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Abstract  

     An adaptive fuzzy weighted linear regression model in which the output is based 

on the position and entropy of quadruple fuzzy numbers had dealt with. The solution 

of the adaptive models is established in terms of the iterative fuzzy least squares by 

introducing a new suitable metric which takes into account the types of the influence 

of different imprecisions. Furthermore, the applicability of the model is made by 

attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of 

inputs.  
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لتقدير معدل الأنتروبي الضبابي في تحميل الإنحدار الخطي الضبابي الموزون المكيف مع تطبيق 
 وفيات الرضع

 
محمد جاسم محمد ،أحمد فاروق عباس*  

.العراق ،بغداد ،جامعة بغداد ،كمية الإدارة والأقتصاد ،قسم الأحصاء  
 

 الخلاصة
 عمى الموقع ذو مخرج يعتمد بي موزون مكيفتم التعامل في هذا البحث مع أنموذج خطي ضبا     

المربعات الصغرى  بالأعتماد عمى المكيف تم وضع الحل للأنموذجإذ  والأنتروبي للأرقام الضبابية الرباعية
ع عدم انو أمعيار مناسب جديد تم تعريفهُ ليأخذ بنظر الأعتبار تأثير  عن طريق أستعمالالضبابية التكرارية 

في  الضبابية وفيات الرضع تعبر محاولة لتقدير معدلا جرى تطبيق الأنموذج ة عمى ذلك. علاو المختمفة الدقة
   بوساطة مجموعة من المدخلات المختارة. العراق

 
 

1. Introduction 

     Regression analysis is an important mathematical tool used in wide range of sciences to investigate 

the relationship between a certain phenomenon (output) and a set of arbitrary inputs under the frame of 

uncertainty. The uncertainty of classical techniques in estimation and analysis of the unknown 

parameters attributed to the randomness of the relationship between output and inputs. Recently many 

studies began to take into account other types of uncertainty sources like vagueness, ambiguity, and 

imprecision whom affect statistical reasoning in regression models and perhaps not surprisingly to 

adopt the fuzzy theory to treat these types of uncertainty in what so called fuzzy regression models. 

      Based on the literature of fuzzy regression modeling, we can roughly categorize it into two kinds. 

One is the mathematical programming methods and the other one is the least squares methods.         
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Although the least squares methods are more complex computationally but it gives a better-estimated 

output compared to mathematical programming methods [1]. The first adaptive fuzzy linear regression 

model (AFLRM) was proposed by D'Urso and Gastaldi [2] and later extended by Coppi et.al [3] 

became one of the classical fuzzy linear regression models where the estimation procedure is the using 

of least squares methods. Usually, fuzzy numbers are used to present fuzzy data in fuzzy regression 

models where they are often determined by the core set, the left spread and the right spread values, as 

for the current study we used a different approach to determining fuzzy numbers by position and 

entropy (left entropy and right entropy). Based on the idea similar to that of AFLRM we construct the 

model by means of the position and entropy of quadruple fuzzy number with adding some weights to 

reduce the variation. The rest of the paper is organized as follows. In Section 2 we start with the 

definitions of various terms relating to fuzzy sets and numbers which they will be used later in the 

context of this paper. In Section 3 the adaptive fuzzy weighted linear regression model is introduced. 

Finally, we present some numerical application to estimate the fuzzy infant mortality rate in Iraq and 

make conclusions in Section 4 and 5 respectively. 

2. Mathematical Preliminaries 

2.1 Fuzzy Sets and Numbers 

Definition (2.1.1) [4, 5]: Let  be the universe of discourse of fuzzy sets, then a fuzzy set 

  is a subset of the m-dimensional real space  characterized by the mapping 

, so called the membership function which describes the membership degree of  

in , and  is defined as a set of ordered pairs: .  

     In the following some basic properties of fuzzy set  which defined as crisp sets:  

1.  Level:   

2. Support 9  

3. Core (sometimes called as Kernel  (9  

Definition (2.1.2) [6]: Let  be the universe of discourse of fuzzy numbers then a fuzzy 

number  which identify with the membership function , must satisfy 

the following: 

1. Normal: . 

2. Level of fuzzy set  with a  is a compact set:  

and    . 

3. Upper semicontinuous: . 

4. Quasi-Convex:  . 

     As a special case of fuzzy numbers, namely what called LR-fuzzy numbers (LR-FN's) which 

defined by two functions  and , where  and  are monotonic 

non increasing functions satisfies:  and  [5]. 

