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Abstract

In this paper we introduce G-Rad-lifting module as aproper generalization
of lifting module, some properties of this type of modules are investigated.
We prove that if M is G-Rad- lifting and M =M, & M,, then M, and M,
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting
is also G-Rad- lifting. Also we prove that if M is a duo module with
M =M, &M, and M;.M; are G- Rad- lifting then M is G-Rad- lifting.
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1. Introduction

Let R be an associative ring with identity and M be a left R-module A submodule N of M is called
small in M denoted by N<< M, if for every submodule L of M with M= N+ L implies L= M [1].

Asubmodule N of an R — module M is Called Supplement of L in M if and only if M=N+L and
NnL <« L. andamodule M is Called supplemented if every submodule of M has a supplement in M.
[2]. Asubmodule N of an R — module M is Called weakly Supplement of L in M if and only if
M=N+L and NNL << M  and a module M is Called weakly supplemented if every submodule of M
has a weakly supplement in M [2].

The intersection of all maximal submodules of M is called the jacobson Radical of M and denoted
by Rad (M). Equivalently Rad (M) is the sum of all small submodules of M. If M has no maximal
submodules then Rad (M) = M. It is clear that for any submodule N of M Rad (N) = Rad (M)
NN, but if N is a supplement Submodule of M then Rad(N)=Rad(M) N N. Let N be any submodule of
M. If M = N+k where k¥ = M and N Nk = Rad (M). Then K is called a weakly generalized Rad —
Supplement of N in M [3], and M denoted by (w.g.s)Since Rad (M) is the sum of all small submodules
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of M, every supplement submodules is a w. generalized Rad — supplement in M. And a module M is
called w. generalized Rad — supplemented if every submodule of M has a w. generalized Rad —
supplement in M. [4] and [5]. It is clear that every supplemented (weakly supplemented) is a weakly
generalized Rad —supplemented module On the other hand, M is called @ weakly generalized Rad —
supplemented (briefly ® w.qg.s) if every submodules of M has a w. generalized Rad — supplement that
is a direct summand of M. A module M is called lifting or satisfy (D1) if for any submodule N of M
there exists a direct summand K of M, and K <N Such that M=K @ K, K= M and N n K << M [6].
Egnivalentely every submodule N of M can be written as N= A®S, where A is a direct summand of
M and S << M. Recall that a module M has the property (p”), if for every submodule N of M, there

exists a direct summand K of M such that k = N and % = Rad (%)[7]. It is known that every lifting

module is satisfies the property (p*).

A module M is called radical lifting if for any submodule N of M there exists a direct summand K
of M, and K <N Such that M=K ® K, K<Mand NN K< Rad (M).

In this paper we introduce generalized- Radical lifting modules as a generalization of lifting
module and we study some properties of this type of modules and its relation with lifting modules,
modules with the (p*) property and some of other module.

2. G - Rad- lifting Module:

In this section we introduce a generalization of radical lifting module, and study some of the properties
of this type of modules.

Definition 2.1: Let M be an R-module, and let N be any submodule of M, with Rad (M) = N. M is

called a generalized- Rad- lifting (Briefly G- Rad- lifting), if there exist submodules K, Kof M,K = N
such that M = K& Kand NN K = Rad (M).

Theorem 2.2: Let M be an R-module then M is G. Rad- lifting if and only if every submodule N of M
with Rad (M) = N can be written as N = A& 5, where A is a direct summand of M and 5 = Rad (M),

Proof (=) : Let M be a G-Rad- lifting and let N = M, such that Rad (M) = N. Then there exists
K=N, with M=K&K and NNK<Rad (M). Now N=NnM=Nn(K®K)=K&NnK by
modular law take A=K and S = N nKm.

(<): let N< M such that Rad (M) <N, then can be written as N= A® S where A is a direct summand
of MieeM=A®L,L<M,A<NandN=A® LN N=A®S. thusLNN<Rad (M)m.

It is clear that the semi-simple modules and lifting modules are G-Rad- lifting modules. But the
conversely in general is not true. For example Q as Z- module is not semi-simple and not lifting but
G- Rad- lifting. Since the only submodules of Q which are contains Rad (Q) is Q which is a direct
summand. But if Rad (M) << M, we have the following:

Lemma 2.3: Let M be a G-Rad- lifting module. If Rad (M) << M. then M is lifting.
Proof: let M be a G-Rad- lifting module and N be any submodule of M, then Rad (M) = Rad (M) +

N, since M is G-Rad- lifting, then there exist submodule K of Rad (M) + Nand M = K @K, K <M
with K N (N + Rad (M)) < Rad (M) << M. ButK N N<K N ( N + Rad (M). Hence K N N << M.
Now M =K + Rad (M) + N and Rad (M) << M, then M = K + N, hence M=K + N = K ® K. Then K
=ZN.m

It is clear that every G-Rad- lifting module is @w. g. s. The next example show that a ®w. g. s.
module doesn't need to be G-Rad-lifting.

