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Abstract

Let R be a ring with identity and M be a right unitary R-module. In this paper we
introduce the notion of strongly coretractable modules. Some basic properties of this
class of modules are investigated and some relationships between these modules and
other related concepts are introduced.
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Introduction

Throughout this paper all rings have identities and all modules are unital right R-modules. A
module M is called coretractable if for each a proper submodule N of M , there exists a nonzero R-
homomorphism f:M/N—M. Equivalently , M is coretractable if for each proper submodule N of M ,
there exists geEndgr(M) , g#0 such that g(N)=0 [1] . In this paper , our main aim to introduce and
study strongly coretractable modules where an R-module M is called strongly coretractable module if
for each proper submodule N of M , there exists a nonzero R-homomorphism f:M/N—M such that
Imf+N=M [2] . It is clear every strongly coretractable module is coretractable but it is not conversely .
This work consists of two sections , in section one we supply some basic properties of strongly
coretractable modules . A characterization of strongly coretractable modules is given . We prove that
a direct sum of two strongly coretractable modules is also strongly coretractable module
( Theorem1.16 ) also we prove that the isomorphic image and quotient of strongly coretractable
modules is again strongly coretractable modules (see Propositionl.4 and Theoreml.5), but a
submodule of strongly coretractable module may be not strongly coretractable module. In section two,
many relationships between strongly coretractable modules and other concepts are presented
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1. Basic Properties of Strongly Coretractable Modules

In this section, we study the concept of strong coretractability for modules . Many characterizations
of strongly coretractable modules under certain classes of module are presented. Beside these several
interested properties of strongly coretractable modules are given.

Definition(1.1) [2]: An R-module M is called strongly coretractable module if for each proper
submodule N of M , there exists a nonzero R-homomorphism f:M/N—M such that Inf+N=M . A ring
R is called strongly coretractable if R is strongly coretractable R-module . Equivalently , M is a
strongly coretractable R-module if and only if for each proper submodule N of M , there exists
geEndgr(M) , g0 such that Img+N=M and g(N)=0 .

Examples and Remarks(1.2) :

(1) It is clear that every strongly coretractable module is coretractable module but not conversely
as the following example shows :

Consider the Z-module Z, .The only proper nonzero submodule of M is <2>, but there exists
nonzero Z-homomorphism from Z,/<2> into Z, which is defined by f(0+<2>) =0 and f (1+<2>)=2 .
But Imf+<2> = f(Z,/<2>) + <2>#Z, . Thus Z, is not strongly coretractable module. However Z, is
coretractable .

Similarly Z,, as Z-module is not strongly coretractable but Z;, is coretractable module.

(2) Each of the Z-module Z and Q are not strongly coretractable modules, since each of them is
not coretractable .

3 Every semisimple ( simple ) R-module is strongly coretractable R-module .

()] It is clear that every epi-coretractable R-module is strongly coretractable . Where an R-module
is called epi-coretractable module if for each proper submodule K of M, there exists a homomorphism
feHom(M/K,M) such that f is epimomorphism , some authors called it cocompressible (see [6]).
However Zg as Z- module is strongly coretractable module by part(3) , but it is not epi-coretractable
module . However , if M=Z,,, as Z-module . Then for each proper submodule N of M, M/N=M and
so there exists an isomorphism fe Homg(M/N,M) which implies that M is an epi-coretractable
module and hence M is a strongly coretractable module.

(5) If M is a prime R-module with soc(M) # 0, then M is strongly coretractable module.

Proof : Since M is a prime module with soc(M) # 0, then M is semisimple by [4,Proposition(2.1.8)].
Thus M is strongly coretractable module by part(3).

(6) Let N be a proper submodule of M such that N and M/N are strongly coretractable modules ,
then it is not necessary that M is strongly coretractable module . For example , the Z-module M=Z, is
not strongly coretractable Z-module . But N=<2> is proper submodule of M , and M/N = <2> is
simple , so semisimple and so N, M/N are strongly coretractable .

@) Let M be a module over commutative ring R such that annMc [N:M] < annN for any nonzero
proper submodule N of M . Then M is a coretractable module but it is not strongly coretractable
module .

Proof : Let N be a proper non-trivial submodule of M. By hypothesis annMc [N: M] SannN , so there
exists te[N:M], t#0 , such that Mt €N , Nt=0 and Mt=0 . Define f:M— M by f(m)=mt for all meM , f
is an R-homomorphism , since R is a commutative ring and f(M) = Mt # 0, f(N) = Nt =0 . Thus M is
a coretractable module, while f(M) = Mt < N implies f(M) + N # M. Thus M is not strongly
coretractable module.

(8) Let M be a strongly coretractable nonsimple R-module . Then there exists a nonzero ¢ €
Endg(M) such that (M) = ¢ %(M) and ¢+l (identity on M).

