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Abstract 

     The aim of this paper is to construct the analysis mathematical model for stream 

cipher cryptosystems in order to be cryptanalysis using the cryptanalysis tools based 

on plaintext attack (or part from it) or ciphertext only attack, choosing Brüer 

generator as study case of nonlinear stream cipher system. 

     The constructing process includes constructing the linear (or non-linear) 

equations system of the attacked  nonlinear generator. The attacking of stream 

cipher cryptosystem means solving the equations system and that means finding the 

initial key values for each combined LFSR. 
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 بناء نموذج تحليلي رياضي لنظم التشفير الانسيابي
 

 *مجيد فاتن حميدناصر،  اياد غازي
 العراق.، بغداد ،جامعة بغداد ،كمية العموم ،قسم الرياضيات

 الخلاصة 
رياضي لنظم التشفير الانسيابي لاستخدام ادوات التحميل عمى  يىذا البحث ييدف الى بناء نموذج تحميم    

باستخدام النص الواضح ) او جزء منو ( او اسموب المياجمة بتوفر النص المشفر باستخدام  اسموب المياجمة
 مولد برور كحالة دراسية لنظم التشفير الانسيابي.

ان عممية البناء تتضمن بناء نظام معادلات خطية ) او لا خطية ( لممولدات المراد مياجمتيا. ان      
حل نظام المعادلات الخطية وىذا بدوره يعني ايجاد القيم الابتدائية  مياجمة نظم التشفير الانسيابي يعني
          لممسجلات الزاحفة المركبة في المولد.

 
1. Introduction 

     The goal of Cryptography is to build systems that are hard to identify and Cryptanalysis is the 

science and study of methods of breaking ciphers. It is a system identification problem [1]. To attack a 

cryptosystems successfully the cryptanalysis is forced to be based on subtle approaches, such as 

knowledge of at least part of the plaintext encrypted, knowledge of characteristic features of the used 

language,..., with some luck. However, in practice, some of this information may be inaccurate, 

imprecise, or missing, which, in turn, causes to decrease the possibility of attacking and increasing the 

time or the resources required by the analyst. The Cryptosystem are the systems which use the 

encryption and decryption processes. 

     There are essentially two different types of cryptosystems, these cryptosystems are: public key and 

secret key cryptosystems [2]. First let us defined some important notations: 

 P is the Plaintext message and C is the Ciphertext message. 

ISSN: 0067-2904 
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 Key space K: a set of strings (keys) over some alphabet, which includes the encryption key ek and 

the decryption key dk. 

 The Encryption process (algorithm) E: Eek(P) = C. 

 The Decryption process (algorithm) D: Ddk(C) = P. 

 The algorithms E and D must have the property that: Ddk(C)=Ddk(Eek(P))=P.  

     The public key cryptosystem also called asymmetric cryptosystems. In a public key (non-secret 

key) cryptosystem, the encryption key ek and decryption key dk are different, that is ek≠dk. 

     The secret Key Cryptosystem also called symmetric cryptosystems. In a conventional secret-key 

cryptosystem, the same key (ek=dk=kK), called secret key, used in both encryption and decryption; 

we are interest in this type of cryptosystems. 

     There are many different types of secret key cryptosystems, like monographic (character) ciphers, 

polygraphic (block) ciphers, exponentiation ciphers and stream (bit) ciphers in which we shall focus 

[3]. 

     Juntao G. and et al in their paper in 2006 [4], propose a fault attack on the Balanced Shrinking 

Generator as one of an important symbol of stream cipher. The results show that the attacker can 

obtain the secret key by analyzing faulty output sequences which is produced by changing control 

clock of one of LFSR. 

     Ali in 2007 [5], in his paper propose a cryptanalysis attack algorithms, called GA-Cryptanalysis 

system (GACS), on stream cipher systems using plaintext attack, choosing three cases study as 

symbols of stream cipher in the performance of GA. 

     The rest of this paper is organized as follows: in section 2 we discuss the stream cipher concept; in 

section 3 the study cases and some types of attacking of this paper are discussed. The proposed 

cryptanalysis system for stream cipher cryptosystems of this paper are detailed in section 4. 

