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Abstract 

     Let R be a ring with identity and M be a right unitary R-module. In this paper we 

introduce the notion of strongly coretractable modules. Some basic properties of this 

class of modules are investigated and some relationships between these modules and 

other related concepts are introduced.  
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 بقوة المقاسات المنكمشة المضادة
 

 2شكر نعمة العياشي ،1*انعام  محمد علي هادي

 ، كلية التربية للعلوم الصرفة )ابن الهيثم (، جامعة بغداد، بغداد، العراق. قسم الرياضيات 1
 ، النجف ، العراق. جامعة الكوفة قسم التخطيط الحضري ، كلية التخطيط العمراني،    2

 
 الخلاصة

البحث قدمنا مفهوم المقاسات  . في هذاRمقاساً احاديا ايمن على الحلقة  Mحلقة ذات محايد و Rلتكن      
وكذلك تم تقديم   اعطيتفد من المقاسات  الصنفالمنكمشة المضادة بقوة . بعض الخواص الاساسية حول هذا 

 بعض العلاقات التي تربط هذه المقاسات بالمفاهيم  ذات العلاقة .
 

Introduction  

     Throughout this paper all rings have identities and all modules are unital right R-modules. A 

module M is called coretractable if for each a proper submodule N of M , there exists a nonzero R-

homomorphism f:M/N→M. Equivalently , M is coretractable if for each proper submodule N of M , 

there exists g EndR(M) , g 0 such that g(N)=0 [1] . In this paper , our main aim to introduce and 

study strongly coretractable modules where an R-module M is called strongly coretractable module if 

for each proper submodule N of M , there exists a nonzero R-homomorphism f:M/N→M  such that 

Imf+N=M [2] . It is clear every strongly coretractable module is coretractable but it is not conversely . 

This work consists of two sections , in section one we supply some basic properties of strongly 

coretractable modules . A characterization of strongly coretractable modules  is given . We prove that 

a direct sum of two strongly coretractable modules   is also strongly coretractable module                      

( Theorem1.16 ) also we prove that the isomorphic image and quotient of strongly coretractable 

modules  is again strongly coretractable modules  (see Proposition1.4 and Theorem1.5), but a 

submodule of strongly coretractable module may be not strongly coretractable module. In section two,  

many  relationships between  strongly coretractable modules  and other concepts are presented  
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1. Basic Properties of Strongly Coretractable Modules  

     In this section, we study the concept of strong coretractability for modules . Many characterizations 

of strongly coretractable modules under certain classes of module are presented. Beside these several 

interested properties of strongly coretractable modules are given. 

Definition(1.1) [2]: An R-module M is called strongly coretractable module if for each proper 

submodule N of M , there exists a nonzero R-homomorphism f:M/N→M such that Imf+N=M . A ring 

R is called strongly coretractable if R is strongly coretractable R-module . Equivalently , M is a 

strongly coretractable R-module if and only if for each proper submodule N of M , there exists 

g EndR(M) , g 0 such that Img+N=M and g(N)=0 . 

Examples and Remarks(1.2) :  

(1) It is clear that every strongly coretractable module is coretractable module but not conversely 

as the following example shows : 

     Consider the Z-module Z4 .The only proper nonzero submodule of  M is < ̅> ,  but there exists 

nonzero Z-homomorphism from Z4/< ̅> into Z4 which is defined by f( ̅+< ̅>) = ̅ and f ( ̅+< ̅>)= ̅ . 

But Imf+< ̅> = f(Z4/< ̅>) + < ̅>  Z4 . Thus Z4 is not strongly coretractable module. However  Z4 is 

coretractable . 

     Similarly Z12 as Z-module is not strongly coretractable but Z12 is coretractable module. 

(2) Each of the Z-module Z and Q are not strongly coretractable modules, since each of them  is 

not coretractable . 

(3) Every semisimple ( simple ) R-module is strongly coretractable R-module . 

