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Abstract 

      The approximate solution of a nonlinear parabolic boundary value problem with 

variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element 

method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time 

variable. The problem is reduced to solve a Galerkin nonlinear algebraic system 

(NLAS), which is solved by applying the predictor and the corrector method (PCM), 

which transforms the NLAS into a Galerkin linear algebraic system (LAS). This 

LAS is solved once using the Cholesky technique (CHT) as it appears in the 

MATLAB package and once again using the General Cholesky Reduction Order 

Technique (GCHROT), the GCHROT is employed here at first time to play an 

important role for saving a massive time. Illustrative examples are given to solve the 

NLPBVPVC with the GCHROT, the results are given by tables and figures which 

show from a side efficiency of this technique, and from another side show that the 

two methods GCHROT and CHM are given the same results, but the suggesting first 

technique is very fast than the second one.  
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حل تقريبي لمعادلة تفاضلية جزئية غير خطية ذات معاملات متغيرة من النمط المكافيء بواسطة مزج 
 طريقة كاليركن للعناصر المنتهية مع مخطط كرانك نيكلسن

 

جوادمروة احمد *، جميل أمير علي  
، بغجاد، العخاقالجامعة الطدتظصخية ،كمية العمؾم  ،قدؼ الخياضيات  

 الخلاصة 
في ىحا البحث تؼ ايجاد الحل التقخيبي لطدالة قيؼ حجودية غيخ خظية ذات معاملات متغيخة مؽ الظطط      

كخانػ نيكمدؽ   الطكافيء باستخجام مدج طخيقة كاليخكؽ لمعظاصخ الطظتيية بالظدبة لمطتغيخ الفضاء مع مخظط
بالظدبة لطتغيخ الدمؽ والتي تحؾل الطدالة لحل  نغام"كاليخكؽ" جبخي غيخ خظي. يحل ىحا الظغام الغيخ خظي 
باستخجام طخيقة التظبأ والتصحيح والتي تحؾلو الى نغام "كاليخكؽ" جبخي خظي  . تؼ حل ىحا الظغام الخظي 

اتلاب ومخة اخخى باستخجام  تقظية جؾلدكي العامة مخة باستخجام تقظية جؾلدكي كطا ىي مؾجؾدة في الط
لتخفيض الختبة, ىحه التقظية وعفت ىظا لاول مخة لتمعب دور ميؼ في اختدال الدمؽ. تؼ اعظاء امثمة تؾضيحة 
لحل مدالة القيؼ الحجودية الغيخ خظية ذات الطعاملات الطتغيخة مؽ الظؼ الطكافيء, الظتائج اعظيت عمى شكل 

وبيظت مؽ ناحية كفاءة  تقظية جؾلدكي العامة ومؽ ناحية اخخى ان الظخيقتيؽ اعظت نفذ ججوال ورسطات 
 الظتائج الا ان تقظية جؾلدكي العامة والطقتخحة ىظا ىي سخيعة اكثخ مؽ الظخيقة الاولى.
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1. Introduction                                                                                                     
     The solution of the boundary value problem (BVPS) in general and the solution of NLPBVPVC in 

particular are interested to study from many researchers in the last few decades. In fact there are many 

different methods for solving the NLPBVPVC, for example Eriksson and Johnson in 1995 used the 

Adaptive Finite Element Method (AFEM) for solving the NLP [1]. Amiya in 1998 studied an   -

Galerkin mixed finite element method, proposed and analyzed for nonlinear parabolic (NLP) with non 

self adjoint elliptic parts [2]. Georgios and Charalambos in 2004 consider the GM for the time 

discretization of a class of nonlinear parabolic equations [3]. Buyang and Weiwei in 2017 present a 

general framework for numerical analysis of finite element methods (FEM) for NLP equations with 

nonsmooth coefficients [4], and many others.    

