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      Abstract  

      In this paper we introduce G-Rad-lifting module as aproper generalization 

of lifting module, some properties of this type of modules are investigated. 

We prove that if M is G-Rad- lifting and ,  then  , and  

are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting 

is also G-Rad- lifting. Also we prove that if M is a duo module with 

  and   are G- Rad- lifting then M is G-Rad- lifting. 
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 الخلاصة
كتعميم لمقاسات الرفع. ونبرهن  Radicalفي هذا البحث سوف ندرس مقاسات الرفع المعممة من النمط      

، وكان    G-Radمن النمط  مقاس رفع Mبعض خواص هذا النوع من المقاسات حيث سنبرهن انه اذا كان 
، وعميه يكون كل جمع مباشر من  G-Radمقاسات رفع من النمط   فإن   

، ايضاً سوف نبرهن بشروط اضافية انه اذا  G-Radهو ايضاً مقاس من النمط  G-Radمقاس من النمط 
هو مقاس رفع من النمط    Mفان  G-Radلنمط مقاسا رفع من ا  وكان    كان 

G-Rad. 
1. Introduction 

      Let R be an associative ring with identity and M be a left R-module A submodule N of M is called 

small in M denoted by N  M, if for every submodule L of M with M= N+ L implies L= M [1]. 

      Asubmodule N  of an R – module M is Called Supplement of L in M if and only if M=N+L and 

 . and a module M is Called supplemented if every submodule of M has a supplement in M. 

[2]. Asubmodule N  of an R – module M is Called weakly Supplement of L in M if and only if 

M=N+L and  , and a module M is Called weakly supplemented if every submodule of M 

has a weakly supplement in M [2]. 

     The intersection of all maximal submodules of M is called the jacobson Radical of M and denoted 

by Rad (M). Equivalently Rad (M) is the sum of all small submodules of M. If M has no maximal 

submodules then Rad (M) = M. It is clear that for any submodule N of M   Rad (M) 

but if N is a supplement Submodule of M then Rad(N)=Rad(M) . Let N be any submodule of 

M. If M = N+k where  and  K is called a weakly generalized Rad – 

Supplement of N in M [3], and M denoted by (w.g.s)Since Rad (M) is the sum of all small submodules 
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of M, every supplement submodules is a w. generalized Rad – supplement in M. And a module M is 

called w. generalized Rad – supplemented if every submodule of M has a w. generalized Rad – 

supplement in M. [4] and [5]. It is clear that every supplemented (weakly supplemented) is a weakly 

generalized Rad –supplemented module On the other  hand, M is called  weakly generalized Rad – 

supplemented (briefly  w.g.s) if every submodules of M has a w. generalized Rad – supplement that 

is a direct summand of M. A module M is called lifting or satisfy (D1) if for any submodule N of M 

there exists a direct summand K of M, and K ≤ N Such that M = K  , [6]. 

Eqnivalentely every  submodule N of M can be written as N= AS, where A is a direct summand of 

M and . Recall that a module M has the property (p

), if for every submodule N of M, there 

exists a direct summand K of M such that [7]. It is known that every lifting 

module is satisfies the property (p

).  

     A module M is called radical lifting if for any submodule N of M there exists a direct summand K 

of M, and K ≤ N Such that M = K  ,  ≤ M and  N   ≤  Rad (M).  

     In this paper we introduce generalized- Radical lifting modules as a generalization of lifting 

module and we study some properties of this type of modules and its relation with  lifting  modules,  

modules  with the (p

) property and some of other module. 

2. G – Rad- lifting Module: 

In this section we introduce a generalization of radical lifting module, and study some of the properties 

of this type of modules.  

Definition 2.1: Let M be an R-module, and let N be any submodule of M, with Rad M is 

called a generalized- Rad- lifting (Briefly G- Rad- lifting), if there exist submodules  

such that and   Rad   

Theorem 2.2: Let M be an R-module then M is G. Rad- lifting if and only if every submodule N of M 

with Rad  can be written as , where A is a direct summand of M and . 

Proof () : Let M be a G-Rad- lifting and let , such that Rad . Then there exists 

, with  and Rad . Now  by 

modular law take  and . 

