Dakheel Iraqi Journal of Science, 2017, Vol. 58, No.1B, pp: 280-283

Iraqi
Journal of
Science

o —~——
ISSN: 0067-2904

En-prime Subacts over Monoids with Zero

Shireen O. Dakheel
Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq.

Abstract
Throughout this paper S will be denote a monoids with zero. In this paper, we
introduce the concept of En- prime subact, where a proper subact B of a right S- act
A is called En- prime subact if for any endomorphism f of As and a €A with
f(a)S< Bimplies that either a € B or f(As) € B. The right S-act A is called En-prime
if the zero subact (08) of A is En-prime subact. Some various properties of En-
prime subact are considered, and also we study some relationships between En-
prime subact and some other concepts such as prime subact and maximal subact.
Keywords: En-prime subact, Prime subact, Fully invariant subact, Maximal
subacts.
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Introduction

Recall that a nonempty set A is called a right S-act where S is monoid that is semigroup with
identity element, if there exists a mapping @: AxX S — A define as (a, s) — as and satisfying a .1=a
and a(st) = (as) t, forallae Aands,te S. We call A aright S-act or right act over S and write A..

Similarly, we define a left S-acts A and write sA [1]. If S is a commutative monoid, then every left
S-act is right S-act. A non empty subset B of a right S-act A; is called subact of A and written by B <
A, if bse Bforallb € Bands € S. An element 0 €A is called a zero of A or fixed element if 0s =0
forall s € S, i.e. {0} is a one-element subact [1]. In this paper 0 is a unique fixed element of all S-act
A. A nonempty subset | is called an ideal or two sided ideal of S (left and right) if SI € land IS € I.
A mapping f: A;— B, where A; and B; are two right S-acts is called S- homomorphism if f(as) =
f(a)s, for all a € A;and s € S. The set of all S-homomorphism from A in to B denoted by Hom(As, Bs)
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or Homs(A,B). An S-homomorphism f:A;—A; is called an endomorphism of A;. The composition g.f
of homomorphism f: A;— B and g: Bs— C; of a right S-acts is a homomorphism of a right S-act,
i.e.go.fEHOomM(A,B)[1].

Throughout this paper S will denote monoid that is semigroup with identity element
and all acts are right S-act. A subact B of an S-act A is a prime subact if for any a € A;and r € S, are
B implies that a € B or Arc B [2]. An S-act A is itself called prime if the subact {6} of A is prime
subact [2]. In this paper we introduce the concept of En-prime subact which is define as follows: a
proper subact B of an S- act A, is called En- prime subact if for any endomorphism f of A and a €
A,with f(a)Sc B implies that either a € B or f(A;) € B. An S-act A, is called En-prime act if the zero
subact (0) of A, is En-prime subact.Also, we study some properties of En-prime subact and the
relationships between En-prime subact and other concepts like prime subact and maximal subact.
1.En-prime subacts:

In this section we introduce the concept of En-prime subact and study some properties of this
concept.

Definition 1.1

A proper subact B of an S-act A, is called En- prime subact if for any endomorphism f of A; anda
eA,with f(a)Sc B implies that either a € B or f(A;) € B. The right S-act A; is called En-prime if the
zero subact (0) of A, is En-prime subact.

Remarks 1.2
1. The one element subact {6 } is the only En-prime subactof simple act.
Proof:

Let A be a simple act and let f(a)S = 6 , where f an endomorphism of A and a € A,. Suppose that a
#0, hencebaS is a subact of Ag. But A is asimple act thus aS = A,. Now, 0 = f(a)S = f(A;). Therefore
f(As) = 6.

2. Every simple act is En-prime act.
Proof:

Follows directly from (1).

3. If B and C are En-prime subacts of an S-act A, then B UC is also En-prime subact of As.
Proof:

Let B and C be En-prime subacts of an S-act A and let f(a)SS B U C , where f an endomorphism
of Asand a € A and suppose thata ¢ BUC and then we must prove that f(A;)SB U C. Now, we have
f(@S = Borf(a)Sc CandagBUC. If f(a)S < B and a €B by assumption then we get f(A;) €B since
B is En-prime subact. Also, iff(a)S €C and a ¢C, then f(A;)<C. Hence f(A;)< B U C.

Recall that: A subact B of S-act A is a prime subact if for any a € Asand r € S, are B implies that a €
B or Arc B. An S-act A is itself called prime if the subact {6} of A is prime subact [2].
Proposition 1.3
Every En-prime subact is prime subact.
Proof:

Let B be En- prime subact of an S-act Asand let as € B where a € Agand s € S and suppose that a &
B. We have to prove that As € B. Define f: Ac— A by f(x) = xs for all x € A;. Now, f(a) = as € B and
thus f(a)S< B. But B is En-prime subact of A; and a € B by assumption, so f(As) € B. Hence As € B.
Remark 1.4

The converse of Prop. (1.3) is not true in general, for example: Consider Z®Z as (Z,.) —act with
multiplication by integers as operation. Now, it is clear that 2Z @ Z is a prime subact of Z&®Z but not
En-prime subact since if we define an endomorphism f: Z@Z —Z@Z as f(x,y) = (y,x) for all (x,y) €
Z®Z and itis clear that f S-homomorphism, then we have f(3,2) = (2,3)e 2Z@® Z . Hence f(3,2) Z <
2Z @ Z , but (3,2)¢2Z & Zand f(Z®Z) = Z@Z & 2Z @ Z . Therefore 2Z @ Z is not En-prime
subactof Z&@Z.

