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Abstract

The main aim of this work is to investigate the existence and approximate
controllability of mild solutions of impulsive fractional nonlinear control system
with a nonsingular kernel in infinite dimensional space. Firstly, we set sufficient
conditions to demonstrate the existence and uniqueness of the mild solution of the
control system using the Banach fixed point theorem. Further, we prove the
approximate controllability of the control system using the sequence method.
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1. Introduction
Many researchers have focused on fractional calculus during the past three centuries. The
importance of this topic lies in its ability to describe many scientific problems with high
accuracy. Therefore, there are many applications of fractional calculus in various fields of
science, such as economics, physics, medicine, engineering, and others. Several researchers
have defined the fractional derivative in different types, for example, Caputo, Hilfer,
Hadamard, Caputo and Fabrizio, Atangana and Baleanu, Hussain et al. and Hattaf. For more
details on this topic, one can see [1-6].
Impulsive differential equations have attracted much research attention due to their
significance in modelling processes exposed to short-time changing throughout their

development. Many articles deal with impulsive differential equations and their solutions; see
[7-10] .
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Controllability is one of the critical characteristics of applied dynamical systems. If a system
is able to transform from any initial state to any final state using a control function, then it is
said to be controllable [11]. Controllability is widely used in various fields, such as
engineering practice, biological applications, etc. Two forms of controllability are most often
considered in practical applications, namely exact controllability and approximate
controllability. The system is exactly controllable if it reaches a required state at the given
time using a specified admissible control. The system is approximately controllable if it
reaches a state at the given time that lies in an e-neighborhood of the required state using any
admissible control. Several articles examine the exact controllability and approximate
controllability of control systems, see [12-17].

Naji and Al-sharaa [13] introduced the mild solution and studied the controllability of the
impulsive fractional nonlinear system

proly(t) — h(t,y()] = Ay(®) + Bu(t) + f(t,y(®)) t€J=[0Y]t#¢t,
Ay(ty) = qy (y(t;)),y =12, ...p, 1)

y(0) =,

where p,w € (0,1), *DP is the Hattaf-fractional derivative of order p,w, y(.) belong to
Banach space X, A isa linear operator defined on D(A4) c X into X, « € LP(J, U) is a control
function with a Banach space U, the operator B: LP(J, U) — X is bounded and linear, f and g
are continuous functions where f:JxX—->X and h:JxXxX->D(A), 0=t¢t, <t; <t, <
- <t, <ty =Y, y(t) and y(t,) indicate to the right and left limits of y(¢) at ¢ = ¢,,,
respectively and Ay(t,) = y(t;) — y(t;).

In this article, we set sufficient conditions to demonstrate the existence and uniqueness of the
mild solution and prove the approximate controllability of the system (1).

The article is organized as follows. In section 2, we introduce some basic concepts and
lemmas related to this work. In section 3, we investigate the existence and uniqueness of the
mild solution of the system (1). The approximate controllability of system (1) discusses in
section 4. In section 5, an example is given.

2. Preliminaries
In this part, we present some definitions and lemmas that we used throughout this work.
The Banach space of all piecewise continuous functions from 7 to X is denoted by PC(J, X)
with the norm [|x||pc = supeegllx ()|l
Definition (2.1) [5]. Let p € [0,1),w,A > 0and f € H'(c,d). Then

N 1 t d
D) = 1 [ BT =0 an@a @

is the Hattaf-fractional derlvatlve of order p in sense of Caputo of the function f with respect
to the weight function n € C(c,d), n,1 > 0 on [c,d]. N(p) is normalization function with

N(0) =N(1) =1and E, (t) = Xy~ e ad |s Mittag-Leffler function of one parameter w.
When A = w and N(p) = n(t) = 1, then the fractlonal derivative (2) will be in the form

