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Abstract 
     This paper concerns the peristaltic flow of a Williamson fluid with variable 

viscosity model through porous medium under combined effects of MHD and wall 

properties. The assumptions of Reynolds number and long wavelength is 

investigated. The flow is investigated in a wave frame of reference moving with 

velocity of the wave. The perturbation series in terms of the Weissenberg number 

(We <1) was used to obtain explicit forms for velocity field and stream function. The 

effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, 

stiffness of the wall and viscous damping force parameters on velocity and stream 

function have been studied. 

 

Keywords: MHD, Peristaltic transport, Williamson fluid with variable viscosity 

model, Porous medium. 

 

تأثير الهايدرودايناميكا الممغنطة وخصائص الجدار عمى الانتقال التموجي لمائع وليمسون ذو المزوجة 
 المتغيرة خلال وسط مسامي

 

 ضياء غازي صالح الخفاجي
 قسم الرياضيات،  كمية عموم الحاسوب وتكنولوجيا المعمومات ، جامعة القادسية ، الديوانية ، العراق.

 

 الخلاصة
في هذا البحث، درسنا التدفق التموجي لمائع وليمسون ذي المزوجة المتغيرة خلال قناة مسامية تحت تأثير      

الهايدرودايناميكا الممغنطة وخصائص الجدار. افترضنا عدد رينولد وطول الموجة صغيران جداً.  ان التدفق 
لاضطراب لحل المعادلات التفاضمية يتحرك بشكل موجة مسند بسرعة الموجة . استخدمنا طريقة سمسمة ا

( لمحصول عمى توضيح لحقل السرعة ودالة التدفق. درسنا تاثير التوصيل We<1باعتماد عدد وزنبرك )
الحراري، عدد كرشوف، عدد دارسي، المغناطيسية، تصمب الجدار وقوة اضمحلال المزوجة عمى حقل السرعة 

  ودالة التدفق. 

          

 

 

 

1. Introduction 

     Peristaltic flows have attracted the interest of a number of researchers because of wide applications 

in physiology and industry. Particularly, the occurrence of such flows are quite prevalent in biological 
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organs. Since, the pioneering works of [1]. A number of analytical, numerical and experimental [2-6] 

studies of peristaltic flows of different fluids have been reported under different conditions with 

reference to physiological and mechanical situations. 

    Several researchers considered the fluid to behave like a Newtonian fluid for physiological 

peristalsis including the flow of blood in arterioles. But such a model cannot be suitable for blood flow 

unless the non-Newtonian nature of the fluid is included in it. The non-Newtonian peristaltic flow 

using a constitutive equation for a second order fluid has been investigated by [7] for a planar channel 

and by [8] for an axisymmetric tube. The effects of third order fluid on peristaltic transport in a planar 

channel were studied by [9] and the corresponding axisymmetric tube results were obtained by [10]. 

[11] studied peristaltic transport of third order fluid in an asymmetric channel. Peristaltic motion of a 

Williamson fluid in an asymmetric channel was studied by [12]. 

     Further an interesting fact is that in oesophagus, the movement of food is due to peristalsis. The 

food moves from mouth to stomach even when upside down. Oesophagus is a long muscular tube 

commences at the neck opposite the long border of cricoids cartilage and extends from the lower end 

of the pharynx to the cardiac orifice of the stomach. The swallowing of the food bolus takes place due 

to the periodic contraction of the esophageal wall. Pressure due to reflexive contraction is exerted on 

the posterior part of the bolus and the anterior portion experiences relaxation so that the bolus moves 

ahead. The contraction is practically not symmetric, yet it contracts to zero lumen and squeezes it 

marvelously without letting any part of the food bolus slip back in the opposite direction. This shows 

the importance of peristalsis in human beings. [13] studied the influence of wall properties on the 

Poiseuille flow under peristalsis. Mathematical model for the esophageal swallowing of a food bolus is 

analyzed by [14]. [15] analysed the peristaltic flow of a micropolar fluid in a vertical channel with 

longwave length approximation. [16] studied the influence of wall properties on peristaltic transport 

with heat transfer. [17] studied the influence of wall properties on MHD peristaltic transport of dusty 

fluid. A new model for study the effect of wall properties on peristaltic transport of a viscous fluid has 

been investigated by [18], [19] studied the effect of slip, wall properties and heat transfer on MHD 

peristaltic transport. Recently, [20-22], analyzed the Effects of MHD and wall properties on the 

peristaltic transport of a various fluids through porous medium channel. 