In general the membership function of a LR-FN can be represented as follows:  

                                                                           (1) 

     where both of  represent the core set and . Many special cases can be 

raised from LR-FN's above where one/both of the left or/and right functions are equal to zero 

. Moreover, the left and right points of the core set could be equal . 

Definition (2.1.3) [4]: A fuzzy number  is defined as Quadruple-FN 

(QFN) with a  order of curved shape of membership function if its membership function is given by: 
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                                                    (2) 

 

     where  represent mean value of core points,  represent the spread values 

and . Obviously QFN is totally identified by its core set  and 

support set , and for any  the left and right functions 

can be defined as: . Choosing the right  order is really important 

in some applications especially the ones that utilize from the influence of imprecision in fuzzy 

numbers. In particular, if  then imprecision is decreasing aggressively and if  then 

imprecision is decreasing linearly while if  then imprecision decreasing slowly [7]. 

Proposition (2.1.1): Whether if   or  the QFN still at its simplest an interval number. 

Proof: assuming  the proof is explicit as follows 

 
And   

 
    The above proposition (2.1.1) stated that if  the QFN will reduced to an interval over core 

set, while if  the QFN will reduced to an interval over support set and this can be generalized 

to complex cases when the left  and right  functions of membership function have different 

orders of curved shapes. 

Remark (2.1.1): If  then the QFN is called Asymmetric QFN (LR-QFN), but when  the 

QFN is called Symmetric QFN (LL-QFN) and denoted by  , this can be represented 

geometrically as illustrated in Figure -1. 

 
Figure 1- Geometric representation of (a) Symmetric QFN (b) Asymmetric QFN, with the different  

order. 

 

     Although the fuzziness of fuzzy numbers described by the membership functions. But, Kao and Lin 

[8] proposed a different approach using simple indices for fuzziness instead of using membership 

functions. The idea was fair since the fuzzy numbers describes as a subsets of real line whose highest 

membership function clustered around given real points and the membership functions which 

represent the fuzziness are monotonic on both sides of these given points, they replaced these points 
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by position of fuzzy number and the fuzziness interpreted by applying fuzzy entropy where fuzzy 

entropy functions are also monotonic on both sides of any fuzzy numbers.  

Definition (2.1.4) [8, 9]: Fuzzy entropy is a measure of fuzziness represent the average of vagueness 

and ambiguity in making any decisions within the fuzzy environment, also it is defined as the amount 

of information that lost in the process of transformation from crisp set to fuzzy set. Any fuzzy entropy 

function should satisfy the following conditions: 

1. Certainty: . 

2. Maximality:  . 

3. Resolution:  . 

4. Symmetry: . 

     Let  be a fuzzy entropy of a fuzzy number  that is at fixed , the 

entropy  is monotonically increasing on the interval  and monotonically decreasing on the 

other interval , the functions  could take several forms but the most fundamental ones are 

given below[10]: 

                                              (3) 

 

                                                                                                  (4) 

     where (3) defined as Shannon function and (4) represent the Logistic differential equation. To 

determine a global entropy whose independent of  values the above functions has to be integrated 

over the entire space of  (assuming the integration does make sense).This yields 

   

                                                                                    (5) 

  

where  denotes a probability density function of the available data set defined over  . 

Usually,   assumed to be uniform distribution (constant over given interval i.e ). 

Depending on (5) fuzzy entropy of QFN will be partitioned into two components one for the 

increasing part  and the other for the decreasing part . 

This yields 
 

                                                                     (6) 

 

    The first term in (6) is defined as left fuzzy entropy while the second term is defined as right fuzzy 

entropy. In a simple way we can rewrite (6) as  where 

 and , here  denote the interval where 

. Also It should be pointed out that the entropy function is completely depends on the 

spread of fuzzy number and if we use LL-QFN then the left and right entropy will be equal .  
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Figure 2- Geometric representation of QFN by means of the position and the entropies. 

 

     Ignoring the probability distribution  the QFN's can be characterized uniquely by four crisp 

attributes (as shown in Figure-2): the position where  whose represented by the length and 

the mean value of the interval  and by its fuzziness whose represented by the left 

entropy  and right entropy . That's it , where:  

  and  [8]. 

