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Abstract  

     In this paper, a computer simulation is implemented to generate of an optical 

aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and 

spherical Zernike aberrations were simulated in a subroutine using MATLAB 

function and applied as a phase error in the aperture function of an imaging system. 

The studying demonstrated that the Point Spread Function (PSF) and Modulation 

Transfer Function (MTF) have been affected by these optical aberrations. Areas 

under MTF for different radii of the aperture of imaging system have been computed 

to assess the quality and efficiency of optical imaging systems. Phase conjugation of 

these types aberration has been utilized in order to correct a distorted wavefront. The 

results showed that the largest effect on the PSF and MTF is due to the contribution 

of the third type coma aberrated wavefront. 

  
Keywords: Aberration, Zernike polynomials, Fourier transform, and optical 

physics. 

 

 زرنيكلحدود المتعددة  باستخدام ةغ البصريو مزيل نواعأربعة أ محاكاة
 

 عدي عطيوي جمود 
 .العراق ، بغداد،جامعة بغداد ،كمية العموم ،والفضاء قسم الفمك

 

  الخلاصة
اربعة  مثمت. بواسطة متعددة الحدود لزرنيك الزيغ البصريلتوليد حاسوبية محاكاة نفذت ، بحثفي ىذا ال     

كخطأ طور في فتحة النظام باستخدام برنامج فرعي بمغة الماتلاب وطبقت  لزرنيك انواع مختمفة من الزيوغ
يذه الزيوغ البصرية ب تأثرتودالة التضمين الانتقالية  دالة الانتشار النقطيةان  ةبينت الدراس . التصويري

لفتحة النظام التصويري  المساحات تحت دالة التضمين الانتقالية ولانصاف اقطار مختمفةحسبت . الاربعة
لتصحيح جبية  لتقييم النوعية والكفاءة لانظمة التصوير البصرية. فرق الطور المرافق ليذه الزيوغ استخدم

ية يعود الى النقطية ودالة التضمين الانتقال النتائج اظيرت انو اكبر تاثير عمى دالة الانتشار. الموجة المشوىة
 .(coma) الثالث الزيغ نوعبمسيامة طربة ضجبية الموجة الم

Introduction 

     The optical quality of an optical imaging system is limited by wavefront diffraction and aberration. 

The aberrations are the main contributor to degradation into the observed wavefront lead to unwanted 

variations in the image intensity. Aberration is departure of the ideal wavefront within the exit pupil 

from its ideal form which is typically phase error [1]. An optical aberration is measured as the 

difference in optical path length between an aberrated and a reference wavefront. An unaberrated 

wavefront is converging and focusing to the Gaussian image point, but in the presence of aberration is 

causing a deviation from this focus [2]. In addition to the turbulence in the atmosphere, there are many 

sources of the phase error of the wavefront such as; optical misalignments, segmenting and phasing, 

and thermally induced distortions of optics [3].  
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     There is a complex relationship between the phase aberration in the pupil function and the form of 

the focal spot. However, aberration leads to spreading of the focus both in the lateral plane, spatially 

an elongation along optical axis. This is accompanied by a reduction in the focal intensity. The 

distortion of the focal point reduces the resolution of the optical imaging system and cause blurring in 

an image plane [4]. There are a lot of studies of the aberration, but the two main methods are 

Karhunen – Loeve and Zernike polynomials [5]. The latter is studied in more details in this paper. The 

phase aberration is represented by normalized set orthogonal polynomials over on a unit circle, as 

Zernike polynomials. In 1953, Zernike won the Nobel Prize in physics for discovering the phase 

contrast technique. The advantage of Zernike polynomial is that the low order terms are related to the 

classical aberrations like astigmatism, coma and spherical aberrations [6]. 

     The basic principal of conventional adaptive optics is to measure the aberration of an observed 

wavefront and apply compensating aberration in real time.  Phase conjugation is the core of adaptive 

optics, and it could be analyzed in different methods. The most important way is the field of a 

distorted wavefront by its complex conjugate [7]. 