     Motivated by this, we consider the peristaltic flow of a Williamson fluid with variable viscosity 

model through porous medium under combined effects of MHD and wall properties. The results are 

analyzed for different values of parameters namely Grashof number, Darcy number, thermal 

conductivity, magnet, rigidity, stiffness and viscous damping forces of the channel wall through 

porous medium. 

2. MATHEMATICAL FORMULATION   
     Consider the peristaltic flow of an incompressible Williamson fluid in a flexible channel with 

flexible induced by sinusoidal wave trains propagating with constant speed c along the channel walls.                                                       

 

                    Y                                                         H(x,t) is the wall          

                                                                                                      c 

                       a 

                 

                     0                                                             2                                                           X  

         

 

 

 

 

 

 

 

                                                            Figure 1- Geometry of the problem 

     The wall deformation is given by 

)(cos),( 2 tcxatxH 



                                                                                                           (1) 
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     where h , x , t ,  ,   and c represent transverse vibration of the wall, axial coordinate, time, half 

width of the channel, amplitude of the wave, wavelength and wave velocity respectively. 

The basic equations governing the non-Newtonian incompressible Williamson fluid are given by:  The 

continuity equation is given by:  
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    The momentum equations are: 
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    The temperature equation is given by:  
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     where u  is the axial velocity, v  transverse velocity, y  transverse coordinate,   fluid density, p  

pressure, 0  fluid viscosity,  g  acceleration due to gravity,   coefficient of linear thermal expansion 

of fluid, 0B  magnetic parameter,  T temperature, 
pc  specific heat at constant pressure, k is the thermal 

conductivity and   constant heat addition/absorption. 

     The velocity and temperatures at the central line and the wall of the peristaltic channel are given as: 

y

u




= 0 , 0TT    at  0y  

u = 0  ,  1TT    at  hy   

where 0T  is the temperature at centre is line and 1T  is the temperature on the wall of peristaltic 

channel. 

     The constitutive equation for a Williamson fluid model [4], is 

  ])1)()(([ 1

  T                                                                                                  (7) 

     where   is the extra stress tensor,   is the infinite shear rate viscosity, 0  is the zero shear rate 

viscosity,   is the time constant and   is defined as  
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     Here   is the second invariant stress tensor. We consider in the constitutive equation (7) the case 

for which  = 0 and   < 1 so we can write  

 )]1)((  T                                                                                                                            (9) 

     The above model reduces to Newtonian for   = 0. 

     The governing equation of motion of the flexible wall may be expressed as: 

0

* ppL                                                                                                                                           (10) 

     where 
*L  is an operator, which is used to represent the motion of stretched membrane with 

viscosity damping forces such that 
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where   is the elastic tension in the membrane, 1m  is the mass per unit area, C is the coefficient of 

viscous damping forces. 

    Continuity of stress at hy   and using momentum equation, yield 
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3. Method of solution  

     Let u  and v  be the respective velocity components in the radial and axial directions in the fixed 

frame, respectively. 

    For the unsteady two-dimensional flow, the velocity components may be written as follows:  

)0),,(),,(( yxvyxuV                                                                                                                       (13) 

    The temperature function may be written as follows:  
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    The equations of motion (2)-(6), the equation (12), take the form: 
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     In order to simplify the governing equations of the motion, we may introduce the following 

dimensionless transformations as follows: 
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     where   is the length of the channel, We Weissenberg number, Da Darcy number, Re Reynolds 

number, Gr Grashof number, dimensionless temperature, M magnetic parameter, dimensionless 

heat source/sink parameter and Pr Prandtl number. 

