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Abstract

This work is concerned with studying the solvability for optimal classical
continuous control quaternary vector problem that controls by quaternary linear
hyperbolic boundary value problem. The existence of the unique quaternary state
vector solution for the quaternary linear hyperbolic boundary value problem is
studied and demonstrated by employing the method of Galerkin, where the classical
continuous control quaternary vector is Known. Also, the existence theorem of an
optimal classical continuous control quaternary vector related to the quaternary linear
hyperbolic boundary value problem is demonstrated. The existence of a unique
solution to the adjoint quaternary linear hyperbolic boundary value problem
associated with the quaternary linear hyperbolic boundary value problem is
formulated and studied. The directional derivative for the cost functional is derived.
Finally, the necessary optimality theorem for the optimal classical continuous control
quaternary vector is proved.

Keywords: Optimal classical continuous Quaternary control, Quaternary linear
hyperbolic boundary value problem, necessary optimality theorem.
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1. Introduction

Different applications in the real life are classified as an optimal control problems. For
example in robots, medicine, economic, engineering, pharmacy, chemistry, electromagnetic
and many other fields [1- 7]. In the field of applied mathematics, many researchers [8-3]
studied optimal control problems that are controlled by ODEs or PDEs of parabolic,
hyperbolic and elliptic type, couple of these types, while some of them investigated optimal
control problems that controlled by triple linear PDEs of the mentioned three types[14-16].

In general, the study of the study for the optimal classical continuous control vector
problem controlled by triple linear PDEs of the hyperbolic type [15] encourages us to
generalize this problem to a new proposed optimal classical continuous control quaternary
vector problem controlling by quaternary linear hyperbolic boundary value problem.

In this paper, we investigate the state and proof the existence theorem of a unique solution
quaternary state vector solution for the quaternary linear hyperbolic boundary value problem
employing the method of Galerkin when the classical continuous control quaternary vector is
known. Further, the existence theorem for an optimal classical continuous control quaternary
vector is stated and proved. In addition, the existence of a unique solution of the adjoint
quaternary linear hyperbolic boundary value problem related to the quaternary linear
hyperbolic boundary value problem is formulated. We also derive the directional derivative
for the cost functional. Finally, the necessary optimality theorem for the problem is proved.

2. Problem Description:

Let Q c R?, x = (x1,%3) , Q=1xQ,1=[0,T],=0Q and X =T xI. The optimal
classical continuous control quaternary vector problem includes of the quaternary state
equations that means the following quaternary linear hyperbolic boundary value problem:

Yiee —Ay1+y1 — Y2+ ys+ya = filx, t) +uy,inQ 1)
Yart — QYo +y1+ Y2 —¥3 —ya = fo(x,t) + up, inQ (2)
Yatre —Ays = Y1+ Y2 +y3 + v = f3(x, 1) +us, inQ 3
Yaee =Ays —yi+y2 —y3 +ya = fa(x, 1) +uy,inQ (4)
with the following boundary conditions and the initial conditions:
yi(x,t) =0,0nX (5)
yo(x,t) =0,0n X (6)
y3(x,t) =0,0n X (7
yi(x,t) =0,0n X (8)
y1(x,0) = y? (x),and y1,(x,0) = yi (x), in Q 9
y2(x,0) = y3 (x),and y,(x, 0) = y3(x), in Q (10)
y3(x,0) = y3(x),and y3, (x, 0) = y3(x), in Q (11)
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¥4(x,0) =y (x),and y4¢ (x, 0) = y4 (x), in Q (12)

where (f1, f>, fs, fa) € L2(Q)=(L2(Q))* is a function given vector for each (x;,x;) € Q ,
U = (ug,uy, uz,uy) € L2(Q) is a given classical continuous control quaternary vector and the
corresponding quaternary state vector solution is y = (v4,v,, V3, ya) € H*(Q) = (H?(Q))*.

The set of admissible classical continuous control quaternary vector is:
W,={del?2(Q|iel= (U xU,xUsxU,) cR* ae. inQ} Uis a convex and
compact set
The cost functional will be given by
4

Go@ =3 X (Iyi = via W+ 51w 13),8>0 (13)
LetV = HE(Q),V = (V)* = {B:8 = (vy, vy, V3, 05) € HX(Q), v, = V) = V3 = vy =
0 on 0Q}. The weak form of ((1)-(12)) is given by
Y1t v1) — (Vy, Vi) + (Y, v1) — V2, v1) + V3, v1) + (Ve v1) = (fi + g, v1)  (149)

(1, v1) = (¥1(0),v1), and (¥iy, v1) = (¥1:(0),v4) (14b)

V2t V2) — (By2, V) + (Y1, v2) + V2, V2) — (V3 V2) — (Var V2) = (f2 + Uy, v2) (153)

(v3,v2) = (¥2(0),v2), and (3, ) = (¥2£(0),v,) (15b)

V3t v3) — (Vy3, Vu3) — (¥4, v3) + (¥2, v3) + (¥3, v3) + (Va, v3) = (f5 + us, v3) (16a)
(v3,v3) = (¥3(0),v3), and (y3;, v3) = (¥3£(0),v3) (16b)

Yater Va) — (VYa, VUs) — (V1,V4) + (V2. Va) — (U3, Va) + (V4 Va) = (fa + ug, va)  (173)
(V4 v2) = (¥2(0),v4), and (V4r, v4) = (¥4 (0), v4) (17b)

Assumption 2.1: The function f; (Vi = 1,2,3,4) is satisfied the following condition: | f; |<
r)i(x, t)’ V(x, t) € Q’ ni € LZ(Q; ]R)

3. The weak form Solution:
Theorem 3.1 (Existence of a Unique Solution): With assumption 2.1 for each given classical
continuous control quaternary vector, i € L?(Q), the weak form ((14)-(17)) has a unique

solution y = (y1,¥2,¥3,¥a) € L*(Ix V) and y¢ = (Y11, Yar, Vat, Yae) € L2 X V).