(4) It is clear that every epi-coretractable R-module is strongly coretractable . Where an R-module 

is called epi-coretractable module if for each proper submodule K of M , there exists a homomorphism 

f Hom(M/K,M) such that f is epimomorphism , some authors called it cocompressible (see [6]). 

However Z6 as Z- module is strongly coretractable module by part(3) , but it is not epi-coretractable 

module .  However , if M=Zp∞ as Z-module . Then for each proper submodule N of M , M/N M and 

so there exists an isomorphism f  HomR(M/N,M)  which implies that M is an epi-coretractable 

module and hence M is a strongly coretractable module. 

(5) If M is a prime R-module with soc(M)   0, then M is strongly coretractable module. 

Proof : Since M is a prime module with soc(M)   0, then M is semisimple by [4,Proposition(2.1.8)]. 

Thus M is strongly coretractable module by part(3). 

(6) Let N be a proper submodule of M such that N and M/N are strongly coretractable modules , 

then it is not necessary that M is strongly coretractable module . For example , the Z-module M=Z4 is 

not strongly coretractable Z-module . But N=< ̅> is proper submodule of M , and M/N   < ̅> is 

simple , so semisimple and so N , M/N are strongly coretractable .  

(7) Let M be a module over commutative ring R such that annM  [N:M]   annN for any nonzero 

proper submodule N of M . Then M is a coretractable module but it is not strongly coretractable 

module . 

Proof : Let N be a proper non-trivial submodule of M. By hypothesis annM [   ]  annN , so there 

exists t [N:M] , t≠0 , such that Mt  N , Nt=0 and Mt 0 . Define f:M  M by f(m)=mt for all m M , f 

is an R-homomorphism , since R is a commutative ring and f(M) = Mt   0, f(N) = Nt = 0 . Thus M is 

a coretractable module, while f(M) = Mt   N implies f(M) + N   M. Thus M is not strongly 

coretractable module. 

(8) Let M be a strongly coretractable nonsimple R-module . Then there exists a nonzero    

EndR(M) such that  (M) =   2
(M) and  ≠IM (identity on M ). 

Proof: Since M is not simple module , there exists a non-trivial submodule N of M . As M is strongly 

coretractable , there exists 0M≠φ EndR(M) with Im  +N=M  and φ(N)=0 . Hence φ≠IM . It follows 

that φ(M)= φ(φ(M) + φ(N)). Thus φ(M)=φ
2
(M). 

     Recall that a module M over a commutative ring R is called scalar module if  for all nonzero f  

EndR(M), there exists 0  r   R such that f(m)=mr for all m M [5].  

Proposition(1.3): Let M be a (nonsimple) strongly coretractable and scalar R-module . Then there 

exists r R, r 0 such that Mr = M r
2
 , where R is a commutative ring . 

Proof : By part(8) there exists 0M   EndR(M) such that φ Identity       (M)=  2
(M). As  M is a 

scalar R-module , so  there exists r  R , r  0,r  1 such that  φ (m) = mr  for each m M. Thus  Mr = 

Mr
2
 .                                                                                                              
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Proposition(1.4): Let M M' where M is a strongly coretractable R-module. Then M' is a strongly 

coretractable module. 

Proof : It is clear.                                                                                                           

Theorem(1.5): Let M be a strongly coretractable R-module and N be a proper  submodule of M . Then 

M/N is a strongly coretractable module. 

Proof : Let W/N be a proper submodule of M/N , so W M . Since M is a strongly coretractable 

module . Then there exists a nonzero R-homomorphism g:M/W M such that  Img+W =M. But 

(M/N)/(W/N)  M/W . Set f=  ᵒg   where   is the natural epimorphism from M into M/W. Then   

 f(
 

 
) + 

 

 
  =  (g(

 

 
)) + 

 

 
 = 

 (
 

 
)  

 
+ 

 

 
 =  

 (
 

 
)    

 
 =  

   

 
 = 

 

 
 . 

     Thus  M/N is astrongly coretractable module                                                                         . 

Corollary(1.6): Let f :M   M' be an R-epimorphism module. If M is a strongly coretractable R-

module  , then M' is a strongly coretractable module. 

