Mawlood and Al-Mothafar

Iraqi Journal of Science, 2022, Vol. 63, No. 12, pp: 5447-5454 DOI: 10.24996/ijs.2022.63.12.30





ISSN: 0067-2904

# **F-Approximately Regular Modules**

Ahmed K. Mawlood\*, Nuhad Salim Al-Mothafar Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 4/1/2022 Accepted: 7/3/2022 Published: 30/12/2022

#### Abstract

We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module M is approximately pure, then M is called F-approximately regular. Further, many results about this concept are given.

**Keywords:** Approximately pure submodules, F-approximately regular modules, Pure submodules, regular modules.

المقاسات المنتظمة تقريبا احمد خالد مولود<sup>\*</sup> ، نهاد سالم المظفر قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

قدمنا في هذا البحث مفهوم المقاس الجزئي النقي تقريبا كأعمام للمقاس الجزئي النقي الذي عرفه أندرسون و فولر . اذا كان كل مقاس جزئي من المقاس M على R هو نقي تقريبا ، فان M يسمى منتظم تقريبا من النمط - F . وأعطينا العديد من النتائج حول هذا المفهوم.

#### **1. Introduction:**

Let *R* be a commutative ring with identity and all modules are (left) unitary R- module. D. Fieldhouse [1] defined an R-module *M* to be regular if every submodule *N* of *M* is pure of *M*, where a submodule *N* of *M* is pure in *M* if  $0 \rightarrow L \otimes N \rightarrow L \otimes M$  is exact for all R-modules *L* [2]. Anderson and Fuller in [3] called a submodule *N* of an R-module *M* is pure in *M* if  $IM \cap N = IN$  for all ideal *I* of *R*. A submodule *N* of R- module *M* is called nearly pure in *M* if  $IM \cap N = IN + J(M) \cap (IM \cap N)$ , where *J*(*M*) is the Jacobson radical of *R* [4]. In 2015, the concept of F - nearly regular submitted, where an R-module *M* is said to be F -nearly regular if every submodule *N* of *M* is nearly pure of *M* [5]. In (2019) Rafid M-Al-Shaibani and Nuhad S. Al-Mothafar gave the concept of regularity in another way, where an R-module *M* is called J-pure if for each ideal *I* of *R*  $IJ(M) \cap N = IN$  [6]. This idea leads to introduce the concept of approximately pure where a submodule *N* of *M* is called approximately pure in *M* if  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$ , and Soc(M) is the intersection of all essential submodule of *M*, where a non-zero submodule *N* of *M* is called essential (notational,  $N \leq_e M$ ) if  $N \cap W \neq 0$  for all submodules *W* of *M* [3]. By using the

<sup>\*</sup>Email: ahmdkhaldmwlwd@gmail.com

definition that is given in [5], we introduce another generalization of regular modules as follows: An R-module M is called an F-approximately regular module if every submodule N of M is approximately pure of M.

The main purpose of this work is to develop the properties of F-approximately regular modules and add some new definitions and results.

# 2. Approximately Pure Submodules.

Throughout this section, we introduce the concept of approximately pure submodules as a generalization of pure submodules, we study some of its basic properties.

### **Definition (2.1):**

A submodule N of an R-module M is called an approximately pure submodule of M if  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$ .

An ideal I of a ring R is called an approximately pure ideal of R if it is an approximately pure submodule of an R-module R.

Recall that a submodule N of an R-module M is called pure submodule of M if  $IM \cap N = IN$  [3].

### **Remarks and Examples (2.2):**

**1.** It is clear that every pure submodule is an approximately pure submodule, but the converse is not true in general.

For example : the submodule  $\langle \overline{2} \rangle = \{\overline{0}, \overline{2}\}$  of the Z-module  $Z_4$  is an approximately pure submodule Since  $I Z_4 \cap \langle \overline{2} \rangle = I \langle \overline{2} \rangle + Soc(Z_4) \cap (IZ_4 \cap \langle \overline{2} \rangle)$  for every ideal I = nZ of Z where n is any positive integer and  $Soc(Z_4) = \langle \overline{2} \rangle$  but it is not pure. Since if I = 2Z then  $I Z_4 \cap \{\overline{0}, \overline{2}\} = 2 Z_4 \cap \{\overline{0}, \overline{2}\} = \{\overline{0}, \overline{2}\}$ , but  $I \{\overline{0}, \overline{2}\} = 2 \{\overline{0}, \overline{2}\} = \{\overline{0}\}$ .