     The study of the solution for the parabolic BVP using the FEM back to the beginning of the 17
th
 

century, and are studied from many researchers so as Douglas and Dupont [5], in 1993 Reddy 

introduced in his book an introduction to the FEM applied to linear, one and two-dimensional 

problems of engineering and applied sciences [6]. In 1997-2006 Thomee [7] studied the GFEM with 

backward Euler method for NLPBVP, and many others studies.  Actually these studies encourage us 

to study this work the approximate solution (APS) for NLPBVPVC using the GFEM method for the 

space variable and the C-N scheme for the time variable.   

     This paper starts with giving a description of proposed NLPBVPVC and its weak form. The APS of 

the problem is obtained by discretize the weak form by using the GFEM for the space variable and the 

C-N scheme for the time variable, the problem then reduces to solve a NLAS which is transformed 

upon using the PCM to a LAS.  This LAS is solved once using the Cholesky Technique and once 

again using that we gave it the name General Cholesky Reduction Order Technique and it is employed 

here at first time to play an important role for saving a massive time. Finally illustrative examples are 

given to solve different problems using MATLAB R2013a software CPU@2.80GHz, the results show 

the efficiency of this method, and the General Cholesky Reduction Order Technique is very fast to 

solve the linear algebraic system than the Cholesky Technique. 

In this work the inner product and norm in   ( ) will be denoted by (    ) and  ‖ ‖  , the inner product 

and norm in Sobolev space      
 ( ) will be denoted by (    )  and  ‖ ‖ , the duality bracket 

between    and its dual      will be denoted by 〈    〉 and  ‖ ‖  be the norm in    ( ).  
2. Basic Definitions and Theorems:  

Definition 1 [8]: A point    in a subset     is said to be fixed point of a given function       , 
if  (  )    .                                                              
Definition 2 [8]: A function            is said to be contractive on  , if for each      : 

 ‖ ( )   ( )‖   ‖   ‖ , where        is a constant. 

Theorem 1 [8]: A cf   on a complete normed space    has a unique fixed point     in   .                    

Theorem 2 [8]:  Let ‖ ‖ is a norm in    and     . If          is contractive on  , and one of 

the following is satisfied: 

(i) For each   in  , the function   ( ) belongs   .                                                                                               

(ii)   *  ‖   ‖   + and ‖ ( )   ‖  (   )   .              

(iii)   *  ‖     ‖   +, where    is a fixed point of    Then { ( )}    , where   ( ) is the        

iterative value of    .  
Theorem 3 [8]:  Let ‖ ‖ is a norm in    and   be a closed subset of   . If         is contractive 

function on  , and { ( )}   , then  

(i)  The sequence { ( )} converges to a fixed point         

(ii)    is a unique in  .                                                                                         

3. Description of the (NLPBVPVC): 

 Let   * ⃗  (     )   
           +, with Lipischitz boundary ∂  , and let    ,   - , 

     , and      .  
The NLP equation with variable coefficients is given by:                                         

    ∑
 

   
0   ( ⃗  )

  

   
1   ( ⃗  )  

       ( ⃗    )  ,  in                                                              (1)                                                                                                

with the boundary condition (b.c)                                                                                           

  ( ⃗  )    , on                                                                                                                              (2)      

and the initial condition (i.c)                                                                                                  
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 ( ⃗  )    ( ⃗) ,   in                                                                                                                           (3)    

where       ( ⃗  )     ( ⃗  )  ( ⃗  )  ( ⃗    )   
 ( ) and    ( ⃗  ) are positive nonzero arbitral 

functions. 

 

Now, the weak form of  problem (1-3)  is given by: 
〈      〉   (     )= ( ( )  ) ,             a.e   on      ,                                                         (4) 

( ( )   ) =(     ),   in  W                                                                                                            (5) 

with     belongs to       ( ) and                                                                                                                                                                                        

 (     )   ∑    ( ⃗  )
 
     (

  

   
 
  

   
)   ( ⃗  )(   ) , is the usual bilinear form .  

Assumptions:  

(1) for some positive constants          and for each             ,      ̅, the following  are hold  

i)    (       )       ‖  ‖  ‖  ‖          

ii)    (        )       ‖    ‖ 
                                                                                                    

(2) the function   is of a Carath ́odory type on  p   and  satisfies for ( ⃗  )   :  

i)   ( ⃗    )   ( ⃗  )       ,  where      ,     and     (   ) 
ii)   ( ⃗     )   ( ⃗     )          , where         ,  L is a Lipischitz constant. 