2. Stream Cipher systems 

     In stream ciphers, the message units are bits, and the key is usual produced by a random bit 

generator (see Figure -1)). The plaintext is encrypted on a bit-by-bit basis. 

Stream ciphers are an important class of encryption algorithms. They encrypt individual characters 

(usually binary digits) of a plaintext message one at a time, using an encryption transformation which 

varies with time. Shift register sequences are used in both cryptography and coding theory. There is a 

wealth of theory about them; stream ciphers based on shift registers have been the workhorse of 

military cryptography since the beginnings of electronics. 

 

 
Figure1-stream cipher system. 

 

     The key is fed into random bit generator to create a long sequence of binary signals. This “key-

stream” k is then mixed with plaintext m, usually by a bit wise XOR (Exclusive-OR modulo 2 

addition) to produce the ciphertext stream, using the same random bit generator and seed. 

     Stream ciphers are generally faster than block ciphers in hardware, and have less complex hardware 

circuitry. They are also more appropriate, and in some cases mandatory (e.g., in some 

telecommunications applications), when buffering is limited or when characters must be individually 

processed as they are received. Because they have limited or no error propagation, stream ciphers may 

also be advantageous in situations where transmission errors are highly probable [6].  

Plaintext 

P 

Pseudorandom 

 Bit Generator 
Pseudorandom 

 Bit Generator 

Key source (secret key) 

+ 

Plaintext 

P + 

Ciphertext 

C 

Encryption Decryption 



                               Iraqi Journal of Science, 2017, Vol. 58, No.2A, pp: 707-715Naser and Majeed 

 

 709 

     Linear Feedback Shift Register (LFSR) systems are used widely in stream cipher systems field. A 

LFSR System consists of two main basic units. First, is a LFSR function and initial state values [3]. 

The second one is, the Combining Function (CF), which is a boolean function [7]. Most of all stream 

cipher systems are depend on these two basic units. 

3. Attacking the Stream Cipher Cryptosystem 

     To attack the stream cipher system, two types of attacks will be adopted. First, the plaintext 

(probable word) attack, and the second is the cipher only attack. Before we discuss these types of 

attacks, we pick two study cases to be attacked using the adopted attacks.  

3.1 Study Cases 

3.1.1 Single LFSR Cryptosystem 

     The first case study which we want to attack, is a single LFSR, which this system has no combining     

function, so we expect that it's can be expressed as one linear equations system. 

     Most practical stream-cipher designs center around LFSR. In the early days of electronics, they 

were very easy to build. A shift register is nothing more than an array of bit memories and the 

feedback sequence is just a series of XOR gates. A LFSR-based stream cipher can give you a lot of 

security with only a few logic gates. 

3.1.2 Brüer Cryptosystem 

     The combining function of this cryptosystem called Threshold function, and known as majority 

function too. It’s called so, since this cryptosystem consists of odd number of LFSR’s, so naturally, 

there are a majority in the output bits for one from another, this mean, which one be the major, it will 

be the output. So it can be represented by following equation [8]: 

z =

























n

1i

i

n

1i

i

2

n
xwhen,0

2

n
xwhen,1

       …                                   (1) 

 

where  

n : is positive integer odd number. 

xi: output of LFSR i. 

z: final output. 

We expect that we can express each LFSR by one linear equations system, but, each has unknown 

absolute values, since the output of each LFSR is unknown. Then, we concatenate the constructed 

linear equations system with each other using the nonlinear combining function to construct one 

nonlinear equations system with known absolute values, since the output sequence of Brüer 

cryptosystem is known.  

3.2 Known Plaintext (Probable word) Attack  

     In this type of attack we assume that we have exact word (part of plaintext) is known, that means 

we have actual output key obtained from the stream cipher cryptosystem. This kind of attack allows to 

apply two techniques, the first represented by constructing a Linear Equations System (LES) with 

known absolute values (actual key); while the second option make us to change the analysis by 

estimating the initial values of combined LFSR's, then specify the actual one by compared the 

corresponding output key with actual key. In the following subsection we will discuss the two 

techniques. 