Example 2.4: Let M = %@ é . (See [8], Example 3.1). Since Z- modules % and B—zz are local . M is

@ w.g.s modules according ([9], theorem 2.1) Note that M is finitely generated . It follows that Rad
(M) <« M. If M is G-Rad-lifting module then M is lifting by lemma( 2.3). This is a contradiction since,
if M=%€r) Bz—z and N={(0,0), (1, 2),(0,4), (1,6),(0, 2),(0, 6) }. Then the only direct summand of M
Contained in N is {0,0} . if M is lifting, then N=A& S , where A is a direct summand of M and
§ << M if A=0, then S=N. Therefore N is not small in M . [Sine N+ Z (1,1) = M]. Hence M is not
lifting.
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Recall that an R- Module M is called coatomic if every proper submodule is contained in maximal
submodule of M [10].
Proposition 2.5: Every coatomic module has small Radical.
Proof: let M be a coatomic module, and let M = Rad (M)+ L for some submodule L of M. Suppose
L = M, since M is a coatomic module then L is contained in maximal submodule K of M, L. = K,
hence M= Rad (M)+K, but Rad (M) = K [since K is a maximal]. Implies M=k. This is
contradiction. Therefore Rad (M) << K m.

Using lemma 2.3. we obtain the following Corollaries.
Corollary 2.6: Every Coatomic G-Rad lifting module, is lifting module. It is known that every lifting
module Satisfies the property (P*). The following is an example of a module wich is G-Rad lifting but
does not Satisfied the property (P*).

Example 2.7: Let M be the left Z-Module M = T py (E) where A is a collection of maximal ideals of

Z. Then Rad (M)=0. By [11, Lemma 2.9].
For some submodule N of M. we have

Tor (D) =, where Tor (M) is the torsion submodule of M. N

is G Rad lifting but does not have the property (p*)." According to( [12], Example 2.2)

Proposition 2.8: The following statement are equivalent for a finitely generated R- Module.

1. M is G-Rad-lifting.

2. M is lifting.

3. M has the property (p*).

Proof: (1) = (2): Since M is finitely generated then Rad (M) << M and by lemma 2.3 . M is
liftingm.

Proof: (2) = (3): Let M be an module, and N be a submodule of M. Since M is lifting there exist
submodules K=N and K=M, such M+K®K and NNnK<« MNMOKz E <<§ Therefore

N M

p = Rad (E) n

Proof: (3) = (1): Let M be an module and let N be a submodule of M. with Rad {M) = N. Since M
has the property (p*)., then M+K@®KK=N, K=M. And E«E . But Eé NN K, hence

NN K <« Mthus NN K = Rad (M).Therefore M is G-Rad- lifting m.

Recall that a submodule of M is called fully invariant if f(N) = N for every fe End (M). ([1], 6.4).
And R-module M is called a duo module if every submodule of M is fully invariant [13].

Notice that a submodule of G-Rad-lifting need not to be G-Rad-lifting; For example Z is a
submodule of Q as Z-module is not G-Rad-lifting.
However we have the following .
Proposition 2.9: Let M be a G-Rad-lifting Module. If N is a direct summand submodule of M then N
is a G- Rad- lifting.
Proof: Let N be a direct summand of M. Let K=N Such that Rad (N)=EK then
Rad (M) = K + Rad(M).Since M is G-Rad -lifting then by (theorem2.2) K +Rad(M) can be written
asK+Rad(M)=A%&5 where A is a direct summand of M and 5= Rad (M). Hence
(K+Rad(M)nN=AnNGSnN . Thus K+ (Rad(M) nN) =AnN&S5n N. Since N is a direct
summand of M, then Rad (N)= Rad (M)nN. Therefore K+Rad(N)=AnN&S5nN. But
Rad (N)= K, then K= AnNESn N Now M=A3 L L=M then N=MnN=AnN £LnN
i.e. AnNisadirect summand of MandSn N = Rad (M) n N=Rad (N)m.
Recall that a ring is called a left V-Ring if every left ideal in R is an intersection of Maximal left
ideals; Equivalently R is left V-Ring if and only if every left simple R-Module is a left injective if and
only if Rad (M) = 0, for all left R-Module [14]. And it is known that every commutative regular ring is
V-Ring [1].
CorollgaEy]Z.lo: Let R be a V-ring if M be a non-Zero G-Rad —lifting module then every submodule of
M is G-Rad —lifting.
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Proof: Let N be a submodule of M. Let K be asubmodule of N. with Rad (N) = K Since R is V-ring

then Rad (M)=0 . Hence Rad (N)=0. Therefore 0 = K = N is a submodule of M. Since M is G-Rad-

lifting there exist submodules L <M and , K = K such that M = LK and LN K = Rad (M) = 0.
Hence M =K®L Now N =LNN@®KNN, Therefore KN N is a direct summand of N, and

KN N<=KnN=K Thus N is G-Rad —liftingm .