     Substituting (20) into a governing equation, we obtain the following non-dimensional equations 

and boundary conditions: 
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    The constitutive relations equations (8)-(9) take the form: 
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    The corresponding boundary conditions are 
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     The general solution of the governing equations (22)-(26) in the general case seems to be 

impossible; therefore, we shall confine the analysis under the assumption of small dimensionless wave 

number, it follows that  << 1. Along to this assumption, equations (22)-(26) become:  
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     The corresponding Stream function ( xvyu   , ) with boundary condition 0 at 

0y .  

     The exact solution of equation (33) with boundary condition given in equations (28)-(29) is  
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     The Reynold's model of viscosity is used to describe the variation of viscosity with temperature  
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     Using the Maclaurin series expansion, the above expression can be written as: 

   1)( ,     << 1                                                                                                                  (37) 

     Here  = 0 corresponds to the constant viscosity case. 

    Compensating equation (37) into equation (34), we have: 
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4. Solution of the problem  

     Equation (32) shows that p dependents on x only. Equation (38) is a non-linear and it is difficult to 

get a closed form solution. However for vanishing We and  , the boundary value problem is 

agreeable to an easy analytical solution. In this case the equation becomes linear and can be solved. 

Nevertheless, small   suggests the use of perturbation technique to solve the non-linear problem. 

Accordingly, we write 
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                                                                                             (39) 

     Substituting equations (39) into equation (38) with boundary conditions (20) and (21), then 

equating the like powers of We, we obtain 

4-1 Zeroth-order system (
0We ) 
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 dyu00                                                                                                                                         (40) 

4-2 First-order system (
1We ) 
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and   dyu11                                                                                                                                   (41) 

4-3 Second-order system (
2We ) 
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and    dyu22                                                                                                                                (42) 

    The boundary conditions associated with the above equations are; 
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,  0210      at   y = 0                                                                      (43) 

0210  uuu ,    at    y = h                                                                                                            (44) 

     In order to give some physical meaning to the problem we will consider the case only when   is 

small. Thus the above approximation equations have been obtained by the expansion in terms of We, 

and next we seek perturbations with parameters . 

     If we substitute for iu  and i , (for i = 0, 1, 2) by the expression  
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and equate the coefficient of like powers in  , then the following set of equations are obtained   
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     The solutions of equations (46)-(48), and the corresponding stream functions, are a very long. The 

attendant constants can be determinate by using the boundary conditions given in (43)-(44). 

    Finally, the perturbation solutions up to second term for u and   are given by: 
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5. Results and discussion  

     In this section, the numerical and computational results are discussed for the problem of an 

incompressible non-Newtonian the peristaltic flow of a Williamson fluid model through porous 

medium under combined effects of MHD and wall properties through the graphical illustrations. The 

numerical evaluations of the analytical results and some important results are displayed graphically in 

Figures- (2-15). MATHEMATICA program is used to find out numerical results and illustrations. The 

analytical solutions of the momentum equation are obtained by using perturbation technique. All the 

obtained solutions are discussed graphically under the variations of various pertinent parameters in the 

present section. The trapping bolus phenomenon is also incorporated through sketching graphs of 

streamlines for various physical parameters. 

     Based on equation (49), Figures (2-5) illustrates the effects of the parameters 1E , 2E , 3E , We, Gr, 

 , M, Da and   on the velocity. Figure-2 illustrates the effects of the parameters 1E  and 2E  on the 

velocity distribution function u vs. y. It is found that the velocity profile u rising up with the increasing 

effects of both the parameters 1E  and 2E , when y < 0.8643, and attains its maximum height at y = 0, 

the fluid velocity starts increasing and tends to be constant at the peristaltic walls, as specified by the 

boundary conditions. From Figure-3 One can depict here that velocity decreases with increasing of 3E

, while that velocity profile is rising up with increasing of the parameters We, when y < 0.8643. 