3.1 Discretization of the Continuous Equation:                          

     The weak form of (4)-(5) is discretized by using the GFEM as follows, let the domain   w is a 

polyhedron. For every integer  , let *  
 +
   
 ( )

 be an admissible regular triangulation of  ̅  into closed 

disimplices [7],  *  
 +   
     be subdivision of the interval   ̅ into   ( ) intervals , where   

   
,  
       

 - , of equal length        ⁄ , let       
    

   and        be the space of continuous 

piecewise affine in W. The Discrete equation (DEq) of the weak form (4-5) is obtained through 

applying the Crank-Nicolson scheme and it is  

 (    
    

    ) +    .  
 
 

    /    . .  
 
 
     

 
 
 /   /,                                              (6) 

 (  
   )  (    ) ,                                                                                                                      (7)  

where     ,    
 
 
  

 

 
 (    

    
 ),   

 
 
  

 

 
(    
    

 ),   
   (  

 )    ,             .                                                             

3.2 The Approximation Solution of the Nonlinear Parabolic Equation:                               

To find the APS     (  
    

       
 )  of (6-7) using the GFEM, the following procedure is used: 

(1) Let         with         , for any fixed   with          , let *      
                ( ⃗)          + be a continuous piecewise affine finite basis of     in W , then 

for any   
      

       (6-7) can be rewritten as: 

(    
    

    )     .  
 
 
    /    . .  

 
 
   

 
    
   

 
  
 /    /,                                       (8) 

(  
    )  ( 

    )        ,          ,                                                                                       (9)  

(2) Apply the Galerkin method [7], to approximate the discrete functions   
 ,    

  and     
  by their   

approximation forms using the  basis (          ) of     , i.e.   

         
  ∑   

     
 
   ,   

  ∑   
     

 
    and       

  ∑   
     

 
    

 where ,  
    (  

 )  , for each            are unknown constants to be determine.                            

(3) Substitute    
          

  in  (8) to get the following NLAS 

(   

 
   ) ⃗    (   

 
   ) ⃗   ⃗ .  

 
 
 / ,                                                               (10)  

 and substituting    
   in  (9) to get the following  LAS  ̅          

   ⃗   ⃗                                                                                                                                             (11)  

where   (   )   ,     (     ),  (   )   ,      (     ),  ⃗   
  (  

    
      

 ) , 

  ⃗  (  )    ,      ( (
 

 
 ⃗⃗  ⃗     

 
 ⃗⃗  ⃗ )   ),  ⃗     (          )

  and    ⃗  (  
 )    ,  

  
  (     ) ,                                                                                             

     It is clear that the matrices   and     

 
    in the system (10)-(11) are symmetric and positive 

definite (SAPD) hence the system has a unique solution [9]. To solve it, the LAS  (11) is solved at first 

to get   ⃗ , then to solve the NLAS (10) the PCM is used here [7], as follows : For each    (    
    ) the value (predictor solution PS) of the vector  ⃗    is predicate at first by using the explicit 
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form (just the value of   ⃗ ) in the vector   ⃗ in the right hand side (RHS) of  (10) , then by setting   

 ⃗̅     ⃗   , in the  vector  ⃗ in the   RHS  of  (10), again it becomes a LAS w.r.t.  ⃗   , which is 

solved to get the corrector solution(CS)  ⃗   . (In this point it is important to mention here that this 

procedure can be repeated "more than one time" if we need to get more accuracy results by substitute 

the CS  ⃗̅     ⃗     in the RHS of the LAS (10) and solve it again to get a new CS  ⃗   ). Hence the 

corrector equation described as follows: 

.    
(   )

     /     .
 

 
    
(   )

 
 

 
    /     . .