Proof: Let V, = (V,)* €V be a set of piecewise affine function in Q and {V,}*°., be a
sequence of V such that for all # = (v1,V9,V3,1,) € V, there is a sequence {v,} with
B = (V1) Vo, Van, Van) € Vy, ¥V and B, - ¥ (strongly) in V then #, - # (strongly) in
(L2(Q)*. Let (7 = (v4),v4), V3j,v4;):j = 1,2, ..., M(n)} be a finite basis of V., (where v, is
piecewise affine function in Q, with ¥/(x) =0 on the boundary T) and let
VY = V1o Vamr Van» Yan) be the Galerkin approximate solution to the exact solution y =
(1,72, ¥3,y4) such that

Yin = jzlcij(t)vij x) (18a)

Zip = jgldij(t)vij (x) (18b)

Where ¢;;(t) and d;;(t) are unknown function of ¢, forall i = 1,2,3,4, j = 1,2,...,n. The
method of Galerkin is utilized to approximate the weak form ((14)-(17)) w.r.t. x, they become
after substituting yin: = Zi:
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Zine V1) — (VY10 VU1) + V10, V1) — Y2no V1) + V3, V1) + Vans V1)

= (fl + ul, Ul), Vl?l (S VTl (19&)
(y{)w 171) = (y{)'vl)v and (len' vl) = (yll' 171) (19b)
(Zonts V2) — (VY2n, V2) + (V1ns V2) + V2ns V2) — V3 V2) — (Yan, V2)
=2 tuvy) Vi €V, (20a)
Vo v2) = (3, v3), and (23, v2) = (¥3,V2) (20b)
(Z3ner V3) — (Vy30, V3) — (V1n, V3) + V2n, 3) + (V3 V3) + (Van, V3)
= (f3 tuz,v3),Vvz €V, (21a)
(y??w 173) = (y30' 173), and (Z31‘ruv3) = ((y%; 173) (21b)
Zant> Va) — (VYan, V0u) — V1n Va) + V2ns Va) — (V3 Va) + (Vans Va)
= (f;]_ + U.4_, U4), Vv4 € VTl (228.)
Vi v2) = V4, va), and (23, va) = (¥4, v4) (22b)

Where yj, = ¥, (x) = ¥ (%,0) € V (zin, = Vi = Yin(X) = Yine(x, 0) € L2(Q)) is the
projection of y? onto V (the projection of y! = y,, onto L2(Q)) Vi = 1,2,3,4 , i.e.,
yd =y STinV,with | 0 I< b, (23)
yi -y STinL2(Q), with | yL I< by (24)

Substituting (18a and b) with i = 1,2,3,4) in ((19)-(22)) and setting v; = v;; ,Vl = 1,2, ..., n,
the obtained equations are equivalent to the following linear system of first order ODEs with
initial conditions , which has a unique solution, that means

A D;(t) + B1C,(t) — EC,(t) + FC5(t) + KC,(t) = by (25a)
A1C;(0) = bY and A, D;(0) = b} (25b)
A,D,(t) + B,C,(t) + HC;(t) — GC3(t) + DC,(t) = b, (26a)
A,C,(0) = b and A,D,(0) = b} (26b)
A3D5(t) + B3Cs5(t) — RC1(t) + WC,(t) + ZCyu(t) = by (27a)
A3C3(0) = bd and A;D5(0) = b (27b)
AyD,(t) + B,C,(t) = TC () + MC,(t) — NC5(t) = b, (28a)
A,C,(0) = b and A,D,(0) = b (28b)

where A; = (ayj)nxn + @irj = Wij Vi), Bi = Bunxns by = (Y35, Vo) + (vij, vir),
E = (e;)nxnerj = (25, v11), F = (fij)nxns fij = (V3j,v11), G = (G1))nxns 91j = (v, V1),
H = (W) nxn, iy = (v1j,v21), R = (1p)nxn 1ij = (v1j,v31), W = (Wij)nxn, Wij =
(v25,v31), K = (kijdnsens kij = (Vajyv11), D = (dip)nsens dij = (Vapp 1), Z = (21 nxns
zj = (Vapva1), T =CDnxn tij = (1 vw), M = (M)usen, My = (v2,v4), N =
(dnsn: My = (V35,0m), by = ), va), b = (b)), D,(0) = (D,;(0)nx1, D(0) =
(Dij(0))nx1, by = (fi + uy, vy, Di(6) = (Dyj (€)1

Then corresponding to the sequence {I_/;}, the following problems hold that means for each
1371 = (vln, Von,V3zn» v4n) C Vn) y and n = 1,2,
(Y1nttJ Uln) + (Vyan Vvln) + (yln: vln) - (yZn: vln) + (ySn' vln) + (y4n: vln)

= (f1 + Uy, v1p) (29a)
2 V1n) = (1) V1n), ad Vi, v1n) = (01, V1n) (29b)
(YZnttJ UZn) + (VyZnJ VUZn) + (yln'UZn) + (yZn'UZ) - (ySn' vZn) - (yzl-n'vZn)
= (f2 + uz, v20) (30a)
(ygm Van) = (y{)' V2,), and (yzlnf Von) = (yll' Van) (30b)

V3neer Van) + (VY3 V03n) — Vins V3n) + Vans Van) + Van V3n) + Vans V3n)
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= (f3 + U3, V3p) (31q)
V3w Van) = (¥, Van), and (3, v3) = (¥3, Van) (31b)
Yanttr Van) + (VYVan, V0an) — Vi Van) + Vans Van) — V3n Van) + (Vans Van)
= (fa + Ug) Van) (32a)
(yé?w Vgn) = (yf, Vyn), aNd (yin» Vpn) = (yi' Van) (32b)