     Before involving in solving the LES or Nonlinear Equations System (NES), it should show how 

could be the LES for a single LFSR or NES for Brüer cryptosystem constructed. Let’s assume that all 

LFSR that are used are maximum LFSR (m-LFSR), that means, Period P=2
L
-1, where L is LFSR 

length. 

3.2.1 LES for Single LFSR 

     Let SRL be a just single LFSR with length L, let A0=(a-1,a-2,…,a-L) be the initial value vector of 

SRL, s.t. a-j, 1jL, be the component j of the vector A0, in another word, a-j is the initial bit of stage j 

of SRL, let C0
T
=(c1,…,cL) be the feedback vector, cj{0,1}, if cj=1 this means that the stage j is 

connected else it's not. Let S=  1r

0ii
s




 be the sequence (or S=(s0,s1,…,sr-1) read “S vector”) with length r 

generated from SRL. The generation of S depending on the following equation:  
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si =ai =




L

1j
jji

ca     i=0,1,… , r-1                                                                                                          (2) 

Equation (2) represents the linear recurrence relation [9]. 

 

The objective is finding the A0, when L, C0 and S are known. 

Let M be a LL matrix, which is describes the initial phase of SRL 

M=(C0| I LL-1), where M
0
=I. 

Let A1 represents the new initial of SRL after one shift, s.t. 

A1=A0M=(a-1,a-2,…,a-L) 

























L

1j
jj

L

2

1

ca(

00c

00c

01c









,a-1,…,a1-L). 

In general, 

Ai=Ai-1M,     i=0, 1, 2, …, r-1                                                                                                            (3) 

Equation (3) can be considered as a recurrence relation, so we have: 

Ai=Ai-1M=Ai-2M
2
=…=A0M

i
                                                                       …                          (4) 

     The matrix M
i
 represents the i phase of SRL, equations (3) and (4) can be considered as a Markov 

Process s.t., A0, is the initial probability distribution, Ai represents probability distribution and M be 

the transition matrix [7]. 

notice that: 

M
2
=[C1C0|ILL-2] and so on until get M

i
=[Ci-1…C0|ILL-i], where 1 I <L. 

When CP=C0 then M
P+1

=M. 

Now let’s calculate Ci [10] s.t. 

Ci=MCi-1,   i=1, 2, …, r-1                                                                                                                   (5) 

Equation (2) can be rewritten in matrix form: 

A0Ci= si,   i=0,1,..,r-1                                                                                                                        (6) 

if i=0 then A0C0=s0 is the 1
st
 equation of the LES, 

if i=1 then A0C1=s1 is the 2
nd

 equation of the LES, and  

if i=L-1 then A0CL-1=sL-1 is the L
th
 equation of the LES. 

In general: 

A0Ψ=S                                                                                                                                                 (7) 

Ψ represents the matrix of all Ci vectors s.t. 

Ψ = (C0C1…CL-1)                                                                                                                                   (8) 

The LES can be formulated as follows: 

A = [Ψ
T
|S

T
]                                                                                                                                             (9) 

A represents the extended (augmented) matrix of the LES. 

Example (1) 

Let the SR3 has C0
T
=(0,1,1) and S=(0,0,1), by using equation (5), we get: 

C1=MC0=


















































0

1

1

1

1

0

001

101

010

, in the same way, C2=

















1

1

1

,  

 

From equation (7) we have: 
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A0

















101

111

110

= (0,0,1), this system can be written as equations: 

      a-2+ a-3 = 0 

      a-1+ a-2 = 0 

      a-1+ a-2+ a-3= 1 

     Then the augmented matrix A of LES after using formula (9) is: 

A=

















1111

0011

0110

                                                                                                                            (10) 

 

3.2.2 NLES for Brüer Cryptosystem 

     Now we apply this construction process for Brüer Cryptosystem, using equations (5) and (6). 

The CF of this generator is [8]: 

F(x1, x2, x3) = x1x2  x1x3  x2x3                                                                                                         (11) 

for this reason r=L1L2+L1L3+L2L3. 