 

 
    
( )

  

 
  /   /                                       (12)  

where     
( )

      
  is the PS at the iteration    ,      

(   )
      

   is its corresponding CS at the 

iteration    and       
  is the known CS for the previous step   , i.e. (12) can be written as :  

  (   )   ( ( ))                                                                                                                                  (13)  

Theorem 4 (Existence and Uniqueness of Solution): The discrete equation (6-7) with fixed point 

and for      sufficiently small has a unique solution     (  
    

      
 ) , and the sequence of 

corrector solutions is convergence in  .                                                                                      

Proof: Let  (   )  .  
(   )

     
(   )

     
(   )

/   and         ̅(   )  ( ̅ 
(   )

    ̅ 
(   )

    ̅ 
(   )

)   

are two solutions of (12) , i.e.  

(    
(   )

     )     (
 

 
    
(   )

 
 

 
    )    ( .

 

 
    
( )

 
 

 
  /   )                                          (14) 

(  ̅   
(   )

     )     (
 

 
 ̅   
(   )

 
 

 
    )    ( .

 

 
 ̅   
( )

 
 

 
  /   )                                         (15)  

By subtracting (15) from (14), setting        
(   )

     
(   )

  in the obtained equation and using in 

assumption (2-ii), to get  

 ‖    
(   )

  ̅   
(   )

‖
 

 
+
 

 
   .    

(   )
  ̅   

(   )     
(   )

  ̅   
(   )

/ 

 
 

 
   .|    

( )
  ̅   

( )
|  |    

(   )
  ̅   

(   )
|/                                                                      

From assumption (1-ii) the      term in the left hand side (LHS) is nonnegative and then applying the 

Cauchy Schwarz (CS) inequality on the RHS of above inequality, it becomes 

‖    
(   )

  ̅   
(   )

‖
 
  ‖    

( )
  ̅   

( )
‖
 
   , where     

 
    ,                                 

Upon using (13), the above inequality gives  

‖ .    
( )
/   ( ̅   

( )
)‖
 
  ‖    

( )
  ̅   

( )
‖
 
                                                             

     It means that   is contractive (since    is  sufficiently small and     ), hence we get  (   )  
 ̅(   ) (by theorem (1) ), which means the DEq has a unique solution, on the other hand since for each 

 , that  { ( )}    , then so  ( ( ))   (   )     which implies to  ( )    , for each      , 

finally we get that  { ( )} converges to a point in   (by Theorem (3) with    ) . 

4. General Cholesky Reduction Order Technique:   
     This technique is based in fact on an idea which is introduced at first in [10] which it reduces the 

diagonal elements in the Galerkin matrix in the LHS of the LAS) into columns, for this reasons we 

gave it the name Cholesky reduction order technique (GCHROT) and we formulate it by the following 

steps: 

First, Let   be a SAPD      matrix, then    is reduced to a new matrix    of order      by 

transforming the lower diagonals (  ) of the matrix    to columns, second the new      matrix   

which is computed by using the following formula : 

for          ,              (     )                                              

• if     , then        √       and        
   

    
     ,                         

• if     , then        √     ∑    
 

           ,       (     )       

        
 

    
(    ∑               )     ,           ,  with           .     

Example (1): Consider the following NLBPVPVC: 

     
 

   
0(  

   )
  

   
1  

 

   
0(  

   )
  

   
1     (         ) 
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  (       )      , on  ∂     
 (       )         (    )(    ) , on          

where   ,   -  ,   -,   ,   - 
 (         )   

 *   (  
       

   
      

    
    )     (  

       
   
      

    
    ) 

                               (         
      

    
   
 )(     (   (         

      
    

   
 )  ) 

                                        

     The exact solution of this problem is:   (       )         (    )(    ) 
           

     The above BVP of NLBPVPVC is solved using the GFEM with the PCM, the LAS which are 

obtained from the PCM is solved either by the CHM or by the CHROT, with M=9 and NT=20, a 

computer program is written in MATLAB Software to code the solution of this problem, it takes 5-

hours and 4-minutes when we use the CHM, while it takes 56- minutes when we use the CHROT.      

The approximate solution  ̅(       ), the exact solution   (       ) and the absolute error at  

(      ) are given at the time   ̂      in Table-1 and are shown in Figure-1.  

