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Abstract

The approximate solution of a nonlinear parabolic boundary value problem with
variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element
method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time
variable. The problem is reduced to solve a Galerkin nonlinear algebraic system
(NLAS), which is solved by applying the predictor and the corrector method (PCM),
which transforms the NLAS into a Galerkin linear algebraic system (LAS). This
LAS is solved once using the Cholesky technique (CHT) as it appears in the
MATLAB package and once again using the General Cholesky Reduction Order
Technique (GCHROT), the GCHROT is employed here at first time to play an
important role for saving a massive time. Illustrative examples are given to solve the
NLPBVPVC with the GCHROT, the results are given by tables and figures which
show from a side efficiency of this technique, and from another side show that the
two methods GCHROT and CHM are given the same results, but the suggesting first
technique is very fast than the second one.
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1. Introduction

The solution of the boundary value problem (BVPS) in general and the solution of NLPBVPVC in
particular are interested to study from many researchers in the last few decades. In fact there are many
different methods for solving the NLPBVPVC, for example Eriksson and Johnson in 1995 used the
Adaptive Finite Element Method (AFEM) for solving the NLP [1]. Amiya in 1998 studied an H!-
Galerkin mixed finite element method, proposed and analyzed for nonlinear parabolic (NLP) with non
self adjoint elliptic parts [2]. Georgios and Charalambos in 2004 consider the GM for the time
discretization of a class of nonlinear parabolic equations [3]. Buyang and Weiwei in 2017 present a
general framework for numerical analysis of finite element methods (FEM) for NLP equations with
nonsmooth coefficients [4], and many others.

The study of the solution for the parabolic BVP using the FEM back to the beginning of the 17"
century, and are studied from many researchers so as Douglas and Dupont [5], in 1993 Reddy
introduced in his book an introduction to the FEM applied to linear, one and two-dimensional
problems of engineering and applied sciences [6]. In 1997-2006 Thomee [7] studied the GFEM with
backward Euler method for NLPBVP, and many others studies. Actually these studies encourage us
to study this work the approximate solution (APS) for NLPBVPVC using the GFEM method for the
space variable and the C-N scheme for the time variable.

This paper starts with giving a description of proposed NLPBVPVC and its weak form. The APS of
the problem is obtained by discretize the weak form by using the GFEM for the space variable and the
C-N scheme for the time variable, the problem then reduces to solve a NLAS which is transformed
upon using the PCM to a LAS. This LAS is solved once using the Cholesky Technique and once
again using that we gave it the name General Cholesky Reduction Order Technique and it is employed
here at first time to play an important role for saving a massive time. Finally illustrative examples are
given to solve different problems using MATLAB R2013a software CPU@2.80GHz, the results show
the efficiency of this method, and the General Cholesky Reduction Order Technique is very fast to
solve the linear algebraic system than the Cholesky Technique.

In this work the inner product and norm in L?(w) will be denoted by (-,) and |||, , the inner product
and norm in Sobolev space W = H}(w) will be denoted by (-, -); and ||-||;, the duality bracket
between W and its dual W* will be denoted by (- /) and ||-]|p be the norm in L?(P).

2. Basic Definitions and Theorems:

Definition 1 [8]: A point s* in a subset X < RZ2is said to be fixed point of a given function f: X - R?,
if f(s*) =s".

Definition 2 [8]: A function f: X ¢ R? —» R? is said to be contractive on X, if for each s, t € X:
IF(s) = FOI <vylls —t|| , where 0 < y < 1 is a constant.

Theorem 1 [8]: A cf f on a complete normed space X has a unique fixed point s*in X .

Theorem 2 [8]: Let ||:|| isanorm in R? and X ¢ R%. If f:X — R? is contractive on X, and one of
the following is satisfied:

(i) For each s in X, the function f(s) belongs X .

(i) X ={sllls—tll < p}and [lq(®) —tll < (1 -1)B .

(i) X = {s|lls — s* Il < B}, where s* is a fixed point of f/ Then {s(®} € X, where s® is the I —th
iterative value of s .

Theorem 3 [8]: Let ||-|| is a norm in R? and X be a closed subset of R2. If f:X — R? is contractive
function on , and {sV} € X, then

(i) The sequence {s(®} converges to a fixed point s* € X

(if) s* isa unique in X.