Which has a sequence of unique solution {y;,,}. Substituting v;,, = v , for i = 1,2,3,4
in ((29a- (32a)) and we use Lemma 1.2 in [17] for the first term of the LHS once get

” Yne ” + ” Yn ”1_ [(.VZn’ ylnt) - (y3n' ylnt) - ()74n, ylnt) - (yln' yZnt) +
(YSnr YZnt) + (yzmr YZnt) + (yln' y3nt) - (yZn' y3nt) - ()74n, y3nt) + (yln' y4nt) -
Van Yant) + Van Yane) T (L + U, Yane) + (f2 + Uz, Yone) + (fs + Uz, Y3ne) + (fa +
Uy, Vant)] (33)

Taking the absolute value, then it yields to:

d
a[” Vnt ”%"‘” Yn ||%] < 2[l W2 Yine | 1 3n Vine) |+ Qans Yine) |
H (V1 Yon) 1H V3 Yan) 1H YVan, Yon) 1 Vi YVan) 1 H 1 V2, Vane) I+ Van, Yane) |+

| Viro Yane) |+ V2ns YVane) |+ Yz Yane) |+ (L + U, Yane) | H (2 + Uz, Yone) | +
| (f3 + uz, Yane) | +1 (3 + us, Yane) 1] (34)

Using the Cauchy- Schwartz inequality for the R.H.L. of (34), integrating both sides on
[0, t], using
I ym lo<Il ¥in 1< P Iy, I ymt lo=<Il ¥, llo, and Ass. 2. 1 tO get
f = [ Fne 13+11 3 ||1]dt<3f [l Ye 13+1 3 12] dt+f z Il y; N3+1 uy 13]de

0i=1

+f [l Ve I dt] < Z Iy 13+ b7 + a1f ;[ll Fne NG+ i 15]dt
0

d

t
<aytay [ — [ Ine 15+ ¥y I7]dE (35)
0

4
where az—Z (b, + b)), a; = 4 with || y; IIQ b, , Il y ||Q<b for each i = 1,2,3,4.

Since Il 2 I,< b, and I yLl,< b0 with a3 = by + b; + a5, inequality (35) becomes

I Y NG+ Y (1) I3< a3 + a4 f [ Yne UG+ ¥y N3]dt
0

Using the Belman-Gronwall inequality to get for all t € [0, t]
Il e () 1+ § () 17 @ze® = b?(c) = |l Yo (t) 15< b?(c) and 1l 3, (8) 1§< b (o),
they give that Il ¥ (t) llp< b 1(c) and Il ¥, () Nl 2(; 1)< b (C).

Then, applying the Alaoglu’s theorem, then there is a subsequence of {¥,}nen, fOr
simplicity say {y,,} s.t.

Vne = ¥ (Weakly) in L2(Q) and y,, — y (weakly) in L2(1,V) (36)
Now, multiplying both sides of ((29a)- (32a)) by ¢;(t) € C?[0,T] s.t. ¢;(T) = ¢;(T) = 0,

$:(0) =0, ¢;(0) # 0, Vi = 1,2,3,4, integrating on [0, T], finally integrating by parts twice
the first term in each obtained equations yields to
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O )B4+ [ (T30 T040) + O i) = O van) + O v +

A AGLE =fz (fi + 10, V1)1 (DAL + (Vi , V1) b1(0) (37)

fz (V1 Vi) P dt + f: [(VYin, V010) + G1n V1) — D2n V1n) + V30 V10) +

O I O]y + 0,041 O+ O )34 (0) = O 1)1 0) (39

v+ [T To) + O vn) + O van) = e vae) —

Yans vZn)lcpZ(t)dt:fZ (o + Uz, )2 (Dt + Yy, V) b1(0) (39)

f: (Van, V2n) 7 (t)dt + f: [(Vy2n, V020) + V1 Van) + (V2n V2n) — Vs Van) —

Yans v2n>1¢2<t)dt:fz (2 + 2, V20)2(E)dt + Vi, V2n) $2(0) — (3, v20)5(0) (40)
—f: = (Vs V3n) P4 (D) dE + f (VY30 V030) = 1 V) + Gz V3n) + Y, Van) +
Yan v3n>1¢3<t)dt=fz (fs + Uz, V32)3(D)dt + (Vi , V) 3(0) (41)

fz (Van, Van) 3 dt + f: [(Vyzn, V030) = (V1 Van) + (V2n Vzn) + Vs Van) +

Yans v3n>1¢3<t)dt:fz (fs + s, 3) b3 ()t + Vi, V3)B3(0) — (5, v3)$5(0) (42)

—f: = Yams Van) Pi(0)dE + f (P4 V0sn) = D1 Van) + Gz Vi) = Yams Van) +

T
(Van, Van) s (t)dt :fo (fa + Ug, Van) Pa ()t + (Van » Van) P4(0) (43)

T
J;) (Van, Van) P4 dt +

~

J;) [(Vy4nr Vv4n) - (yln'vél»n) + (yZn'vél»n) - (y3n'v4-n) + (y4n: v4n)]¢4—(t)dt:{) (ﬁ} +
Uy, Van) P2 (D) dt + Van , Van) P4 (0) — (Ve , Van) P2(0) (44)

Vin®; () = v;¢;(¢)
Vindi(t) = v;¢;(t)

Vin @i (£) = vii(¢)
vin®i () = vy (t)
v;¢;(0) ST in L>(Q) fori = 1,2,3,4.

Second, Ve — yir (weakly) in L2(Q) and y;,,: — yir (Weakly) in L2(1,V) and (strongly) in
L2(Q).