  

Table 1-Comparison between exact and approximation solutions 

       (       )  ̅(       ) 
absolute 

error 
       (       )  ̅(       ) 

absolute 

error 

0.1 0.1 0.0014 0.0014 0.0000 0.2 0.1 0.0024 0.0025 0.0001 

0.3 0.1 0.0032 0.0032 0.0000 0.4 0.1 0.0037 0.0037 0.0000 

0.5 0.1 0.0038 0.0039 0.0001 0.6 0.1 0.0037 0.0037 0.0000 

0.7 0.1 0.0032 0.0032 0.0000 0.8 0.1 0.0024 0.0025 0.0001 

0.9 0.1 0.0014 0.0014 0.0000 0.1 0.2 0.0024 0.0025 0.0001 

0.2 0.2 0.0043 0.0044 0.0001 0.3 0.2 0.0057 0.0058 0.0001 

0.4 0.2 0.0065 0.0066 0.0001 0.5 0.2 0.0068 0.0069 0.0001 

0.6 0.2 0.0065 0.0066 0.0001 0.7 0.2 0.0057 0.0058 0.0001 

0.8 0.2 0.0043 0.0044 0.0001 0.9 0.2 0.0024 0.0025 0.0001 

0.1 0.3 0.0032 0.0032 0.0000 0.2 0.3 0.0057 0.0058 0.0001 

0.3 0.3 0.0075 0.0076 0.0001 0.4 0.3 0.0085 0.0087 0.0002 

0.5 0.3 0.0089 0.0090 0.0001 0.6 0.3 0.0085 0.0087 0.0002 

0.7 0.3 0.0075 0.0076 0.0001 0.8 0.3 0.0057 0.0058 0.0001 

0.9 0.3 0.0032 0.0033 0.0001 0.1 0.4 0.0037 0.0037 0.0000 

0.2 0.4 0.0065 0.0066 0.0001 0.3 0.4 0.0085 0.0087 0.0002 

0.4 0.4 0.0097 0.0099 0.0002 0.5 0.4 0.0101 0.0103 0.0002 

0.6 0.4 0.0097 0.0099 0.0002 0.7 0.4 0.0085 0.0087 0.0002 

0.8 0.4 0.0065 0.0066 0.0001 0.9 0.4 0.0037 0.0037 0.0000 

0.1 0.5 0.0038 0.0039 0.0001 0.2 0.5 0.0068 0.0069 0.0001 

0.3 0.5 0.0089 0.0090 0.0001 0.4 0.5 0.0101 0.0103 0.0002 

0.5 0.5 0.0106 0.0108 0.0002 0.6 0.5 0.0101 0.0103 0.0002 

0.7 0.5 0.0089 0.0091 0.0002 0.8 0.5 0.0068 0.0069 0.0001 

0.9 0.5 0.0038 0.0039 0.0001 0.1 0.6 0.0037 0.0037 0.0000 

0.2 0.6 0.0065 0.0066 0.0001 0.3 0.6 0.0085 0.0087 0.0002 

0.4 0.6 0.0097 0.0099 0.0002 0.5 0.6 0.0101 0.0103 0.0002 

0.6 0.6 0.0097 0.0099 0.0002 0.7 0.6 0.0085 0.0087 0.0002 

0.8 0.6 0.0065 0.0066 0.0001 0.9 0.6 0.0037 0.0037 0.0000 

0.1 0.7 0.0032 0.0032 0.0000 0.2 0.7 0.0057 0.0058 0.0001 

0.3 0.7 0.0075 0.0076 0.0001 0.4 0.7 0.0085 0.0087 0.0002 

0.5 0.7 0.0089 0.0091 0.0002 0.6 0.7 0.0085 0.0087 0.0002 

0.7 0.7 0.0075 0.0076 0.0001 0.8 0.7 0.0057 0.0058 0.0001 

0.9 0.7 0.0032 0.0032 0.0000 0.1 0.8 0.0024 0.0025 0.0001 

0.2 0.8 0.0043 0.0044 0.0001 0.3 0.8 0.0057 0.0058 0.0001 

0.4 0.8 0.0065 0.0066 0.0001 0.5 0.8 0.0068 0.0069 0.0001 

0.6 0.8 0.0065 0.0066 0.0001 0.7 0.8 0.0057 0.0058 0.0001 

0.8 0.8 0.0043 0.0044 0.0001 0.9 0.8 0.0024 0.0025 0.0001 
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0.1 0.9 0.0014 0.0014 0.0000 0.2 0.9 0.0024 0.0025 0.0001 