Proof: Since M is not simple module , there exists a non-trivial submodule N of M . As M is strongly
coretractable , there exists OyZe€ENdr(M) with Im@ +N=M and ¢(N)=0 . Hence ¢#ly, . It follows
that p(M)= ¢(¢(M) + (N)). Thus ¢(M)=¢*(M).

Recall that a module M over a commutative ring R is called scalar module if for all nonzero fe
Endr(M), there exists 0+ r € R such that f(m)=mr for all meM [5].

Proposition(1.3): Let M be a (nonsimple) strongly coretractable and scalar R-module . Then there
exists reR, r=0 such that Mr = M r? | where R is a commutative ring .

Proof : By part(8) there exists Oy# ¢ €Endg(M) such that ¢#Identity and @(M)=¢ ?(M). As M is a
scazlar R-module , so there exists re R, r# 0,r# 1 such that ¢ (m)=mr for each meM. Thus Mr =
Mr-.
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Proposition(1.4): Let M=M" where M is a strongly coretractable R-module. Then M' is a strongly
coretractable module.
Proof : It is clear.
Theorem(1.5): Let M be a strongly coretractable R-module and N be a proper submodule of M . Then
M/N is a strongly coretractable module.
Proof : Let W/N be a proper submodule of M/N , so WM . Since M is a strongly coretractable
module . Then there exists a nonzero R-homomorphism g:M/W—M such that Img+W =M. But
(M/N)/(W/N) =M/W . Set f=m°g where m is the natural epimorphism from M into M/W. Then

M M
)+ =gty + W = B, W W e

Thus M/N is astrongly coretractable module
Corollary(1.6): Let f :M — M' be an R-epimorphism module. If M is a strongly coretractable R-
module , then M' is a strongly coretractable module.

Proof: It follows by Theorem(1.5) and by Proposition(1.4).

Corollary(1.7): Let N be a nonzero direct summand of strongly coretractable R-module M. Then N is
strongly coretractable module.

Proof: It follows by Theorem(1.5) and by Proposition(1.4) .

Remark(1.8): A proper submodule of strongly coretractable R-module is not necessarily strongly
coretractable module . For example :

Consider the Z-module M=Z,,, . Let N=<1/2?+Z> be a proper submodule of M, then N= Z,2=27, ,
but Z, is not a strongly coretractable . Thus N is not a strongly coretractable module.

2. Strongly Coretractable Modules and Related Concepts

In this section we investigate the relationships between strongly coretractable modules and other
modules such as nonsingulsr , semisimple , prime, duo , hollow and finitely generated modules . First,
we need recall that A ring R is called a Von Neumann regular ring if for any a €R , there exists beR
such thata = aba .

Under the class of modules whose endomorphism rings are von Neumann regular, the two concepts
coretractable and strongly coretractable module are coincide.

Proposition(2.1)[2]: Let M be an R-module and S=Endg(M) be a von Neumann regular ring .Then
the following statements are equivalent:

Q) M is a coretractable module ;

(2) M is a strongly coretractable module ;

3) M is a semisimple module .

Proof: (1)=(3) Since M is coretractable module and S is regular ring , then M is a semisimple
module by[1, Proposition(4.4)] .

(3)=(2) and (2)=>(1) follow by Examples and Remarks(1.2(3,1)) .

Consider the Z-module M=Q&@Z, . End,(M) is von Neumann regular ring by [6, Example
(2.4.32),P.63] . But M is not semisimple module . Hence M is not coretractable module and so it is
not strongly coretractable module .

Recall that an R-module M has C, condition if for any submodule N of M which is isomorphic to a
direct summand of M is a direct summand [6] .

Also M=Q® (D -,Z,) as right Z-module is Rickart with C, condition [6, Example(2.4.32),P.63]
where M is called Rickart if for each feEnd(M) , kerf is a direct summand of M [6] . Then Endgr(M) is
von Neumann regular ring[6]. But M is not semisimple module . Therefore M is not coretractable
module and so it is not strongly coretractable module , by Proposition(2.1) .

Corollary(2.2): Let M be a strongly coretractable R-module and Endg(M) is regular ring . Then every
submodule of M is strongly coretractable module .

Proof : It follows by Proposition(2.1) and by Corollary(1.7) .

Corollary(2.3): Let M be a scalar faithful R-module over a regular commutative ring R . Then the
following statements are equivalent:

(D) M is a coretractable module ;

2 M is a semisimple module ;

3 M is a strongly coretractable module .

Proof : As M is a scalar faithful R-module , hence by [7, Lemma(6.1)] , S=Endr(M)=R , and hence
Endg(M) is regular ring . Therefore 1<2<3 by Proposition(2.1) .

1071



Hadi and Al-aeashi Iragi Journal of Science, 2017, Vol. 58, No.2C, pp: 1069-1075

Proposition(2.4): Let M be a prime R-module . If M (The quasi-injective hull of M) is strongly
coretractable . Then M is also strongly coretractable module .