**2.** In any R-module M, the submodules M and  $\{0\}$  are always approximately pure submodules in M.

**3.** The module *Z* as *Z*-module. The only approximately pure submodules are *Z* and {0}. To show this, for every submodule nZ of *Z*,  $n = n. 1 \in \langle n \rangle Z \cap nZ$ , but  $n \notin \langle n \rangle (nZ) + Soc(Z) \cap (\langle n \rangle Z \cap nZ) = \langle n^2 \rangle Z + Soc(Z) \cap (\langle n \rangle Z \cap nZ)$ , where  $Soc(Z) = \{0\}$ .

**4.** Every nonzero cyclic submodule of the *Z*-module *Q* is not approximately pure submodule. **Proof:** 

Let *N* be a cyclic submodule of the *Z*-module , generated by an element  $\frac{a}{b}$  where *a* and *b* are two nonzero element in *Z*. If we take an ideal  $\langle n \rangle$  of *Z* where *n* is greater than one, then  $\langle n \rangle \cdot \frac{a}{b} = \langle \frac{na}{b} \rangle$ .

Also, Q divisible because for any element  $\frac{c}{d} \in Q$  we have  $\frac{c}{d} = \frac{c}{nd}$ .  $n \in \langle n \rangle Q$ , thus  $Q = \langle n \rangle Q$ . Therefore,  $\langle n \rangle Q \cap \langle \frac{a}{b} \rangle = \langle \frac{a}{b} \rangle$ , but the other hand  $\langle n \rangle Q \cap \langle \frac{a}{b} \rangle + Soc(Q) \cap \langle (\langle n \rangle Q \cap \langle \frac{a}{b} \rangle) = \langle \frac{na}{b} \rangle$ . Since  $Soc(Q) = \{0\}$  implies that N is not approximately pure submodule of .

**5.** It is clear that every direct summand is an approximately pure submodule, since every direct summand is a pure submodule, hence by (1) is an approximately pure submodule, but the converse is not true.

For example : the submodule  $\langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}\}$  of the Z-module  $Z_9$  is an approximately pure submodule since  $I Z_9 \cap \{\overline{0}, \overline{3}, \overline{6}\} = I\{\overline{0}, \overline{3}, \overline{6}\} + Soc(Z_9) \cap (I Z_9 \cap \langle \overline{3} \rangle)$  for each I of Z, where  $Soc(Z_9) = \langle \overline{3} \rangle$  is not pure and hence not direct summand since if we take I = 3Z of Z, then  $3Z_9 \cap \langle \overline{3} \rangle = \langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}\}$  but  $I\{\overline{0}, \overline{3}, \overline{6}\} = 3\{\overline{0}, \overline{3}, \overline{6}\} = \{\overline{0}\}$ .

### **Proposition (2.3):**

Let M be an R-module and let N be a pure submodule of M. If A is an approximately pure submodule of N, then A is approximately pure submodule in M.

### **Proof:**

Let I be an ideal of a ring R. Since N is a pure submodule in M and A is an approximately pure submodule of N, then  $IM \cap N = IN$  and  $IN \cap A = IA + Soc(N) \cap (IN \cap A)$ .

$$\begin{split} IM \cap A &= IM \cap (N \cap A) \\ &= (IM \cap N) \cap A \\ &= IN \cap A \quad \text{since N is pure in M} \\ &= IA + Soc(N) \cap (IN \cap A) \\ &\subseteq IA + (Soc(M) \cap N) \cap (IN \cap A) \quad \text{since } Soc(N) \subseteq Soc(M) \cap N \\ &\subseteq IA + Soc(M) \cap (N \cap A) \cap IM \quad \text{since } IN \subseteq IM \\ &= IA + Soc(M) \cap (IM \cap A) \quad \text{since } \cap A = A \,. \end{split}$$
Also,  $IA + Soc(M) \cap (IM \cap A) \subseteq IM \cap A$ Thus,  $IM \cap A = IA + Soc(M) \cap (IM \cap A)$ 

### **Proposition (2.4):**

Let *M* be an R-module. If *N* is an approximately pure submodule of an *R*-module *M* and *A* is a submodule of *M* containing *N* such that  $Soc(A) = Soc(M) \cap A$ , then *N* is approximately pure submodule of *A*.