0.3 0.9 0.0032 0.0033 0.0001 0.4 0.9 0.0037 0.0037 0.0000 

0.5 0.9 0.0038 0.0039 0.0001 0.6 0.9 0.0037 0.0037 0.0000 

0.7 0.9 0.0032 0.0032 0.0000 0.8 0.9 0.0024 0.0025 0.0001 

0.9 0.9 0.0014 0.0014 0.0000      

     

                   

 
   Figure 1-(a) shows the approximation solution, (b) shows the exact solution and (c) the absolute 

error                  

Example (2): Consider the following nonlinear parabolic equation  

     
 

   
0(    )

  

   
1  

 

   
0(    )

  

   
1     (         ) 

 Associated with the i.c and b.c                                                                                             

  (       )      , on  ∂    
  (       )      , in                                                                                                                     

where    

 (         )     ( ) *  (    ),  
       -    (    ) 

,  (  (    )    (,         
      

    
   
 -    ( )))   -+ 

                              (         
      

    
   
 )    ( )        

     The exact solution of this problem is:    (       )       (    )(    )    (  )                                                         
     The above BVP of NLBPVPVC is solved using the GFEM with the PCM, the LAS which is 

obtained from the PCM  solved either by the CHM or by the CHROT, with M=9 and NT=20, a 

computer program is written in MATLAB Software to code the solution of this problem, it takes 5-

hours and 2-minutes when we use the CHM to solve the LAS, while it takes 55-minutes when we use 

the CHROT. The approximate solution ̅(       ), the exact solution   (       ) and the absolute 

error at  (      ) are given at the time   ̂      in Table-2 and are shown in Figure-2.  
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Table 2-Comparison between exact and approximation solutions 

       (       )  ̅(       ) 
absolute 

error 
       (       )  ̅(       ) 