Figure-4 contains the behavior of u under the variation of Gr and , one can depict here that u go 

down with the increasing effects of both the parameters Gr and , when y < 0.8643. Figure-5 

illustrates the effects of the parameters M and Da on velocity profile. One can depict here that velocity 

decreases with increasing of Da, while that velocity profile is rising up with increasing ofM, when y

<0.8643. Figure-6 show that velocity distribution decreases with an increasing of  . Also at   = 

0.15, u > 0 when y < 0.8643 and u(0.8643) = 0. At   = 0.175, u > 0 when y < 0.8417 and 

u(0.8417) = 0, as specified by the boundary conditions.  
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Figure 2- Velocity profile for different values of 1E  and 2E  with 

9.0,7.0,1,15.0,1,1.0,02.0,05.0,1.0,0 3  MDaGrEWetx  . 

 

 

 

 
Figure 3- Velocity profile for different values of We and 3E  with 

9.0,7.0,1,1,15.0,2.0,3.0,02.0,1.0,0 21  MDaGrEEtx   

 

 

 
Figure 4- Velocity profile for different values of Gr and   with 

9.0,7.0,15.0,1.0,2.0,3.0,02.0,05.0,1.0,0 321  MDaEEEWetx   
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Figure 5- Velocity profile for different values of Da and M with 

1,1,15.0,1.0,2.0,3.0,02.0,05.0,1.0,0 321   GrEEEWetx
 

 

 

   
 

Figure 6- Velocity profile for different values of   with 

9.0,7.0,1,1,1.0,2.0,3.0,02.0,05.0,1.0,0 321  MDaGrEEEWetx 
 

 

6. Trapping phenomenon  

     The formation of an internally circulating bolus of fluid by closed streamlines is called trapping and 

this trapped bolus is pushed ahead along with the peristaltic wave. 

     Based on equation (50), the effects of 1E , 2E , 3E , Gr,  , Da, M, We and   on trapping can be 

seen through Figures- (7-15), it is observed that the bolus move near the side walls. Figure-7 shows 

that the size of the trapped bolus increase with the increase in 1E . Figure-8 is plotted, the effect of 2E

on trapping, the size of the trapped bolus increase with the increase in 2E . Figure-9 shows that the 

size of the left trapped bolus increases with increase in 3E  whereas the size of the right trapped bolus 

decreases with increase in 3E . The effect of Gr on trapping is analyzed in Figure-10. It can be 

concluded that the size of the trapped bolus in the left side of the channel decreases when Gr increases 

where as it has opposite behavior in the right-hand side of the channel. Figure-11 shows that the size 

of the trapped bolus increases with increase in  . The influence of Da on trapping is analyzed in 

Figure-12. It shows that the size of the trapped bolus decreases with increase in Da. Figure-13 shows 

that influence of M on trapping. It shows that the size of the trapped bolus increases with increase in 

M. The influence of We on trapping is analyzed in Figure-14. It shows that the size of the trapped 

bolus increases with increase in We. And the effect of   on trapping is analyzed in igure-15. We 

notice that the size of the trapped bolus increases with increase  . 
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Figure 7- Graph of the streamlines for three different values of 

1E ; (a) 
1E = 0.25, (b) 

1E = 0.3 and (c) 

1E = 0.35 at 
1,15.0,1,9.0,8.0,1.0,2.0,02.0,05.0,1.0 32   GrMDaEEWet
. 

 

 

 
Figure 8- Graph of the streamlines for three different values of 

2E ; (a) 
2E = 0.15, (b) 

2E = 0.2 and (c) 
2E

= 0.25  at 
1,15.0,1,9.0,8.0,1.0,3.0,02.0,05.0,1.0 31   GrMDaEEWet
. 