     In this paper, the mathematical equations that compute Zernike polynomials have been studied and 

simulated in order to demonstrate the essential features for four types of aberrations. The normalized 

Point Spread Function (PSF) and Modulation Transfer Function (MTF) are computedin order to assess 

the quality imaging system in the presence of the aberrations. Areas under MTF have been calculated 

to illustrate the ability of the imaging system to resolve the astronomical objects in the presence of 

aberration. The correction of the aberration is applied by phase conjugation.   

Basic Theory: 

     The pupil function that incorporates the complete information about imaging properties of any an 

optical system is presented by [8]: 

 

)],(exp[),(),(  AP                                                                                                              (1) 

 

     where ),( A is a circular aperture representing the pupil with a normalized amplitude 

transmittance, ( , ) are the spatial variables and ),(  is the phase of the pupil function. 

     The pupil function in the absence of an aberration is determined from [9]:  
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The phase error associated with the aperture of an optical imaging system consisting of Zernike 

polynomials. There are several definitions of Zernike polynomial [10- 12]: 
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where m and n are non – negative integers, and nm  , , are polar coordinates. However, it is 

convenient to write ),( m

nZ with just one index. 
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where i is the mapping of (n, m). The radial and azimuthal factors )(m

nR and )(mG  are given by: 
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     The resolution at the image plane is determined by the width of the PSF.  PSF for an imaging 

system is proportional to the modulus square of the Fourier transform of its pupil function and could 

be written as [13]: 
2

)(2),(),(  








   ddePyxPSF vui                                                                                        (7) 

 

     Another property that evaluates the quality of an image forming is the MTF. MTF of an imaging 

system describe how the sharpness and the contrast of an object are captured in the resulting image 

because MTF could reflect the characteristics spatial frequency response of an imaging system [14].  

MTF could be written as: 

 

)),((),( yxPSFvuMTF                                                                                                                 (8) 

     where is the Fourier transform. 

The fundamental equation to be used for the formation of an image by an optical imaging system is 

given by [15]: 

 
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     where
 ),(G yx is the observed or recorded image intensity, ),( yxO  is the object intensity, 

),( yxPSF is the blurring image caused by an optical imaging system. 

 The above equation could also be written as [16]: 

 

),(),(),(G yxPSFyxOyx                                                                                                           (10) 

     These two equations are representing a convolution equation, and   denotes convolution operator. 

Simulations and Results: 

    A circular function has been simulated in an array of size 128 by 128 which has unity magnitude of 

radius equal to (20) pixels, according to the following equation [17]: 
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     where ( c , c ) is the center of the two – dimensional array. In the case of a transparent pupil with 

aberration, ),( P represents the aberration function. 

     The phase across the aperture is expanded in term of Zernike polynomial. Zernike polynomial is 

defined in polar coordinates, )sin(   and )cos(  , i.e. optical phase given in eq. (1) equal 

to Zernike polynomial which given in eq. (4) as given by [18]: 
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     There are more than thirty seven kinds of Zernike polynomials, but four types of Zernike 

aberrations have been studied in this paper. These are defocus, astigmatism, coma and spherical which 

have the values of (n, m) as follow (2, 0), (4, 2), (5, 1), and (6, 0) respectively. These types are chosen 

because they represent the most commonly used types of aberrations.  

 

The equations (3 – 6) that evaluate Zernike aberrations have been used and a called in subroutine by 

MATLAB function. It should be noted that the factorial in eq. (5) are coded in MATLAB as gamma 

function  )1(!  ss because the gamma function is much faster than the factorial function. 

Figure-1 illustrates the four different types of Zernike polynomials. 
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Figure 1 – (a ) Defocus aberration, (b) Astigmatism aberration, (c) Coma aberration, (d) Spherical    

                 aberration.  

 

     In this study, the observed wave is considered as a plane wave, which means that there is no effect 

from the atmospheric turbulence on it. Therefore, the wavefront is transmitted through the pupil 

function according to eq. (12) is distorted as shown in Figure-2.  

 

 
 

 

Figure 2 – The aberrated wavefront at exit pupil by; (a) The defocus aberration, (b) The astigmatism   

                 aberration, (c) The coma aberration, (d) The spherical aberration.  

 

  

     The PSF has been simulated by taking the fast Fourier transform of the pupil function that 

associated with the optical phase error in term of Zernike polynomial. Figure-3 demonstrates the PSF 

for the kinds of aberrations that have been studied in this paper. 
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Figure 3 – The PSF of the aberrated wavefront for (a) The defocus aberration, (b) The astigmatism    

                 aberration, (c) The coma aberration, (d) The spherical aberration. 