1.2 Scalar Metric  

Definition (2.2.1): A positive map , is called a scalar metric (in short just a 

metric) in  and  is called a metric space, if  satisfies the following conditions for all 

: 

1. Non-negativity (and Uniqueness): .   

2. Symmetry:  . 

3. Triangular inequality: . 

Remark (2.2.1):  If uniqueness condition did not satisfy then the metric is called a Pseudometric, 

while if triangular inequality did not satisfy then the metric is called a Semimetric. 

     Metrics are used as a measure of the degree of closeness between two points or in general between 

two sets whether it is crisp or fuzzy, driving appropriate metric for fuzzy sets consider the key for 

better performance in many application like regression, clustering, ranking etc. The metrics for fuzzy 

sets usually represent a generalization of the classical metrics, these kind of metrics are tolerable in 

data analysis. However, what worth to be mentioned that the problem of defining a satisfactory metric 

for any purpose in fuzzy data did not solved yet. In the literature, various metrics have been defined by 

different aspect, but the most popular of them are a generalization of two classical metrics between 

compact and convex set and this generalization made using Level which in turn represent a 

compact and convex sets [11]. First let start with the Hausdorff metric 

 

                                                                                    (7)                                    

     where  and  are the Level sets of fuzzy sets  and  respectively. The second metric is 

defined in  space in terms of support function  as follows 

  

                                                                          (8) 
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where ,  is the -dimensional unit 

sphere in and  is Lebesgue measure. Although previous metrics are defined in general for fuzzy 

sets but also can be simplified using specific kind of fuzzy number. However, the Hausdorff metric 

give to each points in fuzzy sets the same weight and there is no presence for any influence of 

imprecision type while the latter one solved this problem but defined in term of support function this 

make both metrics are inadequate in case of fuzzy numbers being characterized by position and 

entropy functions. Thus we introduced a new type of weighted metric defined in  space between two 

fuzzy numbers, specifically between two QFN's which take into consideration the shape of the 

membership curve of QFN in being linear, quadratic, exponential or any other else, as well it is easy in 

computation. 

Proposition (2.2.1): Given ,   as observed in a set 

of n units, a new weighted metric   is defined as follows9 

 

                   (9) 

 

 

     where  represent an arbitrary weights,  and  

are  by  positive definite matrices and  and   are denote 

the impact of the order of curve shape of the membership function on the metric, the type of 

imprecision depending on membership function. Specifically, the imprecision of QFN's is represent 

linearly, quadratic and square root when =1,2 and 0.5 respectively.  

Proof:It is easy to check conditions 1 – 2 in definition (2.2.1), now let  be a 3
rd

 

QFN, for the triangular inequality we have 

 

 

 

 

 
 

by Cauchy–Schwarz inequality 

 

 

 
Thus 

 
 

Theorem (2.2.1):  is a complete metric space 

Proof. Let  be a Cauchy sequence in  where  and 

(constants). Then all of , ,  and  must be 

Cauchy sequences in , let       

  is a Cauchy sequance in  and 

 is a Cauchy sequance in .  

Since  and  are positive definite diagonal matrices, then similarly to above 

  is a Cauchy sequance in  and 
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 is a Cauchy sequance in . Now to prove 

 is convergent in  (i.e ), let   

,  ,    and   

,  . Set      

  . 

Thus □                                                            

Remark (2.2.2): The reason behind adding the arbitrary weights was to reduce the dominance of 

measurements difference and lessen the variations between the points in QFN data in calculating the 

metric for providing more accuracy. This would be useful especially if we use the metric in 

economical or biological modeling. Notice if we set  then we cancel any 

effect of the weights while in case of LL-TFN the weights of left and right entropies must be equal 

.   

Remark (2.2.3): If the spreads of QFN's equal to zero i.e.  and 

, then the QFN's become crisp numbers and the metric (9) reduced to the 

Manhattan distance (setting  without loss of generality) 

, which indicates that the new metric is a generalization of the Euclidean 

distance. 

Remark (2.2.4): There exist some points when the left and/or right curve shape of the membership 

function of   are different but  , this makes  a Pseudometric since 

, so a prerequisite to the metric (9) is that  and  should have exactly the same curve 

shape. 