### **Proof:**

Let *I* be an ideal of a ring *R*. Since *N* is an approximately pure submodule in *M*, then  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$  and  $N \subseteq A \subseteq M$  then:  $IA \cap N = (IA \cap IM) \cap N$ 

|                                           | $= IA \cap (IM \cap N)$                 |
|-------------------------------------------|-----------------------------------------|
| = I                                       | $A \cap [IN + Soc(M) \cap (IM \cap N)]$ |
|                                           | $= IN + Soc(M) \cap (IA \cap N)$        |
|                                           | $= IN + Soc(M) \cap IA \cap (A \cap N)$ |
| $= IN + (Soc(M) \cap A) \cap (IA \cap N)$ |                                         |
| $= IA + Soc(A) \cap (IA \cap N)$          | since $(A) = Soc(M) \cap A$ .           |

#### **Proposition (2.5):**

Let M be an R-module and N be an approximately pure submodule of M. If H is an approximately pure submodule of N, then H is an approximately pure submodule of M.

#### **Proof:**

Let *I* be an ideal of a ring *R*. Since *N* is approximately pure submodule of *M* and *H* is approximately pure submodule of *N*, then  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$  and  $IN \cap$  $H = IH + Soc(N) \cap (IN \cap H)$ . Since  $IM \cap H \subseteq IM \cap N = IN + Soc(M) \cap (IM \cap N)$ , hence  $IM \cap H \subseteq [IN + Soc(M) \cap (IM \cap N)] \cap H$ Thus  $= H \cap IN + Soc(M) \cap (IM \cap N \cap H)$  $= IH + Soc(N) \cap (IN \cap H) + Soc(M) \cap (IM \cap N \cap H)$  since *H* is approximately pure in *N* 

 $\subseteq IH + Soc(M) \cap (IM \cap H) \qquad \text{Since} \quad IH + Soc(M) \cap (IM \cap H) \subseteq IM \cap H$ Then  $IM \cap H = IH + Soc(M) \cap (IM \cap H).$ 

### **Proposition (2.6):**

Let *M* be an R-module and *N* be an approximately pure submodule of *M*. If *H* is a submodule of *N* and  $H \subseteq Soc(M)$ , then  $\frac{N}{H}$  is an approximately pure submodule of  $\frac{M}{H}$ .

# **Proof:**

Let I be an ideal of a ring R. Since N is an approximately pure submodule in , then  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$  so

$$I\left(\frac{M}{H}\right) \cap \frac{N}{H} = \frac{IM+H}{H} \cap \frac{N}{H}$$

$$= \frac{(IM\cap N)+H}{H}$$

$$= \frac{IN+Soc(M)\cap(IM\cap N)+H}{H}$$

$$= \frac{IN+H}{H} + \frac{Soc(M)\cap(IM\cap N)}{H}$$

$$= I\left(\frac{N}{H}\right) + \frac{Soc(M)+H)\cap(IM\cap N)}{H} \quad \text{since } H \subseteq Soc(M)$$

$$= I\left(\frac{N}{H}\right) + \frac{Soc(M)+H}{H} \cap \frac{IM\cap N}{H}$$

$$= I\left(\frac{N}{H}\right) + \frac{Soc(M)}{H} \cap \left(\frac{IM}{H} \cap \frac{N}{H}\right) \quad \text{since } Soc(M) = Soc(M) + H$$

$$\subseteq I\left(\frac{N}{H}\right) + Soc(\frac{M}{H}) \cap \left(I(\frac{M}{H}) \cap \frac{N}{H}\right) \quad \text{by } [\text{Let } H \subseteq M \text{ and } \pi: M \to \frac{M}{H}, \pi(\text{Soc}(M))$$

$$\subseteq Soc(\frac{M}{H}), \text{ then } \frac{Soc(M)}{H} \cap \left(I(\frac{M}{H}) \cap \frac{N}{H}\right) \subseteq I(\frac{M}{H}) \cap \frac{N}{H}$$
Thus  $I\left(\frac{M}{H}\right) \cap \frac{N}{H} = I\left(\frac{N}{H}\right) + Soc(\frac{M}{H}) \cap \left(I(\frac{M}{H}) \cap \frac{N}{M}\right).$ 

#### **Proposition** (2.7);

Let M be an R-module and N is approximately pure submodule of M. If K is a submodule of M containing, then N is approximately pure of K.