DPUL(E) = j o[- - 00|51 3

In this work, we consider the fractlonal derivative (3) with 0 < w < 1.
On a Banach space X, consider the linear operator A: D(A) € X — X is the generator of C,-
semigroup {G(t),t = 0}, where sup:sol|G(t)|l = 8,8 = 1. We consider the bounded linear
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operator E = pA,A where A, = [(1 —p) (ﬁ] — A)]_lwith A, <m.m > 0.Clearly, E is

the generator of uniformly continuous semigroup {T'(t), t = 0} and sup.solIT(t)|| = S [18].
Lemma (2.2) [13]. If y € PC(J,X) is a solution of system (1), then it satisfies the following

A,h(t, (D) + 4, f (t = O“ ELy (t — DR(L,y(D))d]
+4,T, () (yo — h(0,0)) + (1 = p)A,[Bu(®) + f(t, y(D))]

+pA,° f (t =9 U, (t = O[Bu() + F(Ly(D)]d te[0,t]

=1 Ah(Ey©)+ Ay [ €= 0P EL - DRV
+4,T, () (yo — h(0,0)) + (1 = p)A,[Bu(®) + f(t, y(D))]

t
+pA,? j (t = 9Ly (t — D[Bu@) + (G y(D)]de

P
+4, z To(t — t,)8y(t,) t € (ty, ty4a]
\ =1

where L, (£) = w [” 8¢, (0)T(0t*)d0, T, (1) = [ 0, (6IT(6t)d 6,
1 1 1
00 (8) = =5y, (6_5),0 <s<w0<w<1
is probability density function, and

Y, () = Z( 1)i-15-wi- 1F(lwl!+ D) sin(irw)

is one-sided stable probability den3|ty.
Lemma (2.3) [19]. Assume that X is a Banach space. If ®:X — X is a contraction, then & has
a unique fixed point.

3. The existence and uniqueness of the mild solution
To demonstrate the existence and uniqueness of the mild solution of system (1), the following
conditions are assumed:
H1  : There exist constants M, M}, > 0 such that
IER(E, y1(©)) = ER(t, y2(O)|| < Mully1(£) = y2 (D)l

and

My, = supe|lER(E, 0)].
H2 :The continuous function f: J X X — X satisfies Lipchitz condition i.e. there exists a
constant My > 0 such that

If 1) — FDIl < M|y, (8) — y2(Ol

and

M = supeer|lf (£, 0)].
where My > 0.
H3 :The function q,: X - X,y = 1,2, ..., p is continuous and satisfies Lipchitz condition,
I.e. there exists a constant M, > 0 such that

gy 1) = @, 2| < M lly: (©) =y DI

and
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p
Z M, = M,
y=1

where M > 0.

Theorem (3.1). Suppose the hypotheses H1, H2 and H3 are satisfied, and

w w

SY
D = E7Y M), + ———— 1-— _ 5]\/[]<1,

then the control system (1) has a unique mild solution on PC(J, X) for each « € L (g, U).
Proof. Define the operator

Ah(ty(®) + A, f (t =% L, (t — OER(,y(D)d
0
+A4,T, () (yo — h(0,¥0)) + (1 — p)A,[Bu(®) + f(t, y([©))]

t
+pA2 f (t = 0P Ly (t — D[Bu@) + F(&y(D)]d] t € [0,¢,]

t
N A h(t, A — % 1L, (t — O)ER(C, y(D)d
@o=] AhEYO)+a, | @=L~ DEREYO)E
AT, (O (o — h(0,y)) + (1 - A, [Bul®) + F(£,v(0)]

408 [ (6= 0 b= DB + £(5 Y]
0

p
+A, Z Ay(t)T,(t—t,),  te(t,tysl
\ y=1

Step 1. We show the operator ® maps PC(J,X) into itself.
For0 <s<s; <ty

[(@y)(s) = (®y)(s| ]
= HAph(s.y<s)) +A, fo (s = Ly(s — OER(S,y(9))dd
+ ApTw(s)(yO — h(0, yo)) + (1 - p)A, [B/u(s) + f(s,y(s))]
+ pAj fo S(s — ) Ly (s = D[Bu(Q) + £({¥(D)]dS = Ayh(s1, y(s1))