3. Adaptive Fuzzy Linear Regression Model (AFLRM) 

    Let the input variables  be crisp and the output variable  be 

QFN's observed on a sample of size  (i.e. ), the usual (non adaptive FLR) method to 

estimate the fuzzy regression line is to construct four lines for each of the core set and the two spreads: 

 

                                                                                   (10) 

     The above model consist that there is no influence of relation between the four models, under some 

constraints of fuzzy arithmetic operations each line can be estimated by finding the estimation of 

ordinary least squares method, D'Urso and Glatdsui [3] proposed another type of fuzzy regression 

model which they considered that the dynamic of left and right spreads depends in somehow on the 

estimated core, this model is so-called adaptive fuzzy linear regression model (AFLRM), later this 

were developed by D'Urso [12] and Coppi et.al [4], the method can be summarized by building four 

linear models two for the core set  by means of a classical 

regression models and simultaneously modeling the two others for spreads by the linear relation 

between spreads and core set, in other words build the spreads as a regression models of core set as 

follows: 

 

 

 
                                                                                                           (11) 

 

     where  are  component vectors represent the estimated outputs of the spreads and 

core set,  is the design matrix,  are  component vectors of core set parameters, 

 are scalars represent the parameters between the observation of spreads and the 

estimated core and  is a  component vector of ones. In the same manner we use the AFLRM but 
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instead we used QFN as described by position and entropy. Thus (11) can be parameterized as linear 

regression models by using the outputs as  as follows:  

 

 

 
                                                                                                         (12) 

 

     where  are  component vectors represent the estimated outputs of 

,  are  component vectors of position parameters and 

 are scalars represent the parameters between the observation of entropy and the 

estimated position. Despite this model is capable to incorporate the effect of the core on the spreads or 

in our case the effect of the position on the entropy but what worth mentioning as an advantage, is this 

AFLRM have smaller variance compared to the non adaptive fuzzy linear regression. 

     To estimate this model which consist of four sub-models the fuzzy least squares approach were 

applied. The objective of the fuzzy least squares estimation method is to estimate the parameters of the 

fuzzy regression model with least difference by minimizing the squared metric  between 

observations  and interpolated observations .  

Theorem (3.1): The problem of  admits a relative 

minimum which can be improved using an iterative algorithm. 

Proof: Using the matrix form of the squared metric in (9)  

 

                                            

                                             (13) 

 

Substituting the equations (12) in (13) and addressing the minimum problem we get:  

  

 

 

                               (14) 

     In order to minimize , the parameter estimates are obtained from the partial derivatives with 

respect to each   associated with (14) being set equal to zero.  
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    Thus, an iterative general solution of the above system can be represented by the following set of 

equations: 

 

 

 

 

 

 

 

                                                 (15) 

 

    To solve the iterative equations (15) many algorithms can be adopted. In this paper, we used a 

simple one at certain threshold , with two stages one for estimation and the other to test the 

stabilization of the local minimum optimization problem (the estimates). The algorithm can be 

illustrated as shown below: 

Simple algorithm of iterative solution for AFLRM 

 Inputs:   

 Outputs:  

 Initialization:   

 Iterations:  

 First stage (Estimation procedure) 

 First step: Use  to estimate  

 Second step: Update  to  
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 Third step:  

 Fourth step: a. If  stop the loop, the estimates are  

                         b. If  return to second step and proceed until convergence is done in (a) 

 Second stage (Checking stabilization) 

 First step: Choose different sets of  

 Second step: Repeat the first stage until convergence criteria are met 

 Fourth step: If the estimates of the first stage equals the estimates of the second stage then the 

solution is stable else wise replace  until first and second stages are achieved 

 

    Obviously, the adaptive model (12) provides crisp parameters. But, since the outputs are fuzzy 

while the inputs are crisp, the fuzzy linear regression model involves an implicit fuzzy regression 

model in terms of fuzzy regression parameters. Thus, the crisp parameters of the adaptive model (12) 

it might involve a certain degree of impreciseness. In particular, we can extend the assessment of 

imprecision in [3] to our proposed model (12) to evaluate the imprecision due to the crisp parameters 

of the adaptive model. Following a similar procedure to the case with  output and 

crisp inputs we can express the implicit model in the following way: 

 

 

 
                                                                                                                             (16) 

     where  is represent the design matrix of the absolute crisp inputs . The system of equations 

(16) may not verify the iterative solutions in (15), but can be utilized in order to get estimates of  

 which are compatible with the parameters  in (12). That is 

 

 

 
                                                                                                                    (17) 

where  denote the vectors of residuals. Employing ordinary Least Squares, we can obtain 

compatible estimate of (12). For instance, the OLS estimates of  and  are9 

 
                                                                           (18) 

     This indicates that  and  match the estimates of iterative solution of  and , as for the 

estimates of the parameters of entropy sub-models  and  in (17) we need a positive estimates so 

that the multiplying of a positive matrix with a positive vector reduced to a positive vector (because 

), one can adopt a constrained least squares problem due to avoid negative estimates. 