# **Proof:**

Let *I* be an ideal of a ring *R*. Since *N* is an approximately pure in *M*, then  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$ . But  $K \subseteq M$ , therefore  $IK \cap N \subseteq IM \cap N = IN + Soc(M) \cap (IM \cap N)$ , hence  $IK \cap N \subseteq [IN + IK \cap N]$ 

 $Soc(M) \cap (IM \cap N)] \cap IK$ =  $IN + [Soc(M) \cap (IM \cap N \cap K) \cap IK)$  (By modular law)

 $= IN + [(Soc(M) \cap K) \cap (IM \cap IK \cap N)]$ = IN + Soc(K) \circ (IK \circ N) By [7, Exc 9, Page 29] Implies  $IK \cap N \subseteq IN + Soc(K) \cap (IK \cap N)$ Since  $IN + Soc(K) \cap (IK \cap N) \subseteq IK \cap N$ Then  $IK \cap N = IN + Soc(K) \cap (IK \cap N)$ . Thus N is an approximately pure submodule of K.

#### **Proposition (2.8):**

If N is approximately pure in M and K is a submodule of M containing N such that Soc(M) = Soc(K), then N is approximately pure in K.

# **Proof:**

Since  $IK \cap N \subseteq [IN + Soc(M) \cap (IM \cap N)] \cap IK$  By the same proof of proposition (2.7)

then  $= IN + Soc(K) \cap (IK \cap N)$ But  $IN + Soc(K) \cap (IK \cap N) \subseteq IK \cap N$ Thus  $IK \cap N = IN + Soc(K) \cap (IK \cap N)$ 

# 3. F-approximately Regular Modules.

In this section, we first define approximately regular modules and study some of their properties. Next we consider some conditions to characterize approximately regular modules.

# **Definition (3.1):**

An *R*-module M is called an F-approximately regular module if every submodule N of M is approximately pure of M.

# **Remarks and Examples (3.2):**

**1.** It is clear that every F-regular module is an F-approximately regular module, however, the converse is not true in general, the following example explain that:

The Z-module  $Z_4$  is an F-approximately regular module since every submodule of  $Z_4$  is an approximately pure but not F-regular since the submodule  $\langle \overline{2} \rangle = \{\overline{0}, \overline{2}\}$  of the Z-module  $Z_4$  is not pure, see Remarks and

Examples (2.2) (1).

**2.** The Z-module Z and Q are not F-approximately regular modules, see Remarks and Examples (2.2) (3) and (4).

**3.** The Z-module  $Z_9$  is F-approximately regular since every submodule of  $Z_9$  is approximately pure, but  $Z_9$  is not F-regular the submodule since  $\langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}\}$  is not pure, see remarks and examples (2.2)(5).

**4.** It is clear to check that every submodule of the Z-module  $Z_{12}$  is an approximately pure, hence  $Z_{12}$  is F-approximately regular but it is not F-regular since the submodule generated by  $\langle \overline{2} \rangle$  is not pure since 6.  $Z_{12} \cap \langle \overline{2} \rangle = \langle \overline{6} \rangle \cap \langle \overline{2} \rangle = \langle \overline{6} \rangle$  but  $6. \langle \overline{2} \rangle = \langle \overline{0} \rangle$ .

**5.** The Z-module  $Z_8$  is F-approximately regular module since every submodule of  $Z_8$  is an approximately pure but not F-regular since the submodule  $\langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$  is not pure since  $2. Z_8 \cap \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} = \langle \overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ 

The following theorem shows that the cyclic approximately pure submodule is enough to make the module approximately regular.

# **Theorem (3.3):**

Let M be an R-module. Then M is an approximately regular if and only if every cyclic submodule of M is an approximately pure submodule.