The initial value of this cryptosystem is: 

A0=A01A02+A01A03+A02A03=(d0,d1,…,dr-1)                                                                                (12) 

(where + is concatenation to the vectors) s.t. 

d0=a-11a-12, d1=a-11a-22,…, dr-1= 3L2L 32
aa , or it can be taken from the following equation: 

dk























1L,...,0j,1L,...,0i.t.s,LLLLjL*ikwhen,aa

1L,...,0j,1L,...,0i.t.s,LLjL*ikwhen,aa

1L,...,0j,1L,...,0i.t.s,jL*ikwhen,aa

32312133j2i

312133j1i

2122j1i

                   (13) 

(this arrangement of unknowns can be changed according to the researcher requirements so it is not 

standard). 

In the same way, equation (13) can be applied on the feedback vector Cij: 

Ci=Ci1Ci2+Ci1Ci3+Ci2Ci3. 

And the sequence S will be: 

S=S1S2+S1S3+S2S3 s.t. si=si1si2  si1si3  si2si3, where si is the element i of S. 

So the NLES which be changed to LES can be gotten by equation (12). 

     Figure (2) shows the sequence S which is generated from Brüer Generator [10]. 

 
 

 

Figure 2-The output sequence S generated from Brüer Cryptosystem 

 
Example (2) 

Let’s have the following feedback vectors for 3 LFSR with length 2, 3 and 4: 

s0 s1 … sr-1=S 

S1=s01 s11 … sr-1,1 

S2=s02 s12 … sr-1,2 

S3=s03 s13 … sr-1,3 
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C01= 








1

1
, C02=

















1

0

1

 and C03=





















1

0

0

1

, then r=2*3+2*4+3*4=26. 

And let the required sequence is: 

S=(1,0,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,0). 

By using equation (5),  

C01=C31=C61=C91=C12,1=C15,1=C18,1=C21,1=C24,1= 








1

1
, 

C11=C41=C71=C10,1=C13,1=C16,1=C19,1=C22,1=C25,1= 








1

0
, 

C21=C51=C81=C11,1=C14,1=C17,1=C20,1=C23,1= 








0

1
. 

C02=C72=C14,2=C21,2=

















1

0

1

, C12=C82=C15,2=C22,2=

















1

1

1

, C22=C92=C16,2=C23,2=










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
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0
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0
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1
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C14,3=


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
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




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. 

by applying equation (5), C0
T
 will be: 

C0
T
=(1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1). 

Therefore the augmented matrix will be:  

A=

















000110000000000110000100000

110010000100110011001101101

                         (14) 
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3.3 Cipher Only Attack  

     In this type of attack we may need some kinds of soft computing techniques. These techniques 

based on individuals (or population of individuals), which are considered as random solutions for the 

discussed problem. For cryptanalysis of stream cipher problem the individuals mean the initial state of 

the combined LFSR's, then generate an output key (Ki). The observed key Ki xored with available 

ciphertext Ci to obtain the Pi. We notice that the probability of zero's is more than 0.6, so we can use 

this benefit to obtain the actual key. The details of this attack mentioned in section 4.2. 

4. Proposed Cryptanalysis System for Stream Cipher Cryptosystems 

     The proposed cryptanalysis attack is related to the amount of the available information, in another 

word, it's either plaintext attack or cipher only attack. Figure-3 shows the block diagram for 

implementing of the proposed cryptanalysis system for stream cipher cryptosystems. 

 

 
 

Figure 3- The block diagram of the proposed cryptanalysis system for stream cipher. 

 

4.1 Cryptanalysis Using Plaintext Attack 

     For this type of attack we can solve the LES (9) by using any solver for LES, like Gauss 

elimination, Gauss-Jordan, etc… For example, when solving the LES (10), we obtain that A0=(1,1,1). 

While if we try to cryptanalysis a stream cipher system by solving the LES using soft computing 

techniques, we have to establish a fitness value by applying the following steps: 

1. From population, an individual initial string of length n-bits extended to r bits m=n=L for Single 

LFSR and for the Brüer cryptosystem r=L1*L2+L1*L3+L2*L3, so we get the string X=(X1, X2,…, 

Xr) after extension. 