Namely, the non-negative Least Squares (NNLS) algorithm [13] under the Karush-Kuhn-Tucker 

(KKT) conditions to find an optimal solution in nonlinear (quadratic) programming. Given a design 

matrix  and output  , the problem to find a nonnegative vector  to minimize 

the squared norm between observations  and estimated observation  can be represented as 

follows: 

 
                                                                                                                      (19) 

Lawson and Hanson give the standard algorithm for the non-negative Least Squares (NNLS) which is 

an active set method whose based on only a small subset of active constraints i.e. satisfied the solution 

exactly. Assuming there are n inequality constraints in NNLS optimization problem. If the ith 

estimated parameter is negative, then the ith constraint is said to be active. Otherwise, the constraint is 
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passive. The NNLS algorithm is given below, where  is a matrix associated with only the inputs 

currently in the passive set . 

Lawson and Hanson’s algorithm for NNLS  

Inputs:   

Outputs:  where  

Initialization:   

Iterations: 

 First step: Progress if  

 Second step:  

 Third step: Include the index  in  and remove it from  

 Fourth step:  

 Continue if  

  

  

 Update  and   

  

  

 Fifth step:   

 Sixth step:  

 

    The performance of the AFLRM's in (12) has been evaluated using four goodness of fit indices to 

tell how well the fit of the model was. First,  to measure the proportion of the variation of output 

variable explained by the inputs and    is also the same but based on the sample size and the 

number of inputs, where both of them defined as  and  

respectively, where:  is the number of estimated 

parameters. Second, the average level set difference  index is used to measure the mean 

difference between output and estimated output. Moreover, we proposed a new measure to obtain the 

reliability of prediction as follows: 

                                                                                                             (20) 

where: 

 
    Since  then , the closer  values get to one the more high accuracy in 

model's prediction. A graphical analysis is also provided using Taylor diagram [14] which is used for 

summarizing how a set of patterns is close to match the reference pattern (observations) this quantified 

between any test pattern and the reference pattern by their correlation, their centered root mean 

squared difference and their standard deviations. The diagram can be visualized as a series of points 

on a polar coordinate system where the azimuth angle , which related to each point is such that 

cos(ϕ) is equal to the correlation coefficient between the test pattern and reference pattern while the 

radius from the origin in the Taylor diagram represents the standard deviation of the test pattern, and 

the correlation between test pattern and reference pattern is given by the azimuthal position. The best 

test pattern to match the reference perfectly is the one whom had a radius equal to one and azimuth 

angle equal to zero. Taylor diagram can be described using the cosine law as follows:  

                                                                                                  (21) 
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where  and  represent the standard devation of reference and test patterns respectively;  

represents the correlation coefficient between the test and reference patterns;   is the centered root 

mean squared difference,  is given for a reference  and a test  each one with n unit as below:  

 

 
 

4. Practical Application: Infant Mortality Rate 

     The investigation for estimating infant mortality rate (IMR) models is not a new problem because 

of the interest in many disciplines like healthcare, demography and economics to name a few. In 

general mortality rate considered as one of the important indicators since most health measures that 

refer to incidence and/or prevalence of diseases are not available especially in countries with weak 

database they used to compare the economic and social development between countries. The high rate 

of mortality indicates a presence of danger to the population. 

    Attention was increased about IMR and even became the fourth-millennium development goals of 

the UN in an attempt to reduce it. A population with unhealthy infants harms the next generation in 

too many levels and it is natural to think that any factors that affect human development also affect 

IMR in the same country, and vice versa [15]. Infant mortality rate is mathematically defined as the 

number of infants dying before reaching one year of age, per 1,000 live births in a given year as 

follows [16]:  

                                                                                         (22) 

where  represents number of deaths of children before reaching one year of age at year ; 

 represents risk exposure which estimated as an average population size of children before 

reaching one year of age in the middle of year . Infant mortality rate models take many forms 

depending on the researchers, in this paper we chose to link regression mortality rate model that take 

into account the imprecision of the data with a set of relevant inputs. This can be represented by: 