Proof: It follows by Theorem(1.5) and by Proposition(1.4). 

Corollary(1.7): Let N be a nonzero direct summand of strongly coretractable R-module  M. Then N is 

strongly coretractable module. 

Proof: It follows by Theorem(1.5) and by Proposition(1.4) . 

Remark(1.8): A proper submodule of strongly coretractable R-module is not necessarily strongly 

coretractable module . For example : 

     Consider the Z-module M=Z2∞ . Let N=<1/2
2
+Z> be a proper submodule of M, then N    =Z4 , 

but Z4 is not a strongly coretractable . Thus N is not a strongly coretractable module. 

2. Strongly Coretractable Modules  and  Related Concepts  

     In this section we investigate the relationships between strongly coretractable modules  and other 

modules such as nonsingulsr , semisimple , prime, duo , hollow and finitely generated modules . First, 

we need recall that   A ring R is called a Von  Neumann regular ring if for any a  R , there exists b R 

such that a = aba   . 

     Under the class of modules whose endomorphism rings are von Neumann regular, the two concepts 

coretractable and strongly coretractable module are coincide.   

Proposition(2.1)[2]: Let M be an R-module and S=EndR(M) be a von Neumann  regular ring .Then 

the following statements are equivalent:   

(1) M is a coretractable  module ; 

(2) M is a strongly coretractable module ; 

(3) M is a semisimple module . 

Proof: (1) (3)  Since M is coretractable  module and S is regular ring , then M is a semisimple 

module by[1, Proposition(4.4)] . 

(3) (2) and (2) (1)  follow by Examples and Remarks(1.2(3,1)) . 

     Consider the Z-module M=Q Z2 . EndZ(M)  is von Neumann regular ring by [6, Example 

(2.4.32),P.63]  . But M is not semisimple module . Hence M is not coretractable module and so it is 

not strongly coretractable module .  

     Recall that an R-module M has C2 condition if for any submodule N of M which is isomorphic to a 

direct summand of M is a direct summand  [6] . 

     Also M=Q (    
   ) as right Z-module is Rickart with C2 condition [6, Example(2.4.32),P.63] 

where M is called Rickart if for each f End(M) , kerf is a direct summand of M [6] . Then EndR(M)  is 

von Neumann regular ring[6]. But M is not semisimple module . Therefore M is not coretractable 

module  and so it is not strongly coretractable module , by Proposition(2.1)  . 

Corollary(2.2): Let M be a strongly coretractable R-module and EndR(M) is regular ring . Then every 

submodule of  M is strongly coretractable module .  

Proof : It follows by Proposition(2.1) and by Corollary(1.7) . 

Corollary(2.3): Let M be a scalar faithful R-module  over a regular commutative ring R . Then the 

following statements are equivalent:  

(1) M is a coretractable module  ; 

(2) M is a semisimple module ; 

(3) M is a strongly coretractable module . 

Proof : As M is a scalar faithful R-module , hence by [7, Lemma(6.1)] , S=EndR(M) R , and hence 

EndR(M) is regular ring . Therefore 1 2 3 by Proposition(2.1) .                          
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Proposition(2.4): Let M be a prime R-module . If   ̅ (The quasi-injective hull of M) is strongly 

coretractable  . Then M is also strongly coretractable module . 

Proof : Since M is a prime module , hence EndR( ̅) is regular [8,Proposition (3.7) , P.36] . But  ̅ is 

strongly coretractable , hence  ̅ is semisimple by Proposition(2.1) , and so M is semisimple  . 

Therefore M is  strongly coretractable  .      

Remark(2.5): The condition M is prime in Proposition(2.4)  cannot be dropped , for example , the Z-

module Z4 is not prime and it is not strongly coretractable, but  ̅=Z2∞  is a strongly coretractable 

module . 

Proposition(2.6): Let R be a semisimple  ring . Then every R-module is a strongly coretractable 

module .  