Th|rd since vy, ¢; = v;P; (weakly) in L2(1,V), then

f (fi + w, vin)$y(O)dt — f (fi + u, vy (D)dt, Vi = 1,2,3,4
From these convergences, (23) and (24) we can passage the limits in ((37)-(44)), to get

First, since
vin, = v; (strongly) in V =>{ (strongly) in L2(1, V), and v;,¢;(0) —
v;¢;(0) (strongly) in L?(Q).

v, — v; (strongly) in L2(Q) = { (strongly) in L2(Q) and v;,,¢{(0) —
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T
- Onev)ei(t)dt +

0
T

[(Vy1, Vop) + (Y1, v1) — V2, v1) + (v3,v1) + (Y4:U1)]¢1(t)dt:f0 (fi +

1 V)P, (B)dt + (3;1 ,v1) $1(0) (45)

(y1, 1)y dt + fo [(Vy1, Vo) + V1, v1) — V2, v1) + (73, v1) + Vs, v1) 1, (B)dt

S o™

o=

T
:fo (fy + ug, v1) 1 (Odt + (y1,v1)91(0) = (¥7 , v1)91(0) (46)
T T
_fo (Y21, v2) Podt + fo [((Vy2, Vo) + (71, v2) + (72, 2) — (73, V2) — (Va, v2) P (B)dE

:fo (f2 + Uz, v2) P, (D)dt + (y2 ,v2) $1(0) (47)

T T
fo (2, v2) 7 (D)dt + fo [(Vy2, Vvo) + (71, v2) + (72, 12) — (¥3,V2) — (Va, v2) 1P (B)dE

:J;) (f2 + Uz, 1), (O)dt + (v, v2)$2(0) — (y3 , v2)P3(0) (48)
- fo (736, v3)P3()dt +

T T

fo [(Vy3,Vv3) — (71, v3) + (Y2, v3) + (73, v3) + (Y4, v3) 163 (t)dt:fo (fs +

uz, v3)P3(0)dt + (y3,v3) ¢p3(0) (49)

T T
fo (73, v3)3dt + fo [((Vys, Vv3) — (71, v3) + (72, v3) + (3, V3) + (Va, v3) 3 () dt

:J;) (fs + uz, v3) s (O)dt + (v3,v3)93(0) — (y3 , v3)3(0) (50)

- fo (Vat> va) P4 (D)dt +

T T
fo [(Vyy, Vvy) — (1, vs) + V2, v4) — (¥3,V4) + (Vs V4)]¢4(t)dt:fo (fa + Ug, V) Py (D)dt +
(V4 v4) $4(0) ! (51)

o™

(fa + ug, 1) Ps (Ot + (1, v4)$4(0) — (v , v4) P4 (0) (52)
Now, we have three cases

(Va, v4) b4 dt + fo [(Vya, Vvs) — (71, Va) + (U2, Va) — (¥3,V4) + (Va, va) [ (D)dt
T
0

Casel: Choose ¢; € C2[0,T] s.t. ¢;(0) = ¢;(0) = ¢;(T) = ¢;(T) =0, Vi=1234 in
(46), (48), (50), (52), integrating by parts twice the first terms in the LHS, i.e.
T T

fo V1ee V1) @1 dt + fo [(Vy1, Vv) + 1, v1) = V2, v1) + (73, v1) + (Vs v1) 4 (D)dt

T
:fo (f1 + ug, v1) . (B)dt (53)
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fz (YZtt:UZ)(pZ(t)dt-l'_E [(Vy2, V2) + (y1,v2) + V2, v2) — (73, v2) — (a, v2) @2 (8)dt
=fz (f2 + Uz, v2) P2 ()dt) (54)
fz (V3ee, v3)padt + fz [(Vys, Vv3) = (y1,v3) + V2, v3) + (73, 3) + (Va, v3) @3 (£)dt
[+ s v )50 65)
fz (y4tt,v4)¢>4dt+fz [(Vya, Vvs) — (y1,v4) + V2, Va) — (¥3,Va) + (Va, va) ]9 (D) dt

T
= fo (fa + uq, v4) Pu (D) dt. (56)

Hence, y is a solution of ((14a)-(17a)) which is almost everywhere on |

Case2: Choose ¢; € C2[0,T] s.t. ¢;(T) = 0,&¢;(0) =0, for all i =1,2,3,4 , multiplying
both sides of (14a), (15a), (16a) and (17a) by ¢, (t), ¢, (t), Pp3(t), and ¢,(t), integrating on
[0,T], integrating by parts the first term in the LHS of each obtained equation, then
subtracting each one of these obtained equation from (45),(47),(49) and (51) , once get

(i (0),v))¢;(0) = (y{(0),v;)$;(0), forall i = 1,2,3,4.

Case 3: Choose ¢; € C%[0, T] such that ¢;(0) = ¢;(T) = ¢;(T) =0, ¢;(0) # 0

, for all i=1,23,4. W multiply both sides of (14a), (15a), (16a) and (17a) by
P, (1), P, (1), Pp3(t), and ¢, (t), respectively. Then, integrating on [0, T, integrating by parts
twice the first term in the LHS of each obtained equations, then subtracting each one of these
obtained equations from ((46)-(49)), once get

:c(0), v)9;(0) = (v, v)$;(0), Vi = 1,2,3,4.