# **Proof:**

If M is approximately regular module, then by Definition (3.1), every submodule of M is approximately pure. Rather, every cyclic submodule of M is approximately pure.

Conversely, assume that every cyclic submodule of M is approximately pure. Let N be a submodule of M and I be an ideal of a ring R.

Let  $x \in IM \cap N$ , then  $x \in IM$  and  $x \in N$  implies  $\langle x \rangle \subseteq N$ . Therefore  $x \in IM \cap \langle x \rangle = I\langle x \rangle + Soc(M) \cap (IM \cap \langle x \rangle)$ , then  $x \in I\langle x \rangle + Soc(M) \cap (IM \cap \langle x \rangle) \subseteq IN + Soc(M) \cap (IM \cap N)$ . But  $IN + Soc(M) \cap (IM \cap N) \subseteq IM \cap N$ . Thus  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$  which implies that N is approximately pure in M.

### **Corollary (3.4):**

Let *M* be an R-module. Then the following statements are equivalent:

- (1) *M* is approximately regular R-module.
- (2) Every cyclic submodule of *M* is approximately pure.
- (3) Every finitely generated submodule of M is approximately pure.

### **Proof:**

- (1)  $\Rightarrow$  (2) It follows by Definition (3.1).
- $(2) \Rightarrow (1)$  by Theorem (3.3)
- (1)  $\Rightarrow$  (3) It is follows by Definition (3.1).
- $(3) \Longrightarrow (2)$  It is clear.

### **Proposition (3.5):**

Let M be an R-module. Then M is an approximately regular if and only if  $\frac{M}{N}$  is approximately regular for every submodule N of M.

#### **Proof:**

Suppose that M is an approximately regular R-module. Let N be a submodule of M and K be any submodule of M containing N. Since M is approximately regular then K is approximately pure in M. Thus by proposition (2.6)  $\frac{K}{N}$  is approximately pure in M. Therefore,

 $\frac{M}{N}$  is approximately regular.

The converse is easily proved by taking N = 0.

# **Proposition (3.6):**

Let M and M'be an R-modules and  $f: M \to M'$  be an R-epimorphism. If M is Fapproximately regular module, then M' is F-approximately regular.

# **Proof:**

Since  $f: M \to M'$  is an R-epimorphism. If M is F-approximately regular module. Then  $\frac{M}{kerf}$  is F-approximately regular module by Proposition(3.5). But  $\frac{M}{kerf} \cong M'$  by the first isomorphism theorem. Thus, M' is F-approximately regular module.

#### **Proposition (3.7):**

If M is an approximately regular R-module and N is a submodule of M, Then N is an approximately regular module.

# **Proof:**

Let *K* be a submodule in *N* and *I* is an ideal of *R*, then  $IN \cap K = (IM \cap IN) \cap K$  $= (IM \cap K) \cap IN$  $= [IK + Soc(M) \cap (IM \cap K)] \cap I$  since K is approximately pure in M  $= IK + Soc(M) \cap (IN \cap K)$ by Modular law  $= IK + Soc(M) \cap (IN \cap (N \cap K))$  $= IK + (Soc(M) \cap N) \cap (IN \cap K)$ 

 $= IK + Soc(N) \cap (IN \cap K) \text{ since } Soc(N) = Soc(M) \cap N \text{ by} \qquad [7, \text{Exc}]$ 

#### 9, Page 29]

Thus *K* is approximately pure in *N*. That implies that *N* is approximately regular. Recall that an R-module *M* is called F- regular, if for every  $x \in M$ ,  $r \in R$ , rx = rtrx for some  $t \in R$ , [5].

#### **Proposition (3.8):**

Let *M* be a module over principal ideal ring *R*. If for every  $x \in M$  and  $r \in R$ ,  $rx - rtrx \in Soc(M)$  for some  $t \in R$  implies *M* is F-approximately regular module.