Proof : Since every module over semisimple ring R is semisimple module , hence every R-module is 

strongly coretractable module .                                                        

     Recall that an R-module M is called a duo module if every submodule N of M is fully invariant  

[9]. 

Theorem(2.7): Let M=M1  M2 where M1 and M2 be R-modules and annM1+annM2 = R (or M is duo 

R-module or distributive module ) . Then M is strongly coretractable module if and only if M1 and M2 

are strongly coretractable modules . 

Proof : ( ) The natural projections  1(  2): M1 M2   M1 (respectively, M2) are epimorphisims . 

Therefore M1 and M2 are strongly coretractable modules  by Corollary(1.6) . 

      ) Let K be a proper nonzero submodule of M . Since annM1+annM2= R (or M is duo R-module 

or distributive module ) , then K=K1  K2 for some K1 ≤ M1 and K2≤ M2 . 

Case(1):  K1 is a proper submodule of M1 and K2 is a proper submodule of M2 . Since M1 and M2  are 

strongly coretractable module , then there exists f : M1/K1   M1 such that Imf+K1=M1 , and there 

exists g:M2/K2 M2 such that Img+K2=M2 .  

     Now, define a nonzero R-homomorphism h:M/K→M ;  

that is h:(M1 M2)/(K1 K2) M1 M2 by h[(m1,m2)+K1 K2]=[f(m1 K1) , g(m2 K2)] . Then h is 

well-defined . Now , Imh+K=Imh +(K1 K2)=(Imf Img)+ (K1 K2) =(Imf+K1)  (Img+K2) 

=M1 M2=M . 

Case(2):  K1=M1 and K2 is a nonzero proper submodule of M2 . 

Consider  (M1 M2)/(K1 K2)=(M1  M2)/(M1 K2) M2/K2 .  

     Since M2 is strongly coretractable module , so there exists f:M2/K2 M2 such that Imf + K2 = M2  . 

Define g : M2/ K2   M1  M2 by g = i◦f  where i is the inclusion mapping from M2 into M1 M2 . 

Therefore Img+K= Img+ (K1 K2) = Img+(M1 K2) = M1 (Img+K2) = M1 ((0) Imf)+K2) = 

M1 ((0)+(Imf+K2) = M1 ((0)+M2) =M1 M2 = M . 

Case(3): K1 is a nonzero proper submodule of M1 and K2 = M2 , then by a similar  proof case(2) , we 

can get the result  

Case(4):  K1=0 and K2 = M2 . 

Consider  M/K  (M1 M2)/(0 K2)  M1 . Let i is the inclusion mapping from M1 into M1 M2 , 

hence i(M1)+K=( M1  0)  (0 M2)=M   

Case(5):  K1=M1 and K2=0 , then the proof is similar to Case(4) . 

     Recall that a submodule N of M is called coquasi-ivertable submodule of M if HomR(M,N) = 0   

[10,P.8] and   A nonzero R-module M is called coquasi-Dedekind module if every proper submodule  

of M is coquasi-ivertable module of M  [10,P.32].  

     Equivalently ,  M is coquasi-Dedekind module if for each f EndR(M), f≠0 , f is an epimomorphism. 

[10 ,Theorem(2.1.4) ,P.33] . 

Proposition(2.8): Let M be a coretractable R-module . If M is a coquasi-Dedekind module , then M is 

cocompressible module and hence M is strongly coretractable module  . 

Proof :  Since  M is a coretractable module . Then for each proper submodule K of M , there exists a 

nonzero R-homomorphism f Hom(M/K,M) . So fᵒ  EndR(M) where   is the natural R-

epimomorphisim from M into M/K . Now, since f≠0 , so there exists m+K M/K such that m+K 0 

and f(m+K)  0  and so fᵒ (m) 0 . But M is coquasi-Dedekind module , then fᵒ  is an 

epimomorphisim . Therefore f is an epimomorphisim  and hence M is a cocompressible module . Thus 

M is strongly coretractable module .          
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Proposition(2.9):Any maximal submodule of a strongly coretractable R-module M is a direct 

summand of  M . 