 

    In addition to PSF, the MTF has been computed using eq. (8) in order to study the effect of 

aberrations on an optical system. Figure-4 shows the MTF of the four types of aberrations investigated 

in this work. 
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Figure 4 – Normalized MTF for different types of aberrations. 

 

     In this study, the area under the normalized MTF is also computed using the following finite 

integral: 

 

  
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where N=128, and step size of summation is equal to one pixel. 

 

     Area under MTF is plotted as a function of different radii of the aperture. These radii have been 

taken from (10 – 50) pixels correlated with the size of the array as shown in the Figure-5. 
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Figure 5 – Area under MTF for four different types of aberrations at different radii. 

 

     In order to expand our simulations, a binary system is considered as an original object and 

displayed in Figure-6 (a). This binary is generated diagonally and separated by a distance of 10 pixels 

from the center of the array and have the same magnitude. It should be pointed out here that the binary 

system is simulated at the same size of the pupil function (128 × 128), and could be written as [19]: 
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The Fourier transform is applied to compute the fringes of the binary system (see Fig.(6 – b)).  

  

 
Figure 6- (a) Simulation a binary system as a reference of an object, (b) Fringes of the   

                  binary system. 

 

 

     The observed images of this binary system observed by an optical telescope with these types of 

aberrations are simulated according to eq. (10), and shown in Figure-7.   
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Figure 7 – The observed image of a binary system observed by an optical imaging system;   

                  (a) The defocus aberration, (b) The astigmatism aberration, (c) The coma aberration,  

                  (d) The spherical aberration. 

 

     The phase conjugation is considered to be one of the applications of adaptive optics which can be 

used to correct the optical phase error. The phase conjugation could be computed by multiplying the 

phase error by its complex phase conjugate. Therefore, the pupil function could be written in term 

phase conjugation as [20]: 
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where ),( 
i

z  is the phase error.  

     The results after the correction using above equation are demonstrated in Figure-8. 

 

 
 

Figure 8 – The observed image of the same binary observed with phase conjugate; (a) The defocus   

                  aberration, (b) The astigmatism aberration, (c) The coma aberration, (d) The spherical   

                  aberration. 

 

     The magnitude of correction is the difference between the corrected and the uncorrected images of 

the binary system (i.e. Figure-7 & Figure- 8), therefore, the subtraction between them has been applied 

and could be written as: 
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GcGaGs                                                                                                                                     (16) 

     where Ga is the image of the binary system with aberration, and Gc is the same image with 

correction. The absolute value is taken just for displaying in order to neglect the negative values as 

shown in Figure-9.  

  

c d

ba

 
 

Figure 9 – The correction magnitude is used by phase conjugate of; (a) The defocus aberration, 

                  (b) The astigmatism aberration, (c) The coma aberration, (d) The spherical aberration. 

 

     The maximum value of correction magnitude is computed of each type aberration and could be 

written as: 

))((max GsMaxMaxGs                                                                                                                     (17) 

This value demonstrates the lowest and the highest effect of the aberrations on the optical imaging 

system.  

MTF after correction using phase conjugation becomes coincided at same position of four types 

aberrations as shown Figure-10.   
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Figure 10 – Normalized MTF of four different types of aberrations. 

Conclusions 

Several important points could be concluded from this work:- 

1. The MTF of the coma aberration is a vital type that affect on the image plane as shown in      

Figure-4.  
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2. The lowest area under MTF is for the coma aberration which means that this type covers less 

information about observed object than others as shown in Figure-5.  

3. Phase conjugate technique has been utilized to reduce the effect of aberration, but as shown in 

Figure-8, there is no free phase error because the limited size of the pupil function which has been 

used in our simulation. 

4. The values of maxGs was computed using eq. (17) demonstrated that the defocus, astigmatism, 

coma, and spherical have the values (0.0248, 0.1294, 0.3282, and 0.1321) respectively. These 

values indicate that the lowest effect on the imaging system is due to the contribution of the 

defocus aberration, while the highest effect comes from the coma type. 
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