2. The extended string bit Xj product with corresponding equation string bit Yj, where 1≤j≤r s.t. the 

equation string is Y=(Y1,Y2,…,Yr) and calculate the observed value: 

Oi=X1*Y1X2*Y2…Xr*Yr=


r

1j
jj

Y*X                                          …                            (15) 

3. Compare the observed value Oi with key value Ki which represents the known output value of the 

cryptosystem, by using mean absolute error (MAE) s.t. 

MAE = 



r

1i
ii

KO
r

1
                                                                                                               (16) 

4. The Fitness value is 

Fitness = 1-MAE = 1- 



r

1i
ii

KO
r

1
                                                                                               (17) 

Cryptanalysis System for 
Stream Cipher Cryptosystems 

Cipher Only Attack Plaintext Attack 

Initial Value of LFSR 

Solving Using soft 
Computing 

Fitness  0.6 

Solving Using soft 
Computing 

Initial Value of LFSR 

Fitness = 1 

Constructing of LES/NES 

Solving of LES/NES 



                               Iraqi Journal of Science, 2017, Vol. 58, No.2A, pp: 707-715Naser and Majeed 

 

 714 

where 

r : The length of the individual string or equation string.  

Xj: is the initial value j in String X. 

Yj: is the equation variable j in the string Y. 

Oi: is the measured or observed value i calculated from equation (15). 

Ki: is the key bit (actual value) i. 

     When the observed value Oi matches the key bit Ki, for all 1≤i≤r, then the summation terms MAE 

in equation (16) evaluate to 0 so the fitness value is 1. The fitness equation is bounded below by 0 

though it does not actually evaluate to 0. The fact that a fitness value of 0 is never achieved does not 

affect the algorithm since high fitness values are more important than low fitness values. As a result, 

the search process is always moving towards fitness values closer to or equal 1. The steps of the  

 

Fitness Algorithm are shown below: 

Fitness Function Algorithm 

INPUT        : READ X vector; {Initial string with length L} 

                     READ Y vector; {Equation string from data base file} 

          READ K vector;{Actual key=absolute value of LES} 

OUTPUT   : Fitness value; 

PROCESS  : FOR i = 1 : r 

  Oi=


r

1j
jj

Y*X ; {XOR sum, Oi is observed key} 

Difi = |Oi-Ki|; 

           END; 

            MAE= 


r

1i
i

Dif
r

1
;{ MAE is the Mean Absolute Error} 

            Fitness = 1-MAE; 

END. 

 

4.2 Cryptanalysis Using Ciphertext Only Attack 

     In this type of attack, no more need for constructing LES or NES because the actual key is no more 

be available. So here we depend on soft computing only, to cryptanalysis the stream cipher 

cryptosystems. So we have to suggest a fitness value suitable to ciphertext only attack. The proposed 

fitness value exploits the plaintext coding weakness when using weak coding system, like ASCII code. 

We note that for English language, the redundancy of E, T, A, S, I,… are high compared with Q, K 

and Z. In English plaintext we notice that the probability (P0) of 0's is more than 0.6. 

     Let n1 be number of 1's for a binary sequence with length r, directly n0=r-n1, then: 

1

0

0
P1

r

n
P                                                                                              …                      (18) 

Where P1 is the probability of 1's. 

Of course in cipher only attack all we have is the ciphertext (Ci), if we obtain any output key (Ki) for 

any individual when using soft computing then, by using equation (18), the fitness value is calculated 

as follows: 

Fitness= 



r

1i
ii
)KxorC(

r

1
1                                                                          …                             (19) 

When the fitness value more than 0.6, this mean we obtain the actual key, otherwise we search for 

better key. 

 

5. Conclusions 

This research concludes the following aspects: 

1. As a logical mathematical situation, for plaintext attack using soft computing, if the proposed 

system gives a fitness value less than 1.0, this mean, no results obtained so we must run the system 
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again, since the LES/NLES must has unique solution for fixed absolute values, no another solution 

gives fitness equal 1.0. 

2. For cipher only attack, although the fitness value satisfied, we have to demonstrate the decrypted 

plaintext to guarantee that we obtain the actual key. 

3. The proposed cryptanalysis system can be modified to be suitable to work on other stream cipher 

cryptosystems. 
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