—A, | (51— Ly (51 — OER(S,¥(D)dT — AT, (1) (yo — R(0,¥0))
0
— (1= p)A,[Bulsy) + f(s1,¥(s1))]

o2 [ (51 = 00 (51— O[Bu) + f(c,y«))]ch
0

3934



Naji and Al-sharaa Iragi Journal of Science, 2022, Vol. 63, No. 9, pp: 3931-3946

< ||a, (a(s.¥()) = a(s1.(s0) )|

+ ‘ A, [ [ =00 1Lt - BN y@)ac

— f 1(51 — )@ L, (s — c)Eh(c,y(c))dc]H

0
+||A,(yo — h(0,¥0) ) (T (s) — Ty (s1)||
+||(1 = p)A, [B(uls) —uls)) + f(s,7(5)) — f(s1, y(sD)]|

+ HpAﬁ [ f (s =97 Ly (s = O[Bu(O) + f({y(D)]d¢
- f (51 09 (s~ D[Bu() + f(c,y(c))]dcm
0
< Iagl 1G5, 50) = s ys )

+

fos(s — O Ly, (s — OER(S, y(0)d¢
_ fo (51 = 09 ML (51 — OER(L, y()dd
_ fs 51(51 — ) Ly, (s; — OER(S,y())d¢
; fo 51 = 09 Ly (s — OER(S, y()dd

—f (51 =¥ Ly(s - f)Eh((,Y(O)de
0

+11yo = h(0,y0) Il (s) = Ty (s1)
+ (1= p)[lIBllllee(s) = w(s)Il +[|f(5,5()) = f(s1,y(sD)l]

+pl|A, | f (s — % 1Ly (s — O[Bu(Q) + (5, y(@)]dS

_ J 51— 9 Ly (51— DB + F(Ey()]dg
- [1(51 = Ly (s1 — O[Bu() + £(¢,y(D)]dS
N f (51— 09 1Ly (s — O[Bu@) + £ y(©)] ¢
- fos(s1 — ¥ My (s — D[Bu(d) + f(i,y(é))]d5|H
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< gl 1. y052) = Ay ) + | [ 651 = 092051 = e, v )|

+ f 1(51 = 0¥ ML (s — ) — Lo (1 — D||ERE y(©)||d¢
0

4 f 1(s = 0¥ = (51 — O ILo (s — DNIERE, ¥(©)|ldg

+ ||g’0 — h(0,yo) Ty, (s) — Ty (sl + (1 = p)IBIlI2e(s) — w(s)I
+ 1= p)||f(s,¥() = fF(s,y(s))||

+olla, f (51 = D9 MLy sy — OI[[Bu(®) + f(c,y<<))||d<H

+ pl|A, || f (51 = O UILe(s = Q) — Loy (51 — ON||Bw(@) + £(¢, ¥(O)||d¢
+ pl|A || f (s = @1 = (s1 = D Loy (s — OII[|BuD)

0
+f<<,y<c>)||dc]

S(s; —s)?
Nw+1)
sy’

+ supgeqo,s)llLe (s = §) = Loy (51 = Dllsupeeo s | ER(S, y (D) -

_ (s1— S)wl S(s; —95)®

<71 |lIr(sy() = h(spy(s0)l + suPgeis,s,1|[ER(S, y(©)

+ [lyo — h(0, YT, (s) = Ty, (sl + (1 = p) Bl (s) — w(s)l
+ 1= p)||f(5,7()) = f(s1,¥(s))|

S _ Q)W
n F(g(i) +Sl)) supfe[s,sllllB’”f(O+f((,)’(())||

+ pnsupeeio,s) e (s = O) = Loy (51 = D llsupeeo s || B ()
st (s —98)¢
Y@ 2 -2
S(s; —s)®
T T+ D

SUPgefo,s||[Bu(() + f({,Y(O)“l'