3. Description of the (NLPBVPVC):

Let w = {¥ = (x1,x,) € R%:0 < x4,x, < 1}, with Lipischitz boundary 0w, and let 1=[0,T] ,
0<T<oo,andp=wXx]I.

The NLP equation with variable coefficients is given by:

6 - 6 - - .
e = X e [50 (B D) g | + P(E Du = @G tw) L in p ®
with the boundary condition (b.c)
u(X,t) =0,0n dw X I 2)

and the initial condition (i.c)
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u(%,0) =u’®@), inw (3)
where  u = u(x,t),as (%, t), P&, t), p(%,t,u) € L (w) and ay, (X, t) are positive nonzero arbitral
functions.

Now, the weak form of problem (1-3) is given by:

(g, w)+au,w,t)=(pu),w), vVweWwW ae on I, (4)

@(0), ) =@’, &, in W (5)

with u® belongs to W c L*(w) and
du ow

a(u,w, t) = Y3421 a5q(%, 1) (6x ) + Y(X, t)(u,w) , is the usual bilinear form .

Assumptions:

(1) for some positive constants &, ,8, and foreach w,,w, € W, t €I, the following are hold
) la(wy, wy, ) < 61 [lwqll1 llwlly

i) a(wy,wy,t) 2 8 [lwy |13

(2) the function ¢is of a Carathéodory type on px R and satisfies for (¥,t) € p:

i) (X, t,u)| < 5%, t) + cqlul, wherec; >0, u € Rand § € L?(p,R)

i) [p(X, t,uqy) — p(X, t,uz)| < Lluy — uy|, where uq,u, € R, L isa Lipischitz constant.

3.1 Discretization of the Continuous Equation:

The weak form of (4)-(5) is discretized by using the GFEM as follows, let the domain w w is a
polyhedron. For every integer n, let {w{‘}ﬁ(ln) be an admissible regular triangulation of @ into closed
disimplices [7], {I3¥I51 be subdivision of the interval T into NT(n) intervals , where I} =
[tr, tieq], Of equal length At = T/NT, let p; = w}' X I} and W, < W be the space of continuous
piecewise affine in W. The Discrete equation (DEq) of the weak form (4-5) is obtained through
applying the Crank-Nicolson scheme and it is

(up, —ul ,w) + Ata (ugk ,W) = At ((,b (tgk ,ugk) ) W), k=01,.., NT—1 (6)
@hw)=@W’w), uew (7)

where & € Wy, ur, =% (upyr +up), tlk (tk+1 +t), up =u(ty) e Wy, k=0,1,..,NT — 1.
2

3.2 The Approximation Solution of the Nonllnear Parabolic Equation:

To find the APS u™ = (ug,uf, ..., uyr) of (6-7) using the GFEM, the following procedure is used:
(1) Let N=M; xM; with M; =M —1, for any fixed kwith 0 <k < NT —1, let {w;,i=
1,2,...,N,with w;(¥) = 0, on dw} be a continuous piecewise affine finite basis of W, in W, then

for any Uup, Upyq1 € W, (6-7) can be rewritten as:
(ujgy1 — up, wy) + Ata (ugk,wi) = At (qﬁ (tgk,§u2+1 + guﬁ) ,wi), i=12,..,N (8)
w?wy) = W w) , W,EW, i=12,..,N 9)

(2) Apply the Galerkin method [7], to approximate the discrete functions ug, wj and uj;,, by their

approximation forms using the basis (wy, ws, ..., wy) of W, , i.e.
k K+,
uo—ZJ vafwy up =3 afw; and uRy, = 3o af T wy
where ,aj = q; (ty) ,foreach k = 0,1, ..., NT are unknown constants to be determine.

(3) Substitute u}} and uj,, in (8) to get the following NLAS

(C +1atD)a**t = (C —AeD)a* + f(t1,), k=01,.,NT -1 (10)
2

and substituting ug in (9) to get the following LAS &

ca® =g° (11)

_ _ _ _ Sk _ ook ok K
where € = (c;inxns  Cij = W, w).D = (dijInxn,  dij = a(wj,w;), dnxg = (af, a5, ..,ay)7,

'E = Binx1 Bi = At(@')GET&kH +§ET&k): Wi): byx1 = (wy,wy, "-'WN)T and EO = (.BiO)le )
B =’w), Vij=12..,N.