(): let N≤ M such that Rad (M) ≤ N, then can be written as N= A S where A is a direct summand 

of M i.e: M= A L, L ≤ M, A ≤ N and N= A  = AS. thus  ≤ Rad .  

It is clear that the semi-simple modules and lifting modules are G-Rad- lifting modules. But the 

conversely in general is not true. For example Q as Z- module is not semi-simple and not lifting but  

G- Rad- lifting. Since the only submodules of Q which are contains Rad (Q) is Q which is a direct 

summand. But if Rad (M)  M, we have the following:  

Lemma 2.3: Let M be a G-Rad- lifting module. If Rad (M)  M. then M is lifting. 

 Proof: let M be a G-Rad- lifting module and N be any submodule of M, then  Rad (M) + 

N, since M is G-Rad- lifting, then there exist submodule K of Rad (M) + N and M = K Ḱ, Ḱ ≤ M 

with Ḱ ∩ ( N + Rad (M)) ≤  Rad (M)  M. But Ḱ ∩ N ≤ Ḱ ∩ ( N + Rad (M). Hence Ḱ ∩ N  M. 

Now M = Ḱ + Rad (M) + N and Rad (M)  M, then M = Ḱ + N, hence M = Ḱ + N = Ḱ  K. Then K 

 N.■  

     It is clear that every G-Rad- lifting module is w. g. s. The next example show that a w. g. s. 

module doesn't need to be G-Rad-lifting.  

Example 2.4: Let M =    . (See [8], Example 3.1). Since Z- modules    and   are  . M is 

 w.g.s modules according ([9], theorem 2.1) Note that M is finitely generated . It follows that Rad 

 If M is G-Rad-lifting module then M is lifting by lemma( 2.3). This is a contradiction since, 

if M=    and N= . Then the only direct  summand of M 

Contained in N is   . if M is lifting, then  , where A is a direct summand of M and 

  if A=0, then S=N. Therefore N is not small in M . . Hence M is not 

lifting. 
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     Recall that an R- Module M is called coatomic if every proper submodule is contained in maximal 

submodule of M [10]. 

Proposition 2.5: Every coatomic module has small Radical. 

Proof: let M be a coatomic module, and let M = Rad (M)+ L for some submodule L of M. Suppose 

, since M is a coatomic module then L is contained in maximal submodule K of M, , 

hence M= Rad (M)+K, but Rad  [since K is a maximal]. Implies M=k. This is 

 contradiction. Therefore Rad  .  

     Using lemma 2.3. we obtain the following Corollaries. 

Corollary 2.6: Every Coatomic G-Rad lifting module, is lifting module. It is known that every lifting 

module Satisfies the property (P*). The following is an example of a module wich is G-Rad lifting but  

does not Satisfied the property (P*).  

Example 2.7: Let M be the left Z-Module , where  is a collection of maximal ideals of 

Z. Then Rad (M)=0. By [11, Lemma 2.9]. 

For some submodule N of M. we have , where Tor (M) is the torsion submodule of  M.  N 

is G Rad lifting but does not have the property (p*)." According to( [12], Example 2.2) 

Proposition 2.8: The following statement are equivalent for a finitely generated R- Module. 

1. M is G-Rad-lifting. 

2. M is lifting. 

3. M has the property (p*). 

Proof: (1)   (2): Since M is finitely generated then Rad   and by lemma 2.3 . M is 

lifting . 

Proof: (2)  (3): Let M be an module, and N be a submodule of M. Since M is lifting there exist 

submodules   and , such  and   Therefore 

 

Proof: (3)  (1): Let M be an module and let N be a submodule of M. with Rad . Since M 

has the property (p*)., then  . And  . But , hence 

 thus  Rad (M).Therefore M is G-Rad- lifting . 

     Recall that a submodule of M is called fully invariant if  for every  End (M). ([1], 6.4). 

And R-module M is called a duo module if every submodule of M is fully invariant [13]. 

     Notice that a submodule of G-Rad-lifting need not to be G-Rad-lifting; For example Z is a 

submodule of Q as Z-module is not G-Rad–lifting.  

