 else

 item←item1

Xitem=0

endif

endwhile

Improved Weighted 0-1 Knapsack Method (WKM)

 Our proposed method provides an optimal solution for resources allocation as a DP problem when

the total items weights exceed the total capacity. First , a fraction of capacity to total original weights

() is calculated as in equation (6). The improved weight that is proposed in WKM () is a

ratio of original weight as in equation (7) . The benefit of the new proposed weight () ensures

allocating the available resources for all items.

∑

..(6)

 ...(7)

By applying these equations (6 and 7) to algorithm 4, the value of NWi will be the optimal weight to

ensure allocating the required resources for all the involved items.

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

010

Algorithm 4- Improved 0-1 Knapsack Algorithm

Input:Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity

Output: W : new weight before update , SP : array of subproblem to find an optimal solution,

 X : 0 or 1 select item or not

Step1: *()+ // item : number of item , TN :total number of item

Step2:

sum ←sum + Witem

 end for

fraction ← C / sum

Witem←Witem * fraction

End for

Step3 // : Capacity count

 //

 , - , -

 , - , -
else

 , - , -
Endif

else

 , - , - // Witem>C

Endif

end for //
end for // item

Step4: item←TN, ←C

Step5: while item and > 0

if SP[item1,]  SP[item,] then

 item← item1, ← -Witem

Xitem=1
 else

 item←item1

Xitem=0

endif

endwhile

Experimental Results and Discussions
 In this section, the results obtained by implementing the improved algorithm WKM will be

discussed in details to explain the role of the new proposed weight () clearly.

 Consider the problem (X) with the following given data in Table-1, where n is number of items

(n=4) and C is the total capacity (C=8). Each item (i) has a knapsack weight (Wi) , and a knapsack

profit (Pi) obtained by allocating required resource to the specified item i. All Pi ’s and Wi ’s are

positive integer numbers. Then, the subproblem SP[TN , - in algorithm 4 will be computed to

find optimal solution for the list (SP) of the n items

Table 1- problem (X)

Weight profit Item

1 15 1

5 10 2

3 9 3

4 5 4

Capacity=8

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

013

After implementing algorithm (3)(traditional 0-1 Knapsack Algorithm)using the considered problem

(X) in Table-1, set of results are obtained experimentally as displayed in Table-2

Table -2-Experimental results for forward computations of algorithm (3)

Capacity remaining
Item

K=8 K=7 K=6 K=5 K=4 K=3 K=2 K=1 K=0

0 0 0 0 0 0 0 0 0 Initial

15 15 15 15 15 15 15 15 0 i=1

25 25 25 15 15 15 15 15 0 i=2

25 25 25 24 24 15 15 15 0 i=3

29 25 25 24 24 15 15 15 0 i=4

 The step by step backtracking computations of algorithm (3) is shown as bellow :

K=8

i=4 →SP(4,8) ≠ SP(3,8) → = 1

 K= K - w → 8-4 = 4

i=3→ SP(3,4) ≠ SP(2,4)→ = 1

K= K - w → 4-3 = 1

i=2→ SP(2,1) = SP(1,1) → = 0

K= K - 0 → 1

i=1 →SP(1,1) ≠ SP(0,1)→ = 1

K= K - w → 1-1 = 0

x = (1,0,1,1) ,select item 1,3,4 , the optimal solution value 29.

 On the other hand, when the Improved knapsack (WKM) algorithm (4) is implemented using

problem (X) that shown in Table-1, the fractional weights (Wf) will be calculated as in equations (6)

and (7) . So , the new improved weights (NWi) are shown in Table-3

To show the mechanism of applying equations (6) and (7) , consider items 1 and 2 .

sum of weights =13

Wf= 8/13= 0.6 as in equations (6)

NW1 = 1*0.6 = 0.6 round = 1 as in equations (7)

NW2= 5*0.6 = 3 as shown in Table-3

Table 3- problem (X) with NWi

New Weight Wight profit Item

1 1 15 1

3 5 10 2

2 3 9 3

2 4 5 4

Capacity=8

 After the improved calculated knapsack the new weights as shown in Table-3 , the optimal

solution value as shown in Table -4 is improved equal to 39 but before implementing knapsack the

optimal solution value as shown in Table -2 was 29 . This is illustrated, when this clarify that the

update on the weights values lead to a better solution, in addition to the benefit from the largest

number of items.