From the last two cases easily once get the initial conditions (14b), (15b), (16b) and (17b).
To prove that 3, — 3 ST in L?(I, V), we start by integrating (33) on [0, T]
T T

[ Sy I3 dt+2[ 1y, I? dt =(57a)+(57b) (57)
0 0

= 2[(V2n Y1nt) — O3n Yine) — Qans Yine) — O1n Yane) + Vzno Yone) +

Van Yane) + V1n Yane) — Oan Yant) — Qans Yane) + G1ns Yane) — Yans Yane)

+Y3n Yane)] + 2[(f1 + U, Yine) + (2 + Uz Yone) + (fs + Uz, Yane) + (fa + Usy Yane)]
(573)= 2[(V2rs Y1ne) — V3n Yine) — Gans Yine) — Gin YVone) + an Yane) + Gans Yone)
+(y1n' y3nt) - (yan y3nt) - (y4n' y4nt) + (yln' y4nt) - (yZn' y4nt) + (y3n' y4nt)]
(570)=2[(f1 + up, Yine) + (f2 + Uz, Vone) + (f3 + Uz, Y3ne) + (fa + Us, Yane) |-

By the same way that is applied to acquire (33) and (57), we can be used here to get
T
I ye(T) 13—1 y.(0) I3+ 2 [ 1l y(¢) I dt =(58a)+(58b) (58)

(58a)= 2[(y2, y1t) — V3, ¥1¢) — (J’4,0}’1t) — V1 Y2e) + 73, 520) + Vo y2e) + V1, Y3e) —
V2, ¥30) = Vo Yae) + V1, Yae) — V2o Var) + (V30 Var)]
(58b)=2[(f1 + ug, y1e) + (f2 + uz, ¥2e) + (f3 + u3’3’37t) + (fa + U Var)]

Since, I| ¥t (T) — YL (T) 15— Y (0) — §.(0) 13+ 2 [ 1l $,(£) — ¥ (t) IF dt
0
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= (59a)-(59b)-(59¢) (59)
T

(59a)= Il Y (T) 5N Ye (0) G+ 2 [ 1 3 (&) 115 At
0

(590)=(Fe (1), F:(T) = (5 (0) — 5.(0))) + 2[ On(®,5(®),dt

T
(590)=(¥¢(T), Yt (T) = ¥£(T)) — (¥£(0), e (0) — ¥ (0)) + 2 fo ®),9.() =¥ (@®), dt

Since ¥y, — ¥ (strongly) in L2(Q), and ¥, — y (weakly) in L?(Q), then from (57) and the
assumption 2.1, we get

(59a)=(57a)+(57b)— (58a)+(58b)
In the same way that was employed to acquire (24), it used here to acquire
Vne(T) = y(T) (strongly) in L2(Q).

On the other hand, since y, —» y in L*(I,V), then from (24) and (60) with
(59)=(58a)+(58b).
All the term in (59c) approach zero, so as the first two terms in the LHS of (59), hence (59)
gives

T
[ 19, =y (@) I3 dt > 0 asn — oo, therefore ¥, » ¥ ST in L2(1, V).
0

3.1Uniqueness of the Solution:

Let ¥ = (y1, V2 V3, Va) and ¥ = (31, 72, ¥, ¥4) be two quaternary state vector solution
of the weak form ((14)-(17)), subtracting each equation from the other and then replace
vi =y; —¥y; for i =1,2,3,4. Therefore,

(Do) yi =YD Hlyi =¥ 17=0, (u¥) (0.(yi—=¥)(0) =0 and for v;=
(vi — ¥11)e, we have ((v; — ¥;) (0),(y; — ¥:)(0)) = 0.

Collecting the above equalities for i = 1,2,3,4. Using Lemma 1.2 in [17] for the first in LHS
of each equation which will be positive, and we integrate both sides from 0 to , by employing
the initial conditions and at last from the Belman-Gronwall inequality one has

T T
d - 2. - 2 - =2
[ [ENG =9 13+21 G =) e <2 1 G-F) 12 dt
0 0
I (7 =) @ 3= 0,vt € I =l (¥ —¥) (t) ll 25, = 0. Therefore, the solution is unique.

4. Existence of a classical continuous optimal control quaternary vector :

Lemma 4.1: In addition to assumption 2.1, suppose that y , y + 8y are the state quaternary
vector solution corresponding to the classical continuous control quaternary vector u, U + §u
€ L2(Q) respectively, then

I 8Ye Mo i2can=< 6 | 88 llg, I 6Ye lzqn<35 11 68 llp and |l 8y, lo< & Il 62 Nl with
§ € R,

Proof: Let & =u —1u , where U = (uy, Uy, Us,Uy), U = (Ty, Uy, Uz, Uy) € L2(Q) , then
U,=U + 61 € L*(Q) , for € > 0, then from Theorem 3.1, we have y = ¥z = (V1, V2, V3, Va)
and Y, = ¥i. = (V1 Y200 Y3er Yae) are the corresponding state quaternary vector solution
which are satisfied the weak  form ((14)-(17)), after substituting

65;8 = (6:)/18! 63’28: 53’38) 6)’45): }_’)s - 5}1 they give
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(6Y1ete, V1) + (V8Y16, V1) + (616, V1) — (0Y26,v1) + (0Y3e, V1) + (0Y4e, V1)

= (eduy,vq) (61a)
0y1£(x,0) = 0 and 6y, (x,0) = 0 (61b)
(8Y2ete V2) + (882, V02) + (8Y1e, V2) + (626, V2) — (8Y3e, V2) — (8Vae, V2)

= (e6u,, vy) (62a)
0y2:(x,0) = 0 and 8y, (x,0) =0 (62b)
(036t V3) + (V8Y3¢, VU3) — (6Y16,V3) + (026, V3) + (636, V3) + (6Y4e, V3)

= (beuz, v3) (63a)
0y3:(x,0) = 0and 8y;.¢(x,0) =0 (63b)
(8Yaettr Va) + (VOYae, V) — (8Y16) Va) + (8Y26:Va) — (8Y3e,Va) + (8Vae) Va)

= (Seuy, vy) (64a)
6Y4(x,0) = 0and 8y, (x,0) =0 (64b)