absolute 

error 

0.1 0.1 -0.0041 -0.0042 0.0001 0.2 0.1 -0.0072 -0.0075 0.0003 

0.3 0.1 -0.0095 -0.0098 0.0003 0.4 0.1 -0.0108 -0.0112 0.0004 

0.5 0.1 -0.0113 -0.0117 0.0004 0.6 0.1 -0.0108 -0.0112 0.0004 

0.7 0.1 -0.0095 -0.0098 0.0003 0.8 0.1 -0.0072 -0.0075 0.0003 

0.9 0.1 -0.0041 -0.0042 0.0001 0.1 0.2 -0.0072 -0.0075 0.0003 

0.2 0.2 -0.0128 -0.0133 0.0005 0.3 0.2 -0.0168 -0.0174 0.0006 

0.4 0.2 -0.0192 -0.0199 0.0007 0.5 0.2 -0.0200 -0.0208 0.0008 

0.6 0.2 -0.0192 -0.0199 0.0007 0.7 0.2 -0.0168 -0.0175 0.0007 

0.8 0.2 -0.0128 -0.0133 0.0005 0.9 0.2 -0.0072 -0.0075 0.0003 

0.1 0.3 -0.0095 -0.0098 0.0003 0.2 0.3 -0.0168 -0.0174 0.0006 

0.3 0.3 -0.0221 -0.0229 0.0008 0.4 0.3 -0.0253 -0.0262 0.0009 

0.5 0.3 -0.0263 -0.0273 0.0010 0.6 0.3 -0.0253 -0.0262 0.0009 

0.7 0.3 -0.0221 -0.0229 0.0008 0.8 0.3 -0.0168 -0.0175 0.0007 

0.9 0.3 -0.0095 -0.0098 0.0003 0.1 0.4 -0.0108 -0.0112 0.0004 

0.2 0.4 -0.0192 -0.0199 0.0007 0.3 0.4 -0.0253 -0.0262 0.0009 

0.4 0.4 -0.0289 -0.0299 0.0010 0.5 0.4 -0.0301 -0.0312 0.0011 

0.6 0.4 -0.0289 -0.0300 0.0011 0.7 0.4 -0.0253 -0.0262 0.0009 

0.8 0.4 -0.0192 -0.0200 0.0008 0.9 0.4 -0.0108 -0.0112 0.0004 

0.1 0.5 -0.0113 -0.0117 0.0004 0.2 0.5 -0.0200 -0.0208 0.0008 

0.3 0.5 -0.0263 -0.0273 0.0010 0.4 0.5 -0.0301 -0.0312 0.0011 

0.5 0.5 -0.0313 -0.0325 0.0012 0.6 0.5 -0.0301 -0.0312 0.0011 

0.7 0.5 -0.0263 -0.0273 0.0010 0.8 0.5 -0.0200 -0.0208 0.0008 

0.9 0.5 -0.0113 -0.0117 0.0004 0.1 0.6 -0.0108 -0.0112 0.0004 

0.2 0.6 -0.0192 -0.0199 0.0007 0.3 0.6 -0.0253 -0.0262 0.0009 

0.4 0.6 -0.0289 -0.0300 0.0011 0.5 0.6 -0.0301 -0.0312 0.0011 

0.6 0.6 -0.0289 -0.0300 0.0011 0.7 0.6 -0.0253 -0.0262 0.0009 

0.8 0.6 -0.0192 -0.0200 0.0008 0.9 0.6 -0.0108 -0.0112 0.0004 

0.1 0.7 -0.0095 -0.0098 0.0003 0.2 0.7 -0.0168 -0.0175 0.0007 

0.3 0.7 -0.0221 -0.0229 0.0008 0.4 0.7 -0.0253 -0.0262 0.0009 

0.5 0.7 -0.0263 -0.0273 0.0010 0.6 0.7 -0.0253 -0.0262 0.0009 

0.7 0.7 -0.0221 -0.0229 0.0008 0.8 0.7 -0.0168 -0.0175 0.0007 

0.9 0.7 -0.0095 -0.0098 0.0003 0.1 0.8 -0.0072 -0.0075 0.0003 

0.2 0.8 -0.0128 -0.0133 0.0005 0.3 0.8 -0.0168 -0.0175 0.0007 

0.4 0.8 -0.0192 -0.0200 0.0008 0.5 0.8 -0.0200 -0.0208 0.0008 

0.6 0.8 -0.0192 -0.0200 0.0008 0.7 0.8 -0.0168 -0.0175 0.0007 

0.8 0.8 -0.0128 -0.0133 0.0005 0.9 0.8 -0.0072 -0.0075 0.0003 

0.1 0.9 -0.0041 -0.0042 0.0001 0.2 0.9 -0.0072 -0.0075 0.0003 

0.3 0.9 -0.0095 -0.0098 0.0003 0.4 0.9 -0.0108 -0.0112 0.0004 

0.5 0.9 -0.0113 -0.0117 0.0004 0.6 0.9 -0.0108 -0.0112 0.0004 

0.7 0.9 -0.0095 -0.0098 0.0003 0.8 0.9 -0.0072 -0.0075 0.0003 

0.9 0.9 -0.0041 -0.0042 0.0001      
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Figure 2-(a) shows the approximation solution, (b) shows the exact solution and (c) the absolute error 

 

5. Conclusions  

  The GFEM associated with the PCT is suitable, efficient and very fast to solve the nonlinear   

    parabolic boundary value problems. 

  The CHROT is very fast than the CHM with same results and this is important when we have  

    problems gives very large algebraic systems which take a long time in the classical CHM.            

  The value of   ̂ is chose arbitral in the interval I , same results with same accuracy will obtain if  

   we can take any other value of   ̂ provided this value belongs to I . 

Acknowledgement: The authors thank Prof. Dr. I. Chryssoverghi for fruitful discussion. 
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