#### **Proof:**

Let N be a submodule of an R-module M and I be an ideal of a ring R. First we prove  $rM \cap N = rN + Soc(M) \cap (rM \cap N)$  for some  $t \in R$ . Let  $x \in rM \cap N$  implies  $x \in rM$ ,  $x \in N$ . Thus x = rm;  $x \in M$ ,  $r \in R$ , then by assumption  $rm - rtrm \in Soc(M)$  for some  $t \in R$ , then rm - rtrm = s, where  $s \in Soc(M)$ , implies rm = rtrm + s, then  $x = rm = rtrm + s \in (rN + Soc(M)) \cap (rM \cap N)$  but  $rN \subseteq rM \cap N$ , then  $x \in rN + Soc(M) \cap (rM \cap N)$  (by Modular law), then  $rM \cap N \subseteq rN + Soc(M) \cap (rM \cap N)$ . Since  $rN + Soc(M) \cap (rM \cap N) \subseteq rM \cap N$  then  $rM \cap N = rN + Soc(M) \cap (rM \cap N)$ . But R is principal ideal ring, then  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$ , then N is an approximately pure submodule of M, and hence M is F- approximately regular.

#### **Proposition (3.9):**

Let *M* be a cyclic R-module. If for every element *x* of *M* and every element *r* of ,  $rx - rtrx \in Soc(M)$  for some  $t \in R$ , implies *M* is an F-approximately regular module.

#### **Proof:**

Let M = Rm be a cyclic module for some  $\in M$ . Let N be a submodule of M and I is an ideal of a ring R. Let  $x \in IM \cap N$  then  $x \in IM$  and  $x \in N$ . Since M is cyclic, then x = rm;  $\in M$ ,  $r \in I \subseteq R$  then  $rm - rtrm \in Soc(M)$  for some  $t \in R$  by hypothesis, then rm - rtrm = s, where  $s \in Soc(M)$ , implies rm = rtrm + s. Thus  $x = rm = rtrm + s \in (IN + Soc(M)) \cap (IM \cap N)$  but  $IN \subseteq IM \cap N$ , then  $x \in IN + Soc(M) \cap (IM \cap N)$  (by Modular law), then  $IM \cap N \subseteq IN + Soc(M) \cap (IM \cap N)$ . Since  $IN + Soc(M) \cap (IM \cap N)$  $N) \subseteq IM \cap N$ . Thus  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$  implies that N is approximately puer submodule of , and hence M is F- approximately regular.

#### **Proposition (3.10):**

Let *M* be an F-approximately regular R-module, then for every  $x \in M$  and  $r \in R$ ,  $rx - rtrx \in Soc(M)$  for some  $t \in R$ .

#### **Proof:**

Let x be an element of M and r is an element of R. Since  $rx \in M$  and  $rx \in \langle rx \rangle$  implies that  $\in rM \cap \langle rx \rangle$ . But M is F-approximately regular, then  $rM \cap \langle rx \rangle = r\langle rx \rangle + Soc(M) \cap (rM \cap \langle rx \rangle)$ . Thus  $x \in r\langle rx \rangle + Soc(M) \cap (rM \cap \langle rx \rangle)$  implies that rx = rtrx + s for some  $\in R$ ;  $s \in Soc(M) \cap (rM \cap \langle rx \rangle)$ . Therefore  $-rtrx \in Soc(M)$ .

#### Corollary (3.11):

Let *R* be an approximately regular ring, then for every  $r \in R$ ,  $r - rtr \in Soc(R)$  for some  $t \in R$ . The converse is true if *R* is principal ideal ring.

#### **Proof:**

It follows from proposition (3.10) and (3.8).

#### **Proposition (3.12):**

Let  $M_1$  and  $M_2$  be two R-modules. If  $M = M_1 \oplus M_2$  is F-approximately regular module, then  $M_1$  and  $M_2$  are also F-approximately regular R-modules. The converse is true provided  $\operatorname{ann}(M_1) + \operatorname{ann}(M_2) = R$ , or if R is a principal ideal ring.