It is clear that the matrices C and C + SAtD in the system (10)-(11) are symmetric and positive
definite (SAPD) hence the system has a unique solution [9]. To solve it, the LAS (11) is solved at first
to get @, then to solve the NLAS (10) the PCM is used here [7], as follows : For each k (0 < k <
NT — 1) the value (predictor solution PS) of the vector a@**? is predicate at first by using the explicit
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form (just the value of a¥) in the vector E in the right hand side (RHS) of (10) , then by setting

ak*tl = gk+1 inthe vector £ inthe RHS of (10), again it becomes a LAS w.r.t. @**1, which is
solved to get the corrector solutlon(CS) a®*1, (In this point it is important to mention here that this
procedure can be repeated "more than one time" if we need to get more accuracy results by substitute
the CS @**1 = @k*1 in the RHS of the LAS (10) and solve it again to get a new CS @**1). Hence the
corrector equation described as follows:

(u,((l:f) — U, W ) + Ata (: ,((1:11) + %uk, w) = At (d)( u,((lil + uk) w) (12)
0] (+1)

where u, 1, :=uy,, is the PS at the iteration [ + 1, u,,,” :=ug,q is its corresponding CS at the
iteration [ and wu; = uy, is the known CS for the previous step k, i.e. (12) can be written as :

ut = fu®) (13)
Theorem 4 (Existence and Uniqueness of Solution): The discrete equation (6-7) with fixed point
and for At sufficiently small has a unique solution u™ = (ug,uf,...,uk) , and the sequence of
corrector solutions is convergence in R.

Proof: Let u(*+D = (u((,”l) Lty u,(v”l)) and a0 = @, Lty ety

are two solutions of (12) , i.e.

(u,((l_-:ll) — U, w) + Ata(—u,((l_:ll) + %uk,w) = At(¢ ( u,((lil +- uk) w) (14)
A1 = wew) + MaGagty + 2w w) = at(e (FT0, +3we),w) (15)

By subtracting (15) from (14), setting w = u](_l:;l) - vj(ﬁl) in the obtained equation and using in

assumption (2-ii), to get

| LD _ —(”1)“ +LAta (u,((l_:'ll) ﬁ,(cljll);u;((l:;) - al(cl-:ll))

k+1 k+1
1 ) (+1) _ —(+1)

< S AtL (|uk+1 — U] T Upy |)

From assumption (1-ii) the 2™¢ term in the left hand side (LHS) is nonnegative and then applying the

Cauchy Schwarz (CS) inequality on the RHS of above inequality, it becomes

| sy — _z(cl:f)” o - u,(fll” , where y = 2AtL,

Upon using (13), the above inequality gives
”f (ul(cl-)u) f(u,({lil)”() =Y ”ul(cl-)n - ﬁl(cl-)rl”

It means that f is contractive (since At is sufficiently small and y < 1), hence we get u(+1 =
7+ (by theorem (1) ), which means the DEq has a unique solution, on the other hand since for each
[, that {u®}eR, then so f(u®)=ul*D e R which implies to f(u) € R, for each u€R ,
finally we get that {u(} converges to a point in R (by Theorem (3) with X = R) .

4. General Cholesky Reduction Order Technique:

This technique is based in fact on an idea which is introduced at first in [10] which it reduces the
diagonal elements in the Galerkin matrix in the LHS of the LAS) into columns, for this reasons we
gave it the name Cholesky reduction order technique (GCHROT) and we formulate it by the following
steps:

First, Let A be a SAPD N x N matrix, then A is reduced to a new matrix B of order N X M1 by
transforming the lower diagonals (M 1) of the matrix A to columns, second the new N x M1 matrix B
which is computed by using the following formula :

for=12,..,N,j=i+1,.. min(i+M,N)
A =i—j+M1

iM1

K

i if l > 1 then BlMl = \/AlMl - ZTZK—i+M1 BlZT y K= maX(l - M, 1) l - 1

Bjy = — ( —Yrek—ism1BirBjs) ,s=r+i—j , with j—K<M.
Example (1) Consider the following NLBPVPVC:
] d ] a
Ug —a—xl[(xf + 1)6—; —a[(xzz + 1)%] +u = P(x1, %z, t,u)
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u(xy,x.,t) =0 ,0n dw X1
u(xq1,%2,0) = 0.1x72x5,(1 —x1)(1 — x3) ,0n w
where w = [0,1] x [0,1], I = [0,1]
P (x1, x5, t,u) = et{0.2(xx, — 2x2x5 + x.x2 — x% + x1) + 0.2(x3x; — 2x2x% + x,x7 — x5 + x3)
—0.1(x1%5 — x1x5 — X3x7 + x2x2) (1 + sin(0.1(xy x5 — X1 X% — x,x% + xix3)e?)
+usinu