Proof : Let K be a maximal submodule of M . If K=0, then K is a direct summand of M . If K≠0 . 

Since K is a proper submodule of M and M is a strongly coretractable module , then there exists a 

nonzero R-homomorphism f:M/K M with Imf+K=M .  

     Now, if Imf =M . As M/K is a simple module , so Imf is a simple module and hence M is simple 

and so that K=0 which is a contradiction . Thus Imf    , but as M/K is simple , then kerf=(0) .  

    On the other hand , (M/K)/kerf   Imf by 1
st
 isomorphism Theorem . Hence M/K=Imf , which 

implies that Imf is simple and hence Imf K=0 . But Imf+K=M . Therefore Imf   K=M and hence K 

is a direct summand of  M .                                

Corollary(2.10): Let R be a commutative ring with identity and I be a maximal ideal in R . If R is a 

strongly coretractable ring . Then I=eR for some an idempotent element e in R . 

Corollary(2.11): Every maximal submodule K of a strongly coretractable R-module  M  is strongly 

coretractable module . 

Proof : It follows by Proposition(2.9) and Corollary(1.7)  .                      

     Recall that an R-module M is called multiplication module if for each submodule N of M, there 

exists a right ideal in R such that MI=N [11] .           

Corollary(2.12): Let M be a finitely generated R-module (or multiplication module) . If M is a 

strongly coretractable module . Then M has a nonzero simple direct summand. 

Proof : Since  M is a finitely generated module (or multiplication module)  , then M has a maximal 

submodule , say N . Hence by Proposition(2.9) , N is a direct summand of M ; that is M=N W for 

some a submodule W of M . It follows that M/N W. But M/N is simple R-module, since N is 

maximal submodule. Hence W is a simple submodule of M and it is a direct summand. Therefore M 

has a nonzero simple direct summand.                      

     The condition M is a finitely generated module (or M is a multiplication module) is necessary in 

proposition (2.12). For example, consider the Z-module M=    is strongly coretractable module , but 

it is not finitely generated and it is not multiplication module . However M has no simple direct 

summand. 

Corollary (2.13): Let M be a strongly coretractable R-module . If M is a finitely generated module   

(or multiplication module). Then every proper submodule of M is contained in a direct summand. 

Proof: It follows by Proposition (2.9). 

Corollary (2.14): Let M be a finitely generated R-module or (a multiplication module). Then M is a 

strongly coretractable R-module if and only if M has no proper essential submodule (that is M is a 

semisimple). 

Proof: It is clear. 

     As application of Corollary(2.14) ,  each of Z-module  Z , Z4 , Z8 , Z9 , Z12 , …  is not strongly 

coretractable module . 

Corollary (2.15): Let R be a ring with identity. Then R is strongly coretractable ring if and only if R is 

semisimple.  

Proof: It is clear by Corollary (2.14).                                                            

Corollary (2.16):  Let R be a commutative ring with identity. If for each proper nonzero ideal J of R, 

there exists r   R with r   annJ, 1-r   J then R is a strongly coretractable ring . 

Proof: Let (0) ≠J < R . Since there exists r R , r  annJ , 1- r  J , R=J + annJ . Now, let x J annJ. 

Then x=x.1= x (1-r)+xr=0 and so R=J annJ. Thus R is a semisimple and hence R is a strongly 

coretractable ring  

Corollary (2.17): Let R be a commutative ring with identity . If R is strongly coretractable ring , then 

R is regular ring and hence L(R)=0 . 

Proof: By Corollary (2.16) , R is a semisimple , so it is regular  and hence L(R)=0 . 

Corollary (2.18): Let R be a commutative ring with identity. If R is strongly coretractable ring. Then 

R has no nonzero nilpotent ideal. 