#### **Proof:**

Assume that  $\operatorname{ann}(M_1) + \operatorname{ann}(M_2) = R$ , and  $M = M_1 \oplus M_2$  is an F-approximately regular R-module. Let  $P_i: M \to M_i$  be then natural projection map of M onto  $M_i$  for each i = 1, 2. Since  $P_i$  is an R-epimorphism, then by corollary (3.6), the epimorphic image of M is Fapproximately regular, implying that  $M_i$  is F-approximately regular. Conversely, assume  $M_1$  and  $M_2$  are F-approximately regular R-modules and  $M = M_1 \oplus M_2$ . Let N be a submodule of  $M = M_1 \oplus M_2$ . Since  $\operatorname{ann}(M_1) + \operatorname{ann}(M_2) = R$ , then by the same way of the proof [8, Proposition 4.2, Ch. 1],  $N = N_1 \bigoplus N_2$  where  $N_1$  is a submodule of  $M_1$  and  $N_2$  is a submodule of  $M_2$ . Let I be an ideal R. To prove  $IM \cap N = IN + Soc(M) \cap (IM \cap N)$ . Since  $IM_1 \cap N_1 =$  $IN_1 + Soc(M_1) \cap (IM_1 \cap N_1)$  and  $IM_2 \cap N_2 = IN_2 + Soc(M_2) \cap (IM_2 \cap N_2)$  implies that  $(IM_1 \cap N_1) \oplus (IM_2 \cap N_2) = [IN_1 + Soc(M_1) \cap (IM_1 \cap N_1)] \oplus [IN_2 + Soc(M_2) \cap (IM_1 \cap N_1)] \oplus [IM_2 \cap N_1)] \oplus [IM_2 \cap N_1)] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1)] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1)] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1]] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1] \oplus [IM_2 \cap N_1]] \oplus [IM_2 \cap N_1] \oplus [IM$  $I(M_1 \cap M_2) \oplus (N_1 \cap N_2) = I(N_1 \oplus N_2) + Soc(M_1 \oplus M_2) \cap$  $(IM_2 \cap N_2)].$ Then  $[I(M_1 \oplus M_2) \cap (N_1 \oplus N_2)]$ , therefore M is F-approximately regular module.

Case two:

Assume that R is a principal ideal ring. Let  $(a_1, a_2) \in M = M_1 \oplus M_2$  then for each  $r \in R$ there exists  $t_1, t_2 \in R$  such that  $ra_1 - rt_1ra_1 \in Soc(M_1)$  and  $ra_2 - rt_2ra_2 \in Soc(M_2)$ . If we choose  $t = t_1 + t_2 - rt_1t_2$  then it is easily to see that  $ra_1 - rt_1ra_1 \in Soc(M_1)$  and  $ra_2 - rt_2ra_2 \in Soc(M_2)$ . Therefore  $r(a_1, a_2) - rtr(a_1, a_2) \in Soc(M_1 \oplus M_2)$ since  $(M_1 \oplus M_2) = Soc(M_1) \oplus Soc(M_2)$ . Hence by Proposition (3.8)  $M = M_1 \oplus M_2$  is Fapproximately regular module.

#### **Conclusions:**

In this work, a generalization of a pure submodule has been introduced which is called an approximately pure submodule. We also show that If every submodule of an R-module M is approximately pure, then M is called F-approximately regular. Moreover, many results and properties of this concept are given and discussed.

#### **References:**

- [1] D. J. Fieldhouse, "Pure Theories," Math. Ann., vol.184, pp. 1-18, 1970.
- [2] P. M. Cohn, "On Free Product of Associative Rings, II," Math. Z., vol.71, pp.541-560, 1959.
- [3] E. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer Verlage, New York, 1992.
- [4] A. G. Naoum, and N.S. Al-Mothafar, "Nearly Regular Rings and Nearly Regular Modules," Mu'tah Journal for Research and Studies, vol. 9, no.6, pp. 13-24, 1994.
- [5] N.S. Al-Mothafar and M. B. Al-Hakeem, "Nearly Semiprime Submodules", Iraqi Journal of Science, vol.56, no.4B, pp. 3210-3214, 2015.
- [6] R.M.Al-Shaibani and N.S.Al-Mothafar, "Properties of J-Regular Modules", Iraqi Journal of Science, vol.3, no. 60, pp. 647-652, 2019.
- [7] K.R.Goodearl, Ring Theory, Nonsingular Ring and Module, Marcel. Dekker. New York, 1976.
- [8] M.S.Abbas, "On Fully Stable Modules", Ph.D. Thesis, University of Baghdad, Baghdad, 1991.