Corollary 2.11: Let M be a commutative regular ring or (V- ring) and M be any R-Module Then M is

G-Rad - lifting if and only if M is semi- simple.

Proof: (<) itis clearm

(=) Since Rad (M)= 0, then for all submodule N of M, there exist a direct summands K of M and

K = N such that M = KL for some submodule L of M. with L N = 0, Since M is G- Rad - lifting.

Hence M = LeéBNm.

3. Direct Sum of G- Rad - lifting modules:

In this section we prove that under certain condition the direct sum of G-Rad — lifting is a gain G-Rad

lifting.

Prop%sition 3.1: Let M =M, EM;, if M is a G-Rad —lifting module then M; and M; are G-Rad —

lifting.

Proog: ¥i=1,2 Let N; = M; such that Rad (M;) = N; . Hence Rad (M) = N, + Rad (M), Since M

is G-Rad-lifting then there exist submodules A of M, = M such that N; + Rad (M) = A@S where A

is a direct summand of M, andS = Rad (M) by(theorem2.2)HenceM = A & LwhereL = M.Then

MNM, =ANM®LN M, ,Vi=12M, = AnM®LnN M, Now

A, NM; &SNnM; = (N; +Rad (M)) N M; = N; + Rad (M) N M; = N; + Rad (M;)=N; [Since M; is

supplement] andSNM; =Rad (M)NM; | Since ¥i=1,2 M; s supplement, then

Rad (M) N M; = Rad (M;). Hence S N M; = Rad (M;)m

Corollary 3.2: Let M be a G-Rad —lifting module, Then for a direct summand N afm,% is G-Rad —

lifting module.

Proof: Clear by Prop. 3.1.1

Notice that Prop. 2.9 also follows directely from Prop. 3.1

Corollary 3.3: LetM = M; & M,& ...&& M,, be a G-Rad —lifting module then M; is a G-Rad —lifting
Vi=12,..,n

. . . z z z z
Example 3.4: Let p be aprime integer, and Consider z- module M = — & —, where —and — are
PZ ~ PEZ PZ PEZ

hollow local modules. Hence %and% are lifting and thus are G-Rad —lifting.
z
Let L=0B__—andN=Z(1+ PZP+P3Z), then M =N-+L andNNL=0&—, Thus

NN L << M, but N is not direct summand of M. Therefor M is not G-Rad —lifting.
The following proposition gives a certain condition to be adirect sum of two G-Rad- lifting is G-Rad-
lifting.
Prop%sition 3.5: Let M = M;€BM; be a due module. If M; and M; are G-Rad -lifting . then M is G-
Rad —lifting.
Proof: Let N be a submodule of M, with Rad (M) = N. then Rad (M) N Mi = Nn Mi for all i=1,2.
Hence Rad (Mi) = NN Mi f or all i=1,2. Then there exist direct summands ki of Mi such that
Mi = kiBLi for all i=1,2 and ki = Ni N Mi, and Lin (N n Mi) = Rad (Mi).

For all i=1,2. Therefore take K =K; + K5, K; + K; =N and
M=K, +Ky &Ly +Ly, L+, nN=Ly+L, n (NNM) +(NNM,)) =1y N
(NN M)+ L;n (NNM;) = Rad (M)

Thus M is G-Rad —liftingm .
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Corollary 3.6: Let M =M; &M, ....66 M, be a duo module . if M; is a G-Rad-lifting for all
i=1,2,...,n. Then M is G-Rad —lifting .

Proof: Clear by Proposition 3.58

Proposition 3.7: Let M be a non- Zero module with Rad (M)=0. Then M is G-Rad —lifting if and only
if M is semi —simple.

Proof: (<) Cleary since every semi-simple is G-Rad —lifting. m

(=JSince Rad (M)=0,then for any submodule N of M, 0 = N = M,

Since M is G-Rad —lifting , there exist submodules K= Nand L = Msuchthat M=K &G Land NNL
Rad (M) = 0. Therefore LN N=0. Thus M = L&ENm.
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