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

013

Table -4-Experimental results of forward computations of algorithm (4)

Capacity remaining
Item

K=8 K=7 K=6 K=5 K=4 K=3 K=2 K=1 K=0

0 0 0 0 0 0 0 0 0 I=0

15 15 15 15 15 15 15 15 0 i=1

25 25 25 25 25 15 15 15 0 i=2

34 34 34 25 25 24 15 15 0 i=3

39 34 34 29 25 24 15 15 0 i=4

The backtracking computations of algorithm (4)

K=8

i=4 →SP(4,8) ≠ SP(3,8) → = 1

K= K - w → 8-2 = 6

i=3→ SP(3,4) ≠ SP(2,4)→ = 1

K= K - w → 6-2 = 4

i=2→SP(2,1) ≠ SP(1,1) → = 1

K= K - w → 4-3 = 1

i=1 →SP(1,1) ≠ SP(0,1)→ = 1

K= K - w → 1-1 = 0

x = (1,1,1,1) ,select item 1,2,3,4 , the optimal solution value 39.

 Depending on modifying each item weight through equation (3) , this led to Increase the value

optimal solution of SP(P,W) from Table -2 equal 29 by algorithm (3) from Table -4 equal 39 by

algorithm (4). The new optimal solution allows to allocate the required resources to more items

included in the KP .

Conclusions and future works

 In this paper, a modified 0-1 Knapsack method called Weighted 0-1 Knapsack Method (WKM) is

proposed. The proposed method provides an optimal solution for resources allocation as compared

with traditional 0-1 KP , when the sum of items weights exceeds the total capacity. A fraction of

capacity to total original weights . The improved weight that proposed in WKM is a ratio of original

weight The benefit of the new proposed weight ensures allocating the available resources for all

items. The proposed new weight ensures allocating resources for all items involved in dynamic

programming problem using 0-1 Knapsack method.

 As a future work, we could gain more optimality by using multi-objective knapsack or online

knapsack problems to solve resource allocation problems .Network distribution systems can be used

too to implement more than one task at a time which yields to decrease the time spent in resource

allocation .

References

1. Sanford, M. Roberts .1964. Dynamic Programming in Chemical Engineering and Process

Control, Publisher: Academic Press Inc., U.S, 1st Edition.

2. Taha, H.A. 2008. Operations Research: An introduction. India: Prentice-Hall publishers ,8th

Edition.

3. Smith, D.K. 1991. Dynamic Programming: A practical Introduction, London, England: Ellis

Horwood publishers.

4. Owoloko, E. A., Sagoe E.T. 2010. Optimal advert placement slot – using the knapsack problem

model. American Journal of Scientific and Industrial Research, 1(1): 51-55 .

5. Yu, Gang .1996. On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications ,

Journal Operations Research, 44(2): 407–415.

6. Paolo, Campegiani, Francesco, Lo Presti .2009. A General Model for Virtual Machines Resources

Allocation in Multi-tier Distributed Systems, ICAS '09. Fifth International Conference on

Autonomic and Autonomous Systems, vol. 00, no. undefined, pp: 162-167.

https://www.cambridge.org/core/journals/mathematical-gazette/volume/journal-mag-volume-76/797251F92F3F820517F132C5E29F5738
https://www.cambridge.org/core/journals/mathematical-gazette/issue/journal-mag-volume-76-issue-476/7C8328825F1D8BFDC18C88F3AE248BE4

Alrawi et al. Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 309-316

013

7. Zhang, X., Huang, Sh., Hub, Y., Zhang Y., Mahadevan, S. and Deng, Y. 2013, Solving 0-1

knapsack problems based on amoeboid organism algorithm. Applied Mathematics and

Computation, 219(19): 9959–9970.

8. Robert, R. P. and Van Heerde, H.J. 2016. Robust Optimization of the 0-1 Knapsack Problem:

Balancing Risk and Return in Assortment Optimization. European Journal of Operational

Research, 250(3): 842-854 .

9. Jong, Lee, Eugene, Shragowitz and Sartaj, Sahni .1988. A hypercube algorithm for the 0/1

knapsack problem. Journal of Parallel and Distributed Computing, 5(4): 438-456.

10. Jelke, J. and van Hoorn. 2016. Dynamic Programming for Routing and Scheduling: optimizing

sequences of decisions. Ph.D. thesis, VU University, Amsterdam.

http://www.sciencedirect.com/science/journal/00963003/219/19
http://repub.eur.nl/ppl/142023
http://repub.eur.nl/ppl/121859
http://www.sciencedirect.com/science/journal/07437315