Using v; = dy; for i = 1,2,3,4 in (61a),(62a),(63a)and (64a), we collect the obtained
equations and employing the same steps that are used to acquire (34), a similar equation can
be acquired, however &y, is instead of y,, then we integrate both sides on [0, t], this yields
to

t

1] %[II 85V (0) I3+ 89, I12]dt < Zf%[l 6Yas | +1 0yse | +1 8yse | +€ 1 8uy ]| 6yq4: | dt
0 0

t
+2 di 1 8y16 | +18y3e | +18Yae | +& 18Uz 1] 1 6yzee | dt +
0

o~

t
t

2{) % | 6y1e | +1 8yae | +1 6yse | + 1 8uz 1] | Syze | dt

t
+2f | 8y1e | +18y2e | +18y3e | +e | Suy ] 1 8yuee | dt

Therefore we get

t
I 6Yee N3+ 8 12< 4f [ 8Y¢ 13+ 6V 12]dt + € 1| 64 113
0

We apply the Belman-Gronwall inequality with §2 = e** to get
I 6Fer 15+ 6F 15< 82 1 67 113, forall t € I. Hence, Il 6y, I13< 62 1l 87(t) 11§ forall ¢ € 1.
I 8Ye oo r2can=< 0 Il 6U lig, Il 6V N2y < 8 Il 6U llg and Il 8y, llp< & Il 5% g -

Lemma 4.2 : With assumption 2.1 4 — ¥ is continuous from L?(Q) in to L (I, L>(Q)) or to
L?(Q), orto L2(1,V).

Proof: Let 6 =% —1u and 6y =y — ¥, where ¥ and 7 are the corresponding state
quaternary vector solution to the classical continuous control quaternary vector %, 1 and by
the first result in Lemma 4.1, one has |l y — y oot i2can< M |l -1 g , if i TQ)) u then

-

yL°°(IL2(Q)) y, thus the operator i — y3 is Lipschitz continuous from L?(Q) and into

L2(1, L2 ()
Similarly, the operator is also Lipschitz continuous from L2(Q) into L?(Q) and into L2(I, V).
Lemma 4.3 [13]: The norm ||l is weakly lower semi continuous.

Lemma 4.4: The cost functional in (13) is weakly lower semi continuous.
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Proof: From Lemma 4.3, G, (&) is weakly lower semi continuous.

Lemma 4.5 [13]: The norm [Ill, is strictly convex.

Theorem 4.1: Consider the cost functional (13), if G, () is coercive and the set U is convex,
then there exist a classical continuous control quaternary vector.

Proof: From the hypotheses on Gy(u), there is a minimizing sequence
(@} = {(ase Uz Usie, uar)} € Wy, Yk such that lim Go() = _inf Go(), and Il ty lI< C,
UREW 4
then by Alaoglu’s Theorem ,there is a subsequence of {i,}, for simplicity say{u,}, such that
i, > u weakly in L?(Q) as k - oo. From Theorem 3.1 and corresponding to the sequence
{u,} , there is a sequence of a unique state quaternary vector solution {37,( = iuk} and that
I Y N2y I Yie 2(g) are bounded, and then by Alaoglu’s Theorem, there is subsequence
of {7}, let be {y,} such that y, - J weakly in L2(1,V), y,, —» y weakly in L2(Q). Now for
each k, the state quaternary vector solution y, satisfies, the weak form ((19)-(22)),
multiplying both sides of each equation by ¢;(t), Vi = 1,2,3,4 (with ¢; € C?[0, T], such that
¢:(T) = ¢p{(T) = 0,¢;(0) # 0, ¢;(0) # 0). Rewriting the first term in the LHS of each one,
then we integrate both sides on [0, T']. Finally, we integrate by parts twice for their first term,
same equations like ((37)-(40)) can be obtained with different that each v;,, = v; and that the
term

t
[ (f; + up, vin) i (t)dt, Vi = 1,2,3,4, and for all k (65)

0
Hence, the similar technique that employed in the proof of Theorem 3.1 can be applied here
to passage the limit as k — oo in both sides of the above indicated equations, except the new
term (65) which converges to the following term (since u;, — u; is weakly in L?(Q))
t

fo (f; + w;, v) P (0)dt, Vi = 1,2,3,4. (66)

From these convergences, we get the weak form like (14a), (15a), (16a) and (17a). To
passage the limits in the initial conditions and to get (28b), (15b) and (16b) the same steps
that are used in the proof of Theorem 3.1 can be also used. Therefore, the limit point
(v1, V2, V3, ¥4) is a solution of the state quaternary equations.

Finally, G,(i) is weakly lower semi continuous. From Lemma 4.1 and i, — @ is weakly in
(L2(Q))*, this implies that
Go(@) < lim inf Go(ily) = limGo(ily) = _inf Go(), then

—

UREW 4 UREW 4
Go(@) < inf Go(@). This leads to Go(@) < min Go(@), then U is classical continuous
‘l:ikEWA UEW 4

control quaternary vector.