The exact solution of this problem is: w(x, x5, t) = 0.1x;x,(1 — x1)(1 — x)et

The above BVP of NLBPVPVC is solved using the GFEM with the PCM, the LAS which are
obtained from the PCM is solved either by the CHM or by the CHROT, with M=9 and NT=20, a
computer program is written in MATLAB Software to code the solution of this problem, it takes 5-
hours and 4-minutes when we use the CHM, while it takes 56- minutes when we use the CHROT.
The approximate solution (xq,x5,t), the exact solution u(xq,x,,t) and the absolute error at
(x4 ,x,) are given at the time £ = 0.5 in Table-1 and are shown in Figure-1.

Table 1-Comparison between exact and approximation solutions

Xy | Xg | u(xq,xp,t) | U(xq,x2,t) abesr?IOL:m X1 | Xg | u(xy,xg,t) | U(xq, X2, t) atésr?g:te
01|01 0.0014 0.0014 0.0000 | 0.2]01 0.0024 0.0025 0.0001
0301 0.0032 0.0032 0.0000 | 04|01 0.0037 0.0037 0.0000
05101 0.0038 0.0039 0.0001 | 06|01 0.0037 0.0037 0.0000
0.7 0.1 0.0032 0.0032 0.0000 | 0.8 0.1 0.0024 0.0025 0.0001
09101 0.0014 0.0014 0.0000 | 0.1]0.2 0.0024 0.0025 0.0001
0.2]0.2 0.0043 0.0044 0.0001 | 0.3]0.2 0.0057 0.0058 0.0001
04 0.2 0.0065 0.0066 0.0001 |05 10.2 0.0068 0.0069 0.0001
06 |0.2 0.0065 0.0066 0.0001 | 0.7 0.2 0.0057 0.0058 0.0001
0.8]0.2 0.0043 0.0044 0.0001 |09 |0.2 0.0024 0.0025 0.0001
0.1]0.3 0.0032 0.0032 0.0000 | 0.2]0.3 0.0057 0.0058 0.0001
0.31]0.3 0.0075 0.0076 0.0001 |04 0.3 0.0085 0.0087 0.0002
0510.3 0.0089 0.0090 0.0001 | 0.6 |0.3 0.0085 0.0087 0.0002
0.7 | 0.3 0.0075 0.0076 0.0001 | 0.8 0.3 0.0057 0.0058 0.0001
09103 0.0032 0.0033 0.0001 (01|04 0.0037 0.0037 0.0000
02104 0.0065 0.0066 0.0001 | 03|04 0.0085 0.0087 0.0002
04104 0.0097 0.0099 0.0002 | 05|04 0.0101 0.0103 0.0002
06|04 0.0097 0.0099 0.0002 | 0.7]04 0.0085 0.0087 0.0002
08|04 0.0065 0.0066 0.0001 |09 |04 0.0037 0.0037 0.0000
01|05 0.0038 0.0039 0.0001 | 0.2]05 0.0068 0.0069 0.0001
03|05 0.0089 0.0090 0.0001 | 04|05 0.0101 0.0103 0.0002
05105 0.0106 0.0108 0.0002 | 06|05 0.0101 0.0103 0.0002
0.7 105 0.0089 0.0091 0.0002 | 0.8 0.5 0.0068 0.0069 0.0001
09|05 0.0038 0.0039 0.0001 | 0.110.6 0.0037 0.0037 0.0000
0.2 | 0.6 0.0065 0.0066 0.0001 | 03] 0.6 0.0085 0.0087 0.0002
04| 0.6 0.0097 0.0099 0.0002 | 05| 0.6 0.0101 0.0103 0.0002
06| 0.6 0.0097 0.0099 0.0002 | 0.7 | 0.6 0.0085 0.0087 0.0002
0.8 0.6 0.0065 0.0066 0.0001 | 0.9 | 0.6 0.0037 0.0037 0.0000
0.11]0.7 0.0032 0.0032 0.0000 | 0.2 | 0.7 0.0057 0.0058 0.0001
03] 0.7 0.0075 0.0076 0.0001 | 04| 0.7 0.0085 0.0087 0.0002
051 0.7 0.0089 0.0091 0.0002 | 0.6 | 0.7 0.0085 0.0087 0.0002
0.7 | 0.7 0.0075 0.0076 0.0001 | 0.8 0.7 0.0057 0.0058 0.0001
09|07 0.0032 0.0032 0.0000 | 0.110.8 0.0024 0.0025 0.0001
0.2 0.8 0.0043 0.0044 0.0001 | 0.3]0.8 0.0057 0.0058 0.0001
04 0.8 0.0065 0.0066 0.0001 |05 0.8 0.0068 0.0069 0.0001
061 0.8 0.0065 0.0066 0.0001 | 0.7]0.8 0.0057 0.0058 0.0001
0.8 0.8 0.0043 0.0044 0.0001 | 0.91|0.8 0.0024 0.0025 0.0001
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0109 0.0014 0.0014 0.0000 | 0.2]0.9 0.0024 0.0025 0.0001
03109 0.0032 0.0033 0.0001 0409 0.0037 0.0037 0.0000
0509 0.0038 0.0039 0.0001 | 0.6 0.9 0.0037 0.0037 0.0000
0.710.9 0.0032 0.0032 0.0000 | 0.8]0.9 0.0024 0.0025 0.0001
09109 0.0014 0.0014 0.0000