Let

0, =(7]||h(sjy(5)) - h(Sl, y(51))||
vS 1= w
0 =125 e lEA(E O]

w

03 = nsupgefos)llLa (s = O) = Lo (51 = Dllsupgero | ER(S, y D) [% S ]

S(sy — )¢
04 = supeos BRSO
0s = nllyo — h(0, y)IlIT, (s) — T, (sl
06 = (1 = p)nlIBllll(s) — w(sy)ll
0, =(01- P)U”f(s»}’(s)) - f(51'}’(51))”
2 S(sy —s)?
Og = pn msupse[s,sl]”B’u(O + 1y
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2 sy’
09 = pn*supee(o,s) Lo (s — O) = Loy (51 — Ollsupgeios1||Bu() + (3, y ()| -

_ (51 —5)”
W
28051 —8)®
010 = P71 %supge[ojs]”&u(() + (8 y@)|-

Since f, h are continuous functions on J, then 0; and O, tend to zero as s — s;.
Since L, T,, are continuous in the uniform operator topology, then

03,05 and Oq tend to zero as s — s;.

Since w is measurable, then 4.(s) = «(s;) a.e. s = s4, then O, tends to zero.
Clearly, 0,, 0,4, Og and 0, tend to zero as s — s;. Therefore,

|(@y)(s) = (Py)(sD)]|| = 0ass - s;. Thus (Dy)(e) € C[0,t4].

Now, for t;, < s < 57 < t,1, We have

[CHICRICHIEN]
< Iagl |15 5) = 1oy

+

f 1(51 - C)w_le(% - {)Eh((:}’(())d(H
+ f 1G51 = D M ILoy (s = ) — Loy (51 — D||ER(L, y(©)||dg
0

+ f I =)™ = (51 = O HMlllLe (s = DIER(S, ()| dg

+ ||§’0 — h(0, y)IIT,(s) — Ty, (sl + (1 = p)IBIllle(s) — w(sy)l|
+ @A =p)|f (s, ¥()) = f(s1,¥(s)|

+ pl|A || j (51 = D9 Ly (51 — O[Bul) + f(z,y(z))]dzH

+p||A |l f (51— D ULy (s — ) — Ly (s1 — ON[Bu() + £(¢,¥(D)]d¢
0
+pl|A |l j (s = @™ = (51— O HILy (s — O[Bu(Q) + £(§,¥(D)]d¢
0
N zl,
where

2= ) Iy = 1)~ Tuls = 1))

Since T, is continuous in the uniform operator topology, then X tends to zero as s — s,. From
above, we have ||(®y)(s) — (®y)(s1)|| tends to zero as s — s;. Therefore, Dy € PC[0, Y].

Step 2. We show the operator & is contraction on PC(J, X).
For y,,y, € PC(J,X), and for each t € [0, t,],

3937



Naji and Al-sharaa Iragi Journal of Science, 2022, Vol. 63, No. 9, pp: 3931-3946

[(®y1)(@®) = (Dy2) @)
< [AalH(6.0) ~ H(e 7))

+ |14, f (t— @yt — OE[R(Sy1(D) — h(¢,y2(D)]d¢
0
+]|(1 - pzAp [F(t,y.®) = £ (&, y.O)]|l
+|loa2 f (¢ = 09 1Ly (t = O[F (¢, 3D = £(8, y2(D)]dg
0

w

< n||h(t,y1(©) — R(t, v, ()| + 7 Mllys — vall

SY
Nw+1)
SY®
+ (1= pn|f (& y.(®) = £(£,v.(O) | + pn? mellyl — ¥l

w
< B s = ll + s Ml =l + (= P3G = 7l
, SY®
+ o1 mellyl—yzll
sy SY®
=77[Mh5 +th+(1 p)M; + pl|A, ||m f] ly1 — v-ll-

Now, for t € (t,,t,4+1] using our assumption, we have

[(®y)(©® — (D) ®)]| < )
= |27 + et D

= yall + nMS|ly; — yall

=Dy, — y-ll
and by our assumption, then @ is contraction. According to Banach fixed point theorem, the

operator ® has a unique fixed point y such that ®y = y. Therefore, the proof is complete. =

M+ (= 5 + pll | o 9y

F( +1)

4. Approximate controllability results
In this part, we study the approximate controllability of the system (1). Define the bounded
linear operator A: X — X as

M) = (1= A0 + A2 [ O = )1 (Y = (5)ds.