Recall that: A subact B of an S-act A; is called fully invariant subact iff(B) € B for every
endomorphism f of A and A is called duo act if every subact of A is fully invariant [3].

In [2] it was proved that every maximal subact is prime subact, but for En-prime subact we have:
Proposition 1.5

Let B be a fully invariant subact of an S-act A;. If B is a maximal subact of A then B is En-prime
subact of A.
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Proof:

Let f(a) S < B, where f an endomorphism of A; and a €A;. Assume that a € B and B is a maximal
subact of A, hence <B UaS> = A;. Now, we haveB UaS = A, thus f(B UaS) = f(As) and so f(B) U
f(a)S = f(As). Let x be any element of A, then f(x) f(A;) it follows that f(x) € f(B) or f(x) € f(a)S. If
f(X) €f(B) then f(x) = f(b) € B since B is fully invariant. Also, if f(x) €f(a)S then f(x) = f(a)s for some
s € S. Thus f(X) € B in any case. Therefore f(A;) € B.

Remark 1.6

The condition of fully invariant subact in the previous proposition is an essential as the following
example shows: 2Z @ Z is a maximal subact of an act Z @©Z but not fully invariant and not En-
prime subact, to prove that : define endomorphism f: Z@Z —Z®Z as f(x,y) = (y,x) for all (x,y) €
Z@®Z and itis clear that f an S-homomorphism. Now, f2Z @ Z) = Z @ 2Z£2Z & Z,hence 2Z @ Z is
not fully invariant subact of Z@Z and not En-prime subact as we define in Remark (1.4).

Corollary 1.7

Every maximal subact of duo act is En-prime subact.
Example 1.8

2Z is a maximal subact of duo act Z,, of all integers, and thus by corl. (1.7) 2Z is En-prime subact
of Z.

Recall that, an S-act A is called multiplication S-act if for each subact B of A, there exists an
ideal | of S with B = Al. An S-act Aqis a multiplication S-act if and only if for each a € A, there exists
an ideal | of S such that aS = Al. If B is a subact of multiplication S-act A, the ideal {s €S : As < B}
will be denoted by (B : Ay) . If B is a subact of a multiplication S-act A, then B = A; (B : Ay) [4].
The following proposition show that every maximal subact in a multiplication act is En-prime subact.
Proposition 1.9

Every maximal subact of a multiplication S-act is En-prime subact.
Proof:

Let B be a maximal subact of a multiplication S-act A;, then B = A; (B : A,) and thus for every
endomorphism f of Ag, we have f(B) = f(A;) (B : A;) S B, hence B is fully invariant subact of A; and
by Prop. (1.5) we get that B is En-prime subact of As.

Recall that: An S-act A, is called injective act if for each S-monomorphismg : A;— B; and each S-
homomorphism f: A;— M, then there exists a homomorphism h: Bs— M; such that h,g =h [1].
Proposition 1.10

If B is En-prime subact of an S-act A and C is a subact of A; which isan injective . Then either C <
B or BN C is En-prime subact of C.

Proof:

Suppose that CZB, hence BN C is a proper subact of C. Let f(x)S€ BN C, where f an
endomorphism of Cand x € C. Suppose that x € BN C, thus x € B. We must prove that f(C) € BN C.
Since C is injective, then there exists an S-homomorphism h: A;— C such that hei = f, where i is an
inclusion map.

Now, f(x)S = h,i(X)S= h(x)Sc€ BN C < B. But B is En-prime subact of S-act A; and x € B by
assumption, hence h(As) € B. Also, f(C)) = h,i(C))= h(C)) € C, and f(C) = h(C) < h(As)< B. This
implies that f(C)cBN C.

Proposition 1.11

Let B be a subact of an S-act A and let P be En-prime subact of A such that Bl < P for some ideal
lof S. If | £ (P:A) then B S P.

Proof:

Let B be a subact of A andlet P be En-prime subact of A such that BI < P for some ideal | of S
with | € (P: As) . Suppose that x € B and since | & (P:A;) , then there existst € land t € (P: Ay).
Define f; As— A, by fy(a) = at for all ae A,. Now, f(x) = x t € Bl € P thus f(x)SS P. But P is En-
prime subact of As and f,(As) = AtE P, therefore x € P.

Proposition 1.12

Let A be an S-act and let f be any endomorphism of A. If B is a fully invariant and En-prime

subact of A, such that f(A;) & B, then f*(B) is also is En-prime subact of A.
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Proof:

First, we have to prove that f*(B) is a proper subact of A,. Suppose that f*(B) = A, thus f(A,) € B,
which is a contradiction to assumption. Hencef(B) is a proper subact of A..Now, Let h(a)S < f*(B),
where h endomorphism of A and a€ A. Suppose that a & f*(B), then f(a) B and follows that a ¢ B,
since B is fully invariant subact of A,. We have to prove that h(A;) =f*(B). Now, since h(a)Sc f*(B),
therll f,h(a)SS B. But B is En-prime subact of Asand a ¢ B, hence f,h (A;) B which implies that h(A)
cf*(B).
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