Figure 1-(a) shows the approximation solution, (b) shows the exact solution and (c) the absolute
error
Example (2): Consider the following nonlinear parabolic equation

U —aixl[(xl + 1);—;1 —;TZ[(xZ + 1):—;2] +u = ¢(xq1, x5, t,u)

Associated with the i.c and b.c

u(xqy,x.,t) =0 ,0n dw X1

u(x,%,,0) =0 ,inw

where

¢ (xq, x5, t,u) = sin(t) {x (1 — xx)[xf — 5% — 1] — 1 (1 — x7)
[x,(4 + (1 — xp) sin([x, 2, — x;x% — x,x2 + x2x2] sin(t))) + 1]}
—(x1x; — x1X2 — x,x2 + x2x2) cos(t) + usinu

The exact solution of this problem is:  u(xq,x,,t) = x3x,(1 — x1)(1 — x,) sin(—t)

The above BVP of NLBPVPVC is solved using the GFEM with the PCM, the LAS which is
obtained from the PCM solved either by the CHM or by the CHROT, with M=9 and NT=20, a
computer program is written in MATLAB Software to code the solution of this problem, it takes 5-
hours and 2-minutes when we use the CHM to solve the LAS, while it takes 55-minutes when we use
the CHROT. The approximate solutionu(x;, x5, t), the exact solution u(xq,x,,t) and the absolute
error at (x, ,x,) are given at the time £ = 0.5 in Table-2 and are shown in Figure-2.
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Table 2-Comparison between exact and approximation solutions