0
The following condition is important to prove the approximate controllability of the system
(1),
H4 Ve>0,Vy€X IuceL?*(J, U)suchthat
IACy) — A(Bw)l| < &
and

Bl < allygOI
where a > 0.

Definition (4.1). The system (1) is approximately controllable on J if Ky(f) = X, where
Ky (f) = {y(Y;u): u(-) € U} is areachable set of the system (1).

Lemma (4.2). Assume the conditions H1, H2, H3 and H4 are hold, then

~ sY®
ly®llx < DlIyllec +D + (1 = p) + pn 55| nlIBll IOl
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where D=n [lIE‘lll]th

1 S G + S Zeallay O]
ii. For y;,y, € X, then

126 = @Ol < 725 [ = PIBI + o1
Proof.
. Iyl < [l ]| [ IR YO + 55 f5 (¢ = O IERE, IS + 51| (v0 =
R0, y0))[| + (1 = p[I1Ba(OIl + || (& y O] + pllAll 525 J5 (¢ = O HIBw(D)ldg +

pllAollzs J5 € = O I (6 v ()l + 8 25— Ay (eI

S+ S(yoll + IEHIF,) + (1 = p)y +

SY
s 181 (0 — s, O

-1 1| 77 SY® e -1 77
S IET Myl + [IET 1M + wr—(w)(MhIIyII + M) + S(llyoll + IE~1)
. sY?®
+ (1= pIBlllw@®)l + (1 = p)(Myllyll + M) + pn ol 1Bl

SY®
+ PN ——= ol'(0) (Mellyll + My) + SMllyll + 5;”%(0)”‘

SY® SY® _
= E~Y M, + —— M 1—p)M, — M SM] E~Y|M,
+ SY? M, +5(|| ||+||E‘1||ﬁ)+(1 )JVF + SY” M,
Tw+ 1) " Yo h PIZr TP T+ )7
14
sz 0 [1— ] B t
+ lla, (0] + | ( p)+pnr( D I B[l COI
y=1
=D D 1-— B
llyll + D + [( p) + pn F((‘)Jrl)]nll I[{[2 ()]l

i, ly2(8) = 1 @I < [|A, ]| [[18(6,2(8)) = At 2 @] + f (& = @ HlLy (t —
OMIERGE, 72(9) = ER(, y1(DNde + (1= pIIB Il () = ua ()]l +
(1= o)|If (t.y.®) = F(& 7. @O)|| + || A 5 = D7 HILe, (& = DINIBI w2 (§) —

w (OIS + ZP_ T, layy2(t,) — a9 (8]
<[ IE 1961y - yall + oDy Mz = yall + (1 = ) IBllllea(®) = s ()]
+ (1= pMylly, = il

o0 gy LB (®) = wa (Ol + Mrlly, = yall] + 52elly, - ylll]
= 1[I, + s+ (1= 9036 + pr My + 53¢, =

w

SY
+0| (= BN+ o1 g 1B laa®) — s O

1B etz () = 242 ()1

w

&)
= Dllyz =yall+71|(1 = DIBI+ P s
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It follows,

SY
Iyz = y1ll = Dllyz =yl < 0| (1 = PIBI+ o1 g 1B lea(0) ~ s, O
Thus,

181 a0 ~ e, O

SY
Iy>(6) =72 (O £ 725 | (L = PIBI+ o1 s

Theorem 4.3. Suppose the hypotheses H1, H2, H3 and H4 hold, then the system (1) is
approximate controllability provided