However we have the following . 

Proposition 2.9: Let M be a G-Rad-lifting Module. If N is a direct summand submodule of M then N 

is a G- Rad- lifting. 

Proof: Let N be a direct summand  of  M. Let   Such that Rad (N)  then 

Rad .Since M is G-Rad –lifting then by (theorem2.2  can be written 

as  where A is a direct summand of M and  Rad (M). Hence 

 . Thus . Since N is a direct 

summand of M, then Rad (N)= . Therefore . But 

, then K= . Now  then   

i.e.  a direct summand  of  M and .   

Recall that a ring is called a left V-Ring if every left ideal in R is an intersection of Maximal left 

ideals; Equivalently R is left V-Ring if and only if every left simple R-Module is a left injective if and 

only if Rad (M) = 0, for all left R-Module [14]. And it is known that every commutative regular ring is 

V-Ring [1]. 

Corollary 2.10: Let R be a V-ring if M be a non-Zero G-Rad –lifting module then every submodule of 

M is G-Rad –lifting. 
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Proof: Let N be  a submodule of M. Let K be asubmodule of N. with Rad   Since R is V-ring 

then Rad (M)=0 . Hence Rad (N)=0. Therefore  is a submodule of M. Since M is G-Rad- 

lifting there exist submodules L ≤ M and ,  such that  and  

     Hence   Now , Therefore  is a direct summand of N,  and 

 Thus N is G-Rad –lifting  . 

Corollary 2.11: Let M be a commutative regular ring or (V- ring) and M be any R-Module Then M is 

G-Rad – lifting if and only if M is semi- simple. 

Proof:  it is clear  

 Since Rad (M)= 0, then for all submodule N of M, there exist a direct summands  K of  M and 

 such that  for some submodule L of M. with , Since M is G- Rad – lifting. 

Hence .  

3. Direct Sum of G- Rad – lifting modules: 

In this section we prove that under certain condition the direct sum of G-Rad – lifting is a gain G-Rad 

lifting. 

Proposition 3.1: Let , if M is a G-Rad –lifting module then  and  are G-Rad – 

lifting. 

Proof:  Let   such that Rad  . Hence Rad , Since M 

is G-Rad-lifting then there exist submodules  such that  ,where A 

is a direct summand of M, and ,by(theorem2.2)Hence where .Then 

..Now

=  [Since  is 

supplement] and  , Since   is supplement, then 

 Hence   

Corollary 3.2: Let M be a G-Rad –lifting module, Then for a direct summand   G-Rad – 

lifting module. 

Proof: Clear by Prop. 3.1.  

Notice that Prop. 2.9 also follows directely from Prop. 3.1 

Corollary 3.3: Let  be a G-Rad –lifting module then  is   a G-Rad –lifting 

 

Example 3.4: Let p be aprime integer, and Consider z- module  

hollow local modules. Hence  are lifting and thus are G-Rad –lifting. 

Let , then  Thus 

 but N is not direct summand of M. Therefor M is not G-Rad –lifting. 

The following proposition gives a certain condition to be adirect sum of two G-Rad- lifting is G-Rad- 

lifting. 

Proposition 3.5: Let  be a due module. If  are G-Rad –lifting . then M is G-

Rad –lifting. 

Proof: Let N be a submodule of M, with Rad . then  Rad  for all i=1,2. 

Hence Rad  f or all i=1,2. Then there exist direct summands  such that 

 for all i=1,2 and  and . 

     For all i=1,2. Therefore take  and 

 . 

Thus M is G-Rad –lifting  . 
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Corollary 3.6: Let  be a duo module . if  is a G-Rad-lifting for all 

i=1,2,…,n. Then M is G-Rad –lifting . 

Proof: Clear by Proposition 3.5  

Proposition 3.7: Let  be a non- Zero module with Rad (M)=0. Then M is G-Rad –lifting if and only 

if M is semi –simple. 

Proof:  Cleary since every semi-simple is G-Rad –lifting.  

 Since Rad (M)=0,then for any submodule N of M, . 

Since M is G-Rad –lifting , there exist submodules  and such that  and  

Rad . Therefore =0. Thus . 
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