                                                                                            (23) 

where FPI represent food production index which covers all the edible food crops that food crops that 

contain nutrients; WS represent the percentage of the population with access to improved water 

source; TFR represent the total fertility rate (number of births per woman); GDPPPP represent the. 

gross domestic product converted to international dollars using purchasing power parity (PPP) rates 

method. The data of fuzzy IMR and the crisp set of inputs are given in Table-1 for the period 1990-

2013. Note these inputs are affecting both of the infants and their mothers and we expected that FPI, 

WS and GDPPPP will have a negative impact on IMR while TFR will have a positive impact on IMR. 
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Table 1- Input and outputs data of the infant mortality rate model
*
. 

Crisp inputs Fuzzy output Year 

 TFR WS FPI 

**  

 
 

7442.8 5.8 78.3 117.7 (42.3;1.6,12.1) 0881 

2691.9 5.7 78.2 78.8 (41.6;1.6,11.9) 0880 

3548.7 5.7 78.1 85.5 (40.8;1.6,11.7) 0881 

4595.8 5.6 78.0 102.6 (40.2;1.6,11.5) 0882 

4729.1 5.5 77.9 101.1 (39.5;1.5,11.3) 0883 

4781.2 5.4 78.2 101.6 (38.9;1.5,11.2) 0884 

5239.7 5.3 78.6 104.3 (38.3;1.5,11.0) 0885 

6261.9 5.2 78.9 100.0 (37.6;1.5,10.8) 0886 

8274.3 5.1 79.4 109.4 (37.0;1.4,10.5) 0887 

9581.2 4.9 79.9 103.9 (36.4;1.4,10.4) 0888 

9647.8 4.8 80.4 100.4 (35.8;1.4,10.3) 1111 

9810.5 4.7 80.8 115.4 (35.2;1.4,10.1) 1110 

9019.1 4.7 81.3 128.6 (34.6;1.3,9.9) 1111 

5989.1 4.6 81.8 94.3 (34.1;1.3,9.8) 1112 

9237.9 4.6 82.3 91.2 (33.5;1.3,9.6) 1113 

9697.9 4.6 82.8 105.8 (33.0;1.3,9.5) 1114 

10733.4 4.6 83.2 102.9 (32.4;1.2,9.3) 1115 

10893.2 4.6 83.7 102.7 (31.8;1.2,9.1) 1116 

11715.8 4.6 84.2 93.5 (31.2;1.2,8.9) 1117 

11875.0 4.6 84.7 91.9 (30.6;1.2,8.8) 1118 

12417.7 4.6 85.1 105.4 (30.0;1.2,8.6) 1101 

13203.0 4.6 85.6 114.9 (29.3;1.1,8.4) 1100 

14813.5 4.6 86.1 113.5 (28.7;1.1,8.2) 1101 

15503.6 4.6 86.5 126.0 (27.9; 1.1,8.0) 1102 
* 
The data sources of those shown in Table-1 are from the World Bank "http://data.worldbank.org/". 

** 
Focusing our interest in symmetric QFN's the  was fuzzified by researchers.

 
 

 

     Often there is a problem to compare the effects of the inputs in which is the most influential for 

determining the output since the regression parameters depend on the units of measurement of the 

inputs as well as the dominance of their sizes. For this purpose, we need to get rid of units of 

measurements and the sizes of the inputs to make the comparison between them more meaningful. 

This can be done by standardizing the inputs in Table-1 using the equation 

, that mean we will measure the change of  by the change of the 

standard deviation ( ) in each inputs. Comparison between the performances of the (12) and the 

method proposed by D’Urso [12] of the model (11) was made to know the difference when we use the 

position and entropy instead of membership function. Almost all the studies have been suggested so 

far using only triangular fuzzy numbers (i.e. R=1), but in this study we extended the AFLRM by using 

QFN with two orders (R=1,2) and three different sets of weights 

( ), ( ) and 
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( ). The results have been tabulated below and the 

computing was all done using Matlab software. 

 

Table 2- The estimates of parameters in models (11) and (12). 