-1
(Mf L ;’ b ) ll ll)[u—p>+1]||3||<1. (4)

Proof. Since the domain D(A) of operator A is dense in X [18], i.e. D(A) = X. It is sufficient
to prove D(A) c Ky (f), that is mean we have to show for any € > 0 and x € D(A), there
exists« € LP(J,U)

such that

1 —
x — AT, (D (yo — h(0,¥0)) — Zy — A(Bw) — A(f) — A,h(Y,y(Y)) + T"Eh(v,y(v))

A=l
-=-A (Eh(Y,y(Y)))H

1—
x = A, Ta (1) (0 = h(0,30)) = Ty = ABw) M) + (- pas, — 4, | (X, y(1)

A=l
- =-A (Eh(Y,y(Y)))H

x = A, T, (N (yo — h(0,¥0)) — Zy — A(Bw) — A(f) + (1 — p)A — 1)A,R(Y, y(Y))

—ATA ER(Y,y(Y)) H

x — A, T, (N (yo — h(0,¥0)) — Zy — A(Bw) — A(f) — A;*A,h(Y, y(Y))

—ATA ER(Y,y(Y)) H

x —A,T,(N(yo — h(0,¥0)) — Zy — A(Bw) — A(f) — h(Y, y(Y))

- A%l/\ (Eh(Y,y(Y)))H <e

where Xy = ¥7_; Ay(t,)o, (DT, (Y - t,,).
For any initial y, € X, since T(t) is differentiability semigroup for each t > 0 then
[A, T (D (o = 1(0, 7)) + h(Y, y(Y)) + Zy] € D(A)
and we can see there exists a function Q@ € LP(J, X) such that
AQQ)) = x = ATy (N (o — h(0, 7)) — R(Y, y(V)) — Zy.

For example,
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Q) = . Py
(Y _ t)l—w 2 _2
o ([(@) 452(x = A, Tu (N)(yo = h(0,70)) = A(Y,y (V) — Zy)
p t €1[0,Y)
l\ <L (Y—t)+2t;L (Y—t))
then
;

AQ(®) = pa? f (¥ = )97 1L, (¥ = 5) (r(@))” 452(x

— A, T, (V) (vo — h(0,¥0)) — h(Y,y(Y)) —Zy) (Lw (Y —5)

d
+ ZSELQ,(Y— s)) ds

(r(w))’
= (x

- ApTw (Y)(J’o - h(O, yO)) - h(Yr y(Y))

¥ 2 d
~Zy) f ((Lw (0 =) + 251 (¥ = ) =L (Y - s)) ds
0
r 2 Y
(@) (;))) (x = AT, (N (o — R(0,¥0)) — h(Y, y(Y)) — Zy) UO (Lo (Y — ) ds

Y d
+]0 SE(L“’(Y_S))ZdSl'

Using integral by parts we have

(r ( )° v 2
AQ(D) = (x = A, T, (N (o — h(0,¥0)) — A(Y, y(Y)) — Zy) f (Lo(Y —5))"ds
0

(r(ao) f (b =) ds]

= (x = A, T,(N(yo — h(0,y0)) — A(Y, y(V)) — Zy).
Now, for any given e > 0 and by H4, there exists a control «¢ such that
€
lx = 8,7 (D (o = h(0,70)) = (Y, y (1) = Zy = A(Bu®))|| < 5. ()

Next, we show there is a control «« € LP(J, U) such that the inequality (5) holds.
Let u, € LP(J,U), then by H4, there exists «, € LF(J, U) such that

-1

A
HA lBu(t) NIGACE %Eh(t, yl(t))l —ABu,®)|| < =

where y; = y(t; 1), t € J.
From (5) and (6), we have

A—l
x —A,T,(N(yo — h(0,0)) — (Y, y(V)) = Zy — A [f(t. y1(8)) + %Eh(t. yl(t))l

(6)