x| 3 | uGenx,t) | 80, 6) | OOk | x| uGx ) | @Gaxg,0 | 00
0.1]0.1 -0.0041 -0.0042 0.0001 | 0.2]0.1 -0.0072 -0.0075 0.0003
0.3]0.1 -0.0095 -0.0098 0.0003 | 0.4 | 0.1 -0.0108 -0.0112 0.0004
05]0.1 -0.0113 -0.0117 0.0004 | 0.6 | 0.1 -0.0108 -0.0112 0.0004
0.7 0.1 -0.0095 -0.0098 0.0003 | 0.8 | 0.1 -0.0072 -0.0075 0.0003
09101 -0.0041 -0.0042 0.0001 | 0.1]0.2 -0.0072 -0.0075 0.0003
0.2 0.2 -0.0128 -0.0133 0.0005 | 0.3]0.2 -0.0168 -0.0174 0.0006
04 0.2 -0.0192 -0.0199 0.0007 | 0.5 0.2 -0.0200 -0.0208 0.0008
0.6 | 0.2 -0.0192 -0.0199 0.0007 | 0.7 | 0.2 -0.0168 -0.0175 0.0007
0.8 0.2 -0.0128 -0.0133 0.0005 |09 0.2 -0.0072 -0.0075 0.0003
0.1]0.3 -0.0095 -0.0098 0.0003 | 0.2 ]0.3 -0.0168 -0.0174 0.0006
0.3]0.3 -0.0221 -0.0229 0.0008 | 0.4 | 0.3 -0.0253 -0.0262 0.0009
0.51]0.3 -0.0263 -0.0273 0.0010 | 0.6 | 0.3 -0.0253 -0.0262 0.0009
0.7 0.3 -0.0221 -0.0229 0.0008 | 0.8 | 0.3 -0.0168 -0.0175 0.0007
0.910.3 -0.0095 -0.0098 0.0003 | 01|04 -0.0108 -0.0112 0.0004
02|04 -0.0192 -0.0199 0.0007 | 03|04 -0.0253 -0.0262 0.0009
04|04 -0.0289 -0.0299 0.0010 {0504 -0.0301 -0.0312 0.0011
06|04 -0.0289 -0.0300 0.0011 | 0.7 |04 -0.0253 -0.0262 0.0009
08|04 -0.0192 -0.0200 0.0008 | 09|04 -0.0108 -0.0112 0.0004
01|05 -0.0113 -0.0117 0.0004 | 0.2 |05 -0.0200 -0.0208 0.0008
03|05 -0.0263 -0.0273 0.0010 |04 |05 -0.0301 -0.0312 0.0011
05|05 -0.0313 -0.0325 0.0012 |06 |05 -0.0301 -0.0312 0.0011
0.7 | 05 -0.0263 -0.0273 0.0010 | 0.8 |05 -0.0200 -0.0208 0.0008
09|05 -0.0113 -0.0117 0.0004 | 0.1]0.6 -0.0108 -0.0112 0.0004
0.2 ] 0.6 -0.0192 -0.0199 0.0007 | 0.3 | 0.6 -0.0253 -0.0262 0.0009
04 |0.6 -0.0289 -0.0300 0.0011 | 05| 0.6 -0.0301 -0.0312 0.0011
06| 0.6 -0.0289 -0.0300 0.0011 | 0.7 | 0.6 -0.0253 -0.0262 0.0009
0.8 | 0.6 -0.0192 -0.0200 0.0008 | 0.9 | 0.6 -0.0108 -0.0112 0.0004
0.1]0.7 -0.0095 -0.0098 0.0003 | 0.2 | 0.7 -0.0168 -0.0175 0.0007
0.3 0.7 -0.0221 -0.0229 0.0008 | 0.4 | 0.7 -0.0253 -0.0262 0.0009
0507 -0.0263 -0.0273 0.0010 | 0.6 | 0.7 -0.0253 -0.0262 0.0009
0.7 0.7 -0.0221 -0.0229 0.0008 | 0.8 | 0.7 -0.0168 -0.0175 0.0007
0.9 0.7 -0.0095 -0.0098 0.0003 | 0.1]0.8 -0.0072 -0.0075 0.0003
0.2 0.8 -0.0128 -0.0133 0.0005 | 0.3|0.8 -0.0168 -0.0175 0.0007
0408 -0.0192 -0.0200 0.0008 | 05 |0.8 -0.0200 -0.0208 0.0008
06 0.8 -0.0192 -0.0200 0.0008 | 0.7 | 0.8 -0.0168 -0.0175 0.0007
0.8 0.8 -0.0128 -0.0133 0.0005 |09 |0.8 -0.0072 -0.0075 0.0003
0.1]0.9 -0.0041 -0.0042 0.0001 | 0.2 0.9 -0.0072 -0.0075 0.0003
0.3]0.9 -0.0095 -0.0098 0.0003 | 0.4 | 0.9 -0.0108 -0.0112 0.0004
05109 -0.0113 -0.0117 0.0004 | 0.6 |0.9 -0.0108 -0.0112 0.0004
0.7 1 0.9 -0.0095 -0.0098 0.0003 | 0.8 | 0.9 -0.0072 -0.0075 0.0003
09109 -0.0041 -0.0042 0.0001
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-0.014
-0.02

-0.03

-0.04

Figure 2-(a) shows the approximation solution, (b) shows the exact solution and (c) the absolute error

5. Conclusions

» The GFEM associated with the PCT is suitable, efficient and very fast to solve the nonlinear
parabolic boundary value problems.

» The CHROT is very fast than the CHM with same results and this is important when we have
problems gives very large algebraic systems which take a long time in the classical CHM.

e The value of £ is chose arbitral in the interval | , same results with same accuracy will obtain if
we can take any other value of £ provided this value belongs to I .

Acknowledgement: The authors thank Prof. Dr. I. Chryssoverghi for fruitful discussion.
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