Proof: By Proposition (2.17), R is a regular ring . Suppose R has a nilpotent ideal I of R, then I
n
=0 for 

some positive integer n. But R is regular ring, so I
n
=
           
      

 =I . Thus I= 0 .                                                              

Proposition(2.19): Let R be a ring with identity . Then the following conditions are equivalent:    

1. R is a semisimple ring.  
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2. Every R-module is strongly coretractable. 

3. Every finitely generated R-module is strongly coretractable. 

4. Every free R-module is strongly coretractable. 

Proof: It is clear.                         

     By Examples and Remarks(1.2(4)) , we show that every epi-coretractable module is strongly 

coretractable , but not conversely . However the converse is true under the class of hollow modules. 

    Recall that a proper submodule N of an R-module M is small (denoted by N<<M) whenever 

N+W=M, where W   M then W=M [8]. And an R-module is called hollow if every proper submodule 

of M is small submodule [12].   

Proposition (2.20): Let M be a hollow R-module. If M is a strongly coretractable R-module. Then M 

is an epi-coretractable R-module. 

Proof: Let N be a proper submodule of M . Since M is a strongly coretractable module , then there 

exists f 0 such that  f :M/N M and Imf+N=M . But M is hollow module , so N<<M which implies 

that Imf=M . Thus M is epi-coretractable module  . 

     Recall that a submodule N of M is called essential small (briefly e-small and denoted by N<<eM) if 

whenever N+W=M and W is an essential submodule of M , then W=M [13] . It is clear that every 

small submodule is e-small but not conversely , for example in the Z-module Z12 , N=< ̅> is e-small 

submodule , but it is not small . An R-module M is called e-hollow if every proper submodule is e-

small [12] . It is clear that every semisimple module is e-hollow , but not conversely, for example the 

Z-module Z4 is e-hollow and it is not semisimple . 

     Hence we have the following corollary : 

Corollary(2.21): Let M be a finitely generated (or a multiplication R-module)  . If M is a strongly 

coretractable R-module , then M is e-hollow module  . 

Proof : By Corollary(2.12) , M has no proper essential submodule . Thus M is e-hollow module .                                                                                      

Corollary(2.22): Let M be a strongly coretractable e-hollow R-module .Then M is semisimple . 

Proof : Suppose N is a proper essential submodule of M . As M is strongly coretractable , there exists 

f 0 such that  f :M/N M and Imf+N=M , but this contradict the hypothesis , M is e-hollow . Thus M 

has no proper essential , that is M is semisimple . 

     T.A.Kalati in[14] defined the notion of annihilator small submodule where a submodule  N of an 

R-module M is called an annihilator small (denoted by N<<a M) if N+W=M  for some submodule W 

of M implies that  l-ann S(W)=0  where S= EndR(M) , and l-ann S(W)={f S : f(W)=0} . It is clear that 

every small is an annihilator small and not conversely (see[14]).  

Corollary (2.23): Let M be a strongly coretractable R-module .Then K<<aM and N/K<<a M/K  if and 

only if N<<aM . 

Proof : ( ) Let K<<a M . Since M is strongly coretractable module , then M is coretractable module 

and hence K << M by [13,Proposition(2.2)] . But M/K is strongly coretractable module by 

Theorem(1.5) , hence M/K is coretractable module  but by hypothesis N/K<<aM/K , So by 

[14,Proposition(2.2)]  , N/K<<M/K  , hence N<< M which implies that N<<a M . 

( )   It is clear  .                                                                                   

Remark (2.24):  Let M be an R-module . If  E(M) ( The injective hull of M )  is a strongly 

coretractable module  . It may be that M is not coretractable module and hence it is not strongly 

coretractable module  . 

    For example , consider the Z-module Z4 is not strongly coretractable module see Examples and 

Remarks(1.3(1)) . In spite of  E(Z4) =     is strongly coretractable module . 

Remark(2.25): Let M be an R-module . If E(M) is a finitely generated and strongly coretractable R- 

module . Then M=E(M) .  

Proof: Since E(M) is finitely generated and strongly coretractable module . Then E(M) has no proper 

essential submodule  by Corollary(1.12). But M eE(M) , so M=E(M) .                                                                     
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