R=2/Entropy 

(6) 

M(5) 

R=1/Entropy 

(6) 

M(4) 

R=2/Entropy 
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R=1/Entropy 

(5) 

M(2) 
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   We can see from the estimated parameters in all models shown in Table-2 were achieved the 

expected relations between the inputs and the output, the estimated parameters of model (11) are 

shown in column M(1) where the fuzzification method was depending on membership function of the 

QFN while the others columns M(2), M(3), M(4) and M(5) are representing the estimated parameters 

of model (12) by the means of entropy function (3) and (4) with two different type of imprecision 

(R=1,2) respectively. The estimated parameters of   and  give an interval of the estimated 
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parameters without fuzzification that interval represented by core but the estimated parameters of  

represented the estimated parameters of data without fuzzification and  represented the length of 

uncertainty for each estimated parameter in . Notice the estimated parameters in  ( ) gave unusual 

relation between  and the spread  because it seem little bit odd to have a negative relation between 

core and spread this was not an issue by the model we proposed, in particular in   ( ), last but not 

least we can conclude that the weights were affecting the spreads and entropy only which is logically 

correct. 

    Moreover, as it turns out from the results reported in Table-2 we observe  is strongly 

influenced by the access to improved water sources and the total fertility rate followed by the gross 

domestic product and least influenced by food production index.  

 

Table 3- Evaluation Measures for Models (11) and (12)  

Comparison Methods 

 

Weights 

   

M
(1

) 

 
( ) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

 0.9563 0.9890 0.9874 

ALSD 1.0850 0.2035 0.2793 

M
(2

) 

 
( ) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

 0.9776 0.9919 0.9888 

ALSD 0.6372 0.1880 0.2732 

M
(3

) 

 
( ) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

 0.9773 0.9918 0.9887 

ALSD 0.6041 0.1847 0.2696 

M
(4

) 

 
( ) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

 0.9779 0.9920 0.9888 

ALSD 0.6234 0.1866 0.2717 

M
(5

) 

 
( ) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

0.9843 

(0.9788) 

 0.9776 0.9919 0.9888 

ALSD 0.5897 0.1833 0.2681 

     From Tabel 3- above we can see the using of the position and entropy of QFN did not change the 

statistical fit of models ( ) at all, also the two different entropy function (3) and (4) almost 

gave an identical results in each type of imprecision (i.e. when R=1 or 2) but were superior the using 

of membership in model (11) as obvious from  and ALSD measures.  

    In order to visualize how well each estimated sub-models in models (11) and (14) fits the fuzzy 

observations we use Taylor diagram as showing in Figure-3 below the proposed model (14) was 

performs better by each sub-models except the position model and the  model were have almost the 

same results (albeit it was slightly different). 
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(a2) (a1) 

 

  
(b2) (b1) 

 

  
(c2) (c1) 

Figure 3- Taylor diagrams for sub-models in (11) represented by a1,b1 and c1 ( ,  and ) and sub-

models in (12) represented by a2,b2 and c2 ( ,  and ), red triangular represented the observation 

while the blue circle represented the estimated observation from the sub-models. 

 

     For completeness, we augment the estimation procedure by finding the estimated parameters of the 

implicit entropy model of the sub-models in (17), by applying the NNLS algorithm we obtained the 

following results as shown in Table-4 below: 
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Table 4- Estimated parameters of the implicit entropy model in (17). 

M(5) M(4) M(3) M(2) 

    
 

     Notice that in general the estimated intercept parameter shows a high degree of fuzziness 

(uncertainty) and the estimated parameter relative to fertility shows a low degree of fuzziness 

(uncertainty) whereas the estimated parameter relative to food production index, access to improved 

water sources and gross domestic product are null (there is no imprecision), maybe this procedure does 

not give a 100% certain estimates but exhibits the values of degree of fuzziness in model (12). 

However, the entropy functions M(5) had the least degree of fuzziness in estimate the parameters of 

entropy sub-model in model (17) comparing with the others. 

 

5. Results Discussion  

1. From Tables- 1 , 2 ,  3 and Figure-3 we can conclude using the position with entropy function to 

describe fuzzy numbers is an efficient way and the model (12) was fitted pretty well whether using 

entropy (3) or (4) of QFN's and it superior the performance of model (11) with all sets of weights. 

However, The sets of arbitrary weights had affected and improved the performance of the 

estimation method especially the second one  which gave the highest  with smallest . 

2. Although the application in this paper was limited to some selective inputs which affect both of 

infant and their mothers, but one can draw to a close that to reduce infant mortality rate in Iraq we 

need to control women's fertility and increase the FPI, WS, GDPPPP to each capita.  
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