5. The Necessary Conditions.

In order to state the necessary conditions for classical continuous optimal control, the
Fréchet derivative of the cost functional (13) is derived and the theorem for the necessary
conditions is proved

Theorem 5.1 : Consider the cost functional (13) and the adjoint quaternary linear hyperbolic

boundary value problem of the state quaternary equations. ((1)-(12)) is:
Zygw —DZy+ 21+ 2, —Z3 — Z4 = (Y1 — Y1a), ONQ (672)
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Z]_ =0 on E, Zl(x, T) = th(x, T) =0o0nQ (67b)
Zote —DZy —Zy+Zy+Z3+ Zy = (Y2 — Y24), ONQ (68a)
Zygyy — D23+ 27y —Zy+Z3—Zy = (Y3 — Y34), 0N Q (69a)

Zz=00nZX Z3(x,T) = Z3:(x,T) =00nQ (69b)
Zyee —DZy+ 7y —Zy +Z3+Zy = (Yo — Yaa), ONQ (70a)
Z,=00nZX Z,(x,T) = Zyy(x,T)=00nQ (70b)

And the Hamiltonian in this case is:
> = 5 4 1 4
H(xt3,82) = 3 LG +u) +3 5 (0 y: = yia 1+ Z 0w 13).
i= =

Then for 1 € W, the directional derivative of G is given by

DG (%, - @) = lim S0 = [ py(x,,5,5,2) (i — @) dxdt
- Q

Proof: At first let, the weak form of the adjoint quaternary linear hyperbolic boundary value
problem is given for all v; € V a.e. on I by

(Zitev1) + (VZ1, V1) + (Z1,v1) + (Z3,v1) — (Z3,v1) — (Z4,v1) = (V1 — Y1a, V1) (710)

(Z1(T),v1) = (Z1:(T),v,) =0 (71b)

(Zate, v2) + (VZ3,Vvy) = (Z1,02) + (Z2,v2) + (Z3,12) + (Zs, v2) = (V2 — Y2a, V2) (728)
(Z5(T),v;) = (Z3(T),v;) =0 (72b)
(Zste,v3) + (VZ3,Vv3) + (Z1,v3) — (Z2,v3) + (Z3,V3) — (Z4,V3) = (V3 — Y3a,V3)(739)
(Z3(T) ,v3) = (Z3:(T) ,v3) =0 (73b)

(Zate va) + (VZy ,Vy) + (Z1,04) — (Z2,v4) + (Z3,04) + (Z4,V4) = (Va — Yaa » Va) (743)
(Z4(,T) ,v4) = (Zat(T) ,v4) =0 (74b)

One can easily show that the weak form ((71)-(74)) has a unique solution Z =
(Z,,Z,,Z5,Z,) € L>(Q) by using the same way that is employed in the proof of Theorem 3.1.
Now substituting vl = 8y, fori = 1,2,3,4 in (71a), (72a), (73a) and (74a), respectively.

f (6y1e) Z1ee)dt + f [((VZ1,V6y1.) + (Z1,6Y1¢) + (Z2,6Y1) — (Z3,6Y1¢) — (Z4, 6y1,)]dt

~e

=J 01— Y10 6y10)dt (75)

~o

T

fo (6y2e Zare)dt + J;) [(VZ2,VEY2e) — (Z1,6Y2e) + (Z2,6Y2e) + (Z3,6Y2e) + (Zy, 8y,e)]dt
= fz (V2 = Y2a, 6y2e)dt (76)
f: (6Y3e) Z3ee)dt + fz [(VZ3,VEy3e) + (Z1,6y3e) — (Z2,6Y3e) + (Z3,6y3e) — (Z4, 8y3e)]dt
= f: (V3 = ¥3a, 6y3e)dt (77)
fz (6Yaes Zage)dt + fz [(VZ4,VEYse) + (Z1,8Y4e) — (Z2, 6Yae) + (Z3,6Yae) + (Z4, 6yae)]dt

T
= fo (Va — Yaar O0Yae)dt (78)
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Now, let %,u € [2(Q), 61 =u—1u, for € >0, U, =1+ e8u € L>(Q), then from
Theorem 3.1, ¥ = yy , . = Yy, are their corresponding state quaternary vector solution, we
assume 6y, = (Y16 02 0V36, 0Vae) = Yo — ¥, Setting v; = Z; for i = 1,2,3,4 in (61a),
(62a), (63a) and (64a), respectively. We integrate both sides on [0, T], then integrating by
parts twice the first in the LHS of each equation, we get

T T
[ (6y1e, Ziw)dt + [ [(V8Y16,VZ1) + (6Y1e,Z1) — (826, Z1) + (6Y3e,Z1) + (6Y4e, Z1)]dE
0 0
T
= [ (ebuq,Z,)dt (79)
0

T T

S (6Yae, Zow)dt + [ [(V6Y26,VZ,) 4+ (8Y16, Z3) + (6Yae, Z2) — (8Y3e, Z3) — (8Y4e, Z5)]dE

0 0

T
= f (€5u2,22)dt (80)

T O
fo (8y3e) Z3¢)dt + fo [((V8y36,VZ3) — (0Y1:Z3) + (6Y26,Z3) + (0Y3,Z3) + (8Yae, Z3)]dE

T

= f (ebus, Z3)dt (81)

T ° 7
fo (0Yaer Zyge)dt + fo [(V6Y4e, VZy) — (6V12)Z4) + (Y26, Z4) — (8Y36,Z4) + (8Yae, Zo)]dt

T
= [ (e6uy, Z,)dt (82)
0
By subtracting (75) from (79), (76) from (80), (77) from (81)and (78) from (82), the
collecting of all the above obtained equations yields to
T

J [(6uy, Z1) + (Buy, Zy) + (Sus, Z3) + (Suy, Z,)]dt =
0

€
T
fo [(V1 = Y14, 0Y1e) + (V2 — Y24, 0Y2e) + (V3 — V30, 0Y3e) + (Va — Vaar 6Yae)]dt  (83)

On the other hand, we have

G(,) —G@) = fQ( (V1 — Y1a) 01 + Bu 6uy)dxdt + fQ( (V2 — Y2a)0Y2e +
eﬁu25u2)dxdt+f0( (V3 — ¥3a)6Y3e + eBuzdusz)dxdt + fq( (Vs — Yaa)6Vae +
efuysduy)dxdt + 04(¢) (84)