 

 

 
Figure 9- Graph of the streamlines for three different values of 

3E ; (a) 
3E = 0.1, (b) 

3E = 0.2 and (c) 
3E = 

0.3  at 1,15.0,1,9.0,8.0,2.0,3.0,02.0,05.0,1.0 21   GrMDaEEWet . 

 



Iraqi Journal of Science, 2017, Vol. 58, No.2C, pp: 1076-1789  Al-Khafajy 
 

7711 

 
Figure 10- Graph of the streamlines for three different values of Gr ; (a) Gr = 1, (b) Gr = 2 and (c) Gr 

= 3 at 
1,15.0,9.0,8.0,1.0,2.0,3.0,02.0,05.0,1.0 321   MDaEEEWet
. 

 

  
Figure 11- Graph of the streamlines for three different values of  ; (a)  = 1, (b)  = 2 and (c)  = 

3 at 
15.0,1,9.0,8.0,1.0,2.0,3.0,02.0,05.0,1.0 321   GrMDaEEEWet

. 

 

 

 
Figure 12- Graph of the streamlines for three different values of Da; (a) Da = 0.8, (b) Da = 0.85 and 

(c) Da = 0.9 at 
1,15.0,1,9.0,1.0,2.0,3.0,02.0,05.0,1.0 321   GrMEEEWet
. 
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Figure 13- Graph of the streamlines for three different values of M; (a) M = 0.8, (b) M = 0.85 and (c) 

M = 0.9 at 
1,15.0,1,8.0,1.0,2.0,3.0,02.0,05.0,1.0 321   GrDaEEEWet
. 

 

 
Figure 14- Graph of the streamlines for three different values of We; (a) We = 0, (b) We = 0.025 and 

(c) We = 0.05 at 
1,15.0,9.0,8.0,1,1.0,2.0,3.0,1.0 321  MDaGrEEEt
. 

 

 
Figure 15- Graph of the streamlines for three different values of  ; (a)  = 0.125, (b)  = 0.15 and 

(c)  = 0.175 at 
1,1,9.0,8.0,1.0,2.0,3.0,05.0,1.0 321  GrMDaEEEWet
. 

 

7. Concluding remarks   

     The present study deals with the combined effect of MHD and wall properties on the peristaltic 

transport of a Williamson fluid in a two-dimensional channel through porous medium. We obtained 

the analytical solution of the problem under long wavelength and low Reynolds number assumptions. 

The results are analyzed for different values of pertinent parameters namely Grashof number, Darcy 

number, thermal conductivity, rigidity, stiffness, magnet and viscous damping forces of the channel 

wall through porous medium. From wall properties and type of fluid (Williamson), we observed that 

the bolus moves near the side walls. The main findings can be summarized as follows: 
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1. The axial velocity increases with the increase in 1E , 2E , We and M, when y < 0.8643. Further, 

the axial velocity decreases with increase in 3E , Gr,  , Da and  . 

2. The size of the trapped bolus increases with the increase in 1E , 2E , M,  ,   and We. While the 

size of the trapped bolus decreases with increase in Da.  

3. The size of the left trapped bolus increases with increase in 3E  whereas it has opposite behavior 

in the right hand side of the channel. And the size of the trapped bolus in the left side of the 

channel decreases when Gr increases where as it has opposite behavior in the right hand side of 

the channel. 

4. The comparison between the effects of various viscosities on Williamson fluid. The velocity for 

Williamson fluid with constant viscosity is more than velocity of Williamson fluid with variable 

viscosity, and attains its maximum height at y = 0, moreover the fluid velocity starts increasing 

and tends to be constant at the peristaltic walls. The real values of stream function for Williamson 

fluid with constant viscosity is more than the real values of stream function for Williamson fluid 

with variable viscosity for the same values of the parameters. And the variation of trapped bolus 

for Williamson fluid with constant viscosity is more than the variation for trapped bolus of 

Williamson fluid with variable viscosity when to change the effect parameters, see [25] for details. 
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