~ A(Bu, (t))H
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= |[x = A, T (D (o — R(0,¥0)) — h(Y, y(Y)) — Zy — A(Bu(t)) + A(Bu(D))

A
—A [f(t, y1(8)) + %Eh(t, yl(t))l — A(Buz(t))H
< |lx — A, T (N (vo — h(0,¥0)) — (Y, y(Y)) — =y — A(Bu(®))|

—1

HA(Bu(t)) A [f(t yl(t)) +—Eh(t yl(t))l A(B1s(0)

<—
22

Denote y, = y(t;u,),t € J, then by H4, there exists w, € LP(J, U) such that

-1 -1

A A
A [f(t, 7.(0) + " Bn(t.y, (t))] A [f(t, 7 ) + (e, mo)] — A(Bw,(®)

€
< —_
=5
and

IBw, (DIl < 1

A—l A—l
‘f (t,y.(0) + iEh(t v:®) - f(t.y: () - iEh(t 1 (@®)

-1
< 27 (6320) = (6 @) + 2D 23 0) = B (e 2 (0)]
< ” ”Mh>/1||3’2 )’1”

-1
= (Mf Wl ) H[(l = p) + 111Blllle2(6) = us O
Let u5(t) = u,(t) — Wz(t) us () € LP(J,U). It follows

-1

A
x — AT, (D (yo — h(0,¥0)) — h(Y,y(Y)) —Zy — A If(t, y2(0)) + %Eh(t, y2(0))

— A(Bu, (t))”

Al
=[x = A, T (N (o — R(0,¥0)) — (Y, y(Y)) — Zy + A If(t, ¥ () + %Eh(t yl(t))l
Al A
—A [f(t» J’1(t)) + %Eh(t; J’1(t))l —A If(tr Y2 (t)) + TEh(t; YZ(t))l
— A(Bu3(t))H

-1

A
< |[x = AT (D (o — h(0,¥0)) — (Y, y(Y)) —Zy — A [f(t, y1(0) + %Eh(a y1(0))

A—l A—l
+ HA lf (t,y1 (D) + %E h(t, yl(t))l —A [f (t,y.(0) + %Eh(t, Y2 (t))l

— A(Buz (t))

+ A(Bw,(O) H
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By mathematical induction we can see that the sequence {u«,,n=0,12,..} c LP(J,U),
consequently,

A—l
x —A,T,(N(yo — h(0,0)) — (Y, y(\)) —Zy — A [f(t. ya () + %Eh(a Yu (D)

where y,, = y(t; u,,) and

1Buy+1 — Buy|l < (Mf I ” > ” p” ((1—P)+1)||Bun(t) Buy_1 (Dl

and from our assumption, we get the sequence {Bun(t),n = 1,2,3, ...} is a Cauchy sequence
on X. Since X is a Banach space, then there exists a point §(t) € X such that

Bu, — §(t) asn — oo. Then for any € > 0, there exists a positive integer k such that
-1

A
x — A, T, (N (yo — h(0,y0)) — h(Y,y(V)) — =y — A[f(t, v (D) + %Eh(t' yi (1))

- A(B’M'n+1 (t))

€ €
Soztost o tonm

x — A, T, (V) (o — h(0,50)) — h(Y, y(V)) — Zy — A[f(t, v (D))]

A—l
—A [% Eh(t’ yk(t))l N A(Bukﬂ(t)) ‘ + ”A(B/M’k+1(t)) - A(B/uk(t))”

€ € € €
_?+2—3+ oty <e
Therefore, we get a sequence {yy, k = 1,2,...} € Ky(f) converge to x € D(A), thus x €

Ky (f), which mean Ky (f) = X. [

5. Example
Consider the following nonlinear fractional control system with nonsingular kernel

11

“D23[y(t,y) — h(t,y(t,¥))] = Ay(t,y) + Bu(t) + f(t,y(t,)),

y €10,m],t € [0,t;) U (t4,1],
y(t0) =y(,m) =0t €e[01] (7)