Where 04 (¢) = 2 Il 87, I g+ E 2 1| 610 1%y, with 0;(£) > O as e > 0

Now, by using (83) in (84), one has that
G, —G@) =¢ef (Z+ Bu)du dxdt + 04(¢)
Q

Finally, we divide both sides by ¢, and take the limite — 0, we get
DG(u,i—1) = [ Hy(x,t,5,4,2)(%—1u)dxdt = [ (Z + Bi)54 dxdt
Q Q

Where Hy(x,t,79,1,Z) = (Zy + Buy Zy + Buy Zs+ Bus Zy + Buy)”
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Theorem 5.2: The necessary optimality condition for the optimal classical continuous control
quaternary vector of problem (14-17), and (71-74) with the cost functional (13) is

DG(#,ii—1)=Z+pu=0withj=yzandZ = Zy

Proof: If 4 is a optimal classical continuous control quaternary vector of the problem, then
Go(%) = min G,(i0), Vi € L?(Q) that means
UEW 4

DG(4,ii—1%) =0.Thisgives Z + B = 0, 51 = W — 1.
Hence, the necessary condition is (Z + i, 64 ) = 0. This implies that (Z + g%, w ) >
(Z +pu, ) forall w € L2(Q) .
6. Conclusions

The method of Galerkin is successfully employed to prove the existence theorem for the
unique quaternary state vector solution of the quaternary linear hyperbolic boundary value
problem where the classical continuous control quaternary vector is known.
Also, the existence theorem of an optimal classical continuous control quaternary vector
related to the quaternary linear hyperbolic boundary value problem is demonstrated. The
existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value
problem associated with the quaternary linear hyperbolic boundary value problem is
formulated and studied. The directional derivative for the cost functional is derived. Finally,
the necessary optimality theorem for the optimal classical continuous control quaternary
vector is stated and proved.

7. References

[1] Kormushev P., Ugurlu B., Caldwell D.G., and Tsagarakis N. G.,“Learning to Exploit Passive
Compliance for energy-Efficient Gait Generation on a Compliant Humanoid”, Autonomous
Robots, vol. 43, pp.79-95, 2019.

[2] Akudibillah G., Pandey A., and Medlock J., “Optimal Control for HIV Treatment”,
Mathematical Biosciences and Engineering, vol.16, no.1, 2019.

[3] Oliinyk V., Kozmenko O., Wiebe I., and Kozmenko S.,“Optimal Control over the Process of
Innovative Product Diffusion: the Case of Sony Corporation”, Economics and Sociology, vol.11,
no. 3, pp. 265-285, 2018.

[4] Kahina L., Spiteri P., Demim F., Mohamed A., Nemra A., and Messine F., “Application Optimal
Control for a Problem Aircraft Flight”, Journal of Engineering Science and Technology Review,
vol.11, no.1, pp. 156-164, 2018.

[5] Hamid S., Sahib H. B., and Fawzi H, “Medication adherence and glycemic Control in Newly
Diagnosed Diabetic Patients”, International Journal of Research in Pharmaceutical Sciences,
vol.9, no.3, pp. 816-820, 2018.

[6] Xu B., Chen X., Huang X., and Tao L.,“A Multi strategy- Based Multiobjective Differential
Evolution for Optimal Control in Chemical Processes”, Hindawi: Complexity, Volume 2018.

[71 Hu D., Yan Y., and Xu X., “Energy Saving Optimal Design and Control of Electromagnetic
brake on Passenger Car”. Mech. Sci., 10, pp.57-70, 2019.

[8] Chryssoverghi I., and Al-Hawasy J., “The Continuous Classical Optimal Control Problem of
Semi Linear Parabolic Equations , Journal of Karbala University, vol.8, no.3, 2010.

[9] Al-Hawasy J., “The Continuous Classical Optimal Control Problem of a Nonlinear Hyperbolic
Partial Differential Equations ”, Al-Mustansiriyah Journal of Science, vol.19, no.3, pp.96-110,
2008.

[10] Brett C., Dedner A., and Elliott C.,“Optimal Control of Elliptic PDEs at Points”, IMA Journal of
Numerical Analysis, vol.36, no.3, pp. 1-34, 2015.

[11] Al-Hawasy J., and Kadhem G.M., “The Continuous Classical Optimal Control for a Coupled
Nonlinear Parabolic Partial Differential Equations with Equality and Inequality Constraints”.
Journal of Al-Nahrain University, vol.19, no.1, pp.173-186, 2016.

1320



Al-Hawasy and Hassan Iragi Journal of Science, 2023, Vol. 64, No. 3, pp: 1307-1321

[12] Al-Hawasy J., “The Continuous Classical Optimal Control of a Coupled Nonlinear Hyperbolic
Partial Differential Equations with Equality and Inequality Constraints”, Iraqi Journal of
Science,.vol.57, no.2C, pp.1528-1538, 2016.

[13] Al-Rawdanee E.H.,“The Continuous Classical Optimal Control of a Couple Non-Linear Elliptic
Partial differential Equation”, MSc Thesis, Al-Mustansiriyal University, Baghdad, Iraq,2015.

[14] Al-Hawasy J., Jaber M., “The Continuous Classical Optimal Control for Triple Partial
Differential Equations of Parabolic Type”, IHIPAS, vol.33, no.1, pp. 129-142, 2020.

[15] Al-Hawasy J., “The Continuous Classical Optimal Control Associated with triple Hyperbolic
Boundary Value Problem”, Italian Journal for pure and Applied Mathematics,no.44,pp.302-
318,2020

[16] Al-Hawasy J., Jasim D. A., The Continuous Classical Optimal Control Problems for Triple
Elliptic Partial Differential Equations, IHJPAS, vol.33, no.1, pp. 143-151, 2020.

[17] Temam R., “Navier-Stokes Equations ”, North- Holand Publishing Company,1977.

1321