.\ ~ 1
Ay(t]) = Q1(J’(t1 )); = 2
Setting X = L?([0.7],R) = U, and define the operator A:D(A)c X - X by
a
Ay(t,y) = ( ¥).
where
dy 0%y
D(A) = {y € X: 5 W € Xandy(0) = y(n) = O}

For y € D(A) then A can be written as the following

Ay = Z =%y, ¥s)¥s)
s=1
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1
where y;(y) = (%)2 sin(sy), s = 1,2,3 .... Then {ys(y)} is an orthonormal basis for X and y;
is an eigenfunction corresponding to the eigenvalue 1, = —s? of the operator 4, s = 1,2,3 ....

Therefore, A is the generator of C, —semigroup {T(t),t = 0} in L?[0,n] such that T(t)y =

Z;‘;le‘szt (v,Vs)Vs, ¥y € D(A), and ||T(t)|| < 1 =S§. The functions h, f and g, are defined
as follows:

. h:[0,1] x X — D(A) such that
14
h(t,y(t,y)) = f siny(t,{)d{,t € [0,1],y € [0,7],y € X.
0

o f:10,1] X X — X such that
t?et|y(t,y)|
fEy(Ey) =——",
o q:1: X — X such that
1
G )
1_ )
2(1+|yG 1))
According to Hille-Yosida Theorem ||G(t)|| = ||IT(t)]| = S.

Naji and Al-sharaa [13] show that the system (7) satisfies the conditions H1, H2 and H3.
For every u(+) € L2(J, U) of the form u(t) = Y22, us(t)y,, we define

Bu(®) = ) (D),

s=1

te[0,1],y €[0,m],y €X,b>0.

¢ (y(t, ) = t €[0,1],y € [0,7],y € X.

where
1
0 0<t<l-=
A~ S
us(t): 1 .
u(t) 1——2StS1
S

It is clear that ||Bu|| < ||u(*)|]. Therefore, B is a bounded linear operator from L?(J, U) into X.
Now, we shall prove condition H4. Consider the corresponding linear system of the system
(7) as follows:

11 1
CD§,§ys(t) + Szys(t) = as(t)’ 1-=<t < 1

sz~
Ay(t) = q:(y(ED)),
Let p(+) be an arbitrary element in L2(J, X) and k € X which is defined as
1
k= (= A1) +pA2 [ (=991, - P
0

Assume that p(t) = Yoz, ps(t)ys and K = Y22 k,y,s. we can choose the control function
2

28 1
(1) = ke 00, 1 -5 <t <1,

then

(1 - p)A,Bu(l) + pA2 j (1 - )9 1L, (1 — £)Bu(§)dé
0

= (=P Bu() + o3 [ (1= 9" (1= Y B (Oye
0 s=1
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252
ke Dy dg

— (1= A Bu() + A3 [ (=91, (1=5) )
0 s=1

= k= (1-p)A,p(1) + A2 f (1 - %L, (1 - ) p(E)dé.
0

Therefore, the first part of condition H1 holds.
Now,

1

1Bl =y [ la(orde
1

s=1"""g2
oo 1 2 2
2s 2
— —-s%(1-t)
Efl ) 1_e—2kse dt

1 1
= (- e-ZSZ)j |5.(0)|2dt
s=1 0
1 2
<= lpOI
Therefore, the condition H4 holds.
If
i 1 1 1
D:T] ”E ”+—4 Mh"’i 1+T]—4 Mf'i‘M <1,
r(3) r(3)
and
_ n
(Mr + 2|45 || ) IB|l < 1

2(l—e=2)1-D
then the system (7) is approximately controllable.

Conclusion

In this work, the existence and uniqueness of the mild solution to the system (1) have been
proved in a Banach space using Banach Fixed Point Theorem.

The approximate controllability for system (1) was discussed using the approximate sequence
method. The efficacy of our result has been shown using an example.
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