Proof : Since M is a prime module , hence Endg(M) is regular [8,Proposition (3.7) , P.36] . But M is
strongly coretractable , hence M is semisimple by Proposition(2.1) , and so M is semisimple
Therefore M is strongly coretractable .

Remark(2.5): The condition M is prime in Proposition(2.4) cannot be dropped , for example , the Z-
module Z, is not prime and it is not strongly coretractable, but M=Z,,, is a strongly coretractable
module .

Proposition(2.6): Let R be a semisimple ring . Then every R-module is a strongly coretractable
module .

Proof : Since every module over semisimple ring R is semisimple module , hence every R-module is
strongly coretractable module .

Recall that an R-module M is called a duo module if every submodule N of M is fully invariant
[9].

Theorem(2.7): Let M=M; @M, where M; and M, be R-modules and annM;+annM, = R (or M is duo
R-module or distributive module ) . Then M is strongly coretractable module if and only if M; and M,
are strongly coretractable modules .

Proof : (=) The natural projections pi( p2): Mi@M, — M, (respectively, M,) are epimorphisims .
Therefore M; and M, are strongly coretractable modules by Corollary(1.6) .

(<) Let K be a proper nonzero submodule of M . Since annM;+annM,= R (or M is duo R-module
or distributive module ) , then K=K; @K, for some K; <M; and K< M, .

Case(l): Kj is a proper submodule of M; and K, is a proper submodule of M, . Since M;and M, are
strongly coretractable module , then there exists f : M,/K; — M; such that Imf+K;=M, , and there
exists g:M,/K,— M, such that Img+K,=M, .

Now, define a nonzero R-homomorphism h:M/K—M ;
that is h:(M:@©M,)/(KiDK3)—M1DM, by h[(my,my)+K D K,]=[f(m:DK,) , g(mBKy)] . Then his
well-defined . Now , Imh+K=Imh +(K;@Ky)=(Imf@Img)+ (K:BK,) =(Imf+K)H (Img+K,)
=M1$M2=M .

Case(2): Ki=M; and K, is a nonzero proper submodule of M, .
Consider (Ml@Mz)/(Kl@Kz)z(Ml@ Mz)/(Ml@Kz)EMQ/KQ

Since M, is strongly coretractable module , so there exists f:M,/K,—M, such that Imf + K, = M, .
Define g : My/ K, — M; @M, by g = ief where i is the inclusion mapping from M, into M;@M, .
Therefore Img+K= Img+ (K;BK;) = Img+(M;BK;) = M;P(Img+K;) = M;P((0)PImf)+K,) =
M:D((0)+(Imf+K;) = MiB((0)+M;) =M: DM, =M .

Case(3): K; is a nonzero proper submodule of M; and K, = M, , then by a similar proof case(2) , we
can get the result

Case(4): K1=0 and K2 = M2 .

Consider M/K= (M;@M,)/(0DK,) =M, . Let i is the inclusion mapping from M; into M;@M, ,
hence i(M)+K=( M; §&0) S(0PM,)=M

Case(5): Ki=M; and K,=0, then the proof is similar to Case(4) .

Recall that a submodule N of M is called coquasi-ivertable submodule of M if Homg(M,N) = 0
[10,P.8] and A nonzero R-module M is called coquasi-Dedekind module if every proper submodule
of M is coquasi-ivertable module of M [10,P.32].

Equivalently , M is coquasi-Dedekind module if for each feEndgr(M), 0 , f is an epimomorphism.
[10 ,Theorem(2.1.4) ,P.33] .

Proposition(2.8): Let M be a coretractable R-module . If M is a coquasi-Dedekind module , then M is
cocompressible module and hence M is strongly coretractable module .

Proof : Since M is a coretractable module . Then for each proper submodule K of M , there exists a
nonzero R-homomorphism feHom(M/K,M) . So femt €Endr(M) where m is the natural R-
epimomorphisim from M into M/K . Now, since f£0 , so there exists m+KeM/K such that m+K=+0
and f(m+K) #0 and so fom(m)#0 . But M is coquasi-Dedekind module , then femr is an
epimomorphisim . Therefore f is an epimomorphisim and hence M is a cocompressible module . Thus
M is strongly coretractable module .
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Proposition(2.9):Any maximal submodule of a strongly coretractable R-module M is a direct
summand of M.

Proof : Let K be a maximal submodule of M . If K=0, then K is a direct summand of M . If K#0 .
Since K is a proper submodule of M and M is a strongly coretractable module , then there exists a
nonzero R-homomorphism f:M/K—M with Imf+K=M .

Now, if Imf =M . As M/K is a simple module , so Imf is a simple module and hence M is simple
and so that K=0 which is a contradiction . Thus Imf = M , but as M/K is simple , then kerf=(0) .

On the other hand , (M/K)/kerf = Imf by 1% isomorphism Theorem . Hence M/K=Imf , which
implies that Imf is simple and hence ImfnK=0 . But Imf+K=M . Therefore Imf @ K=M and hence K
is a direct summand of M.

Corollary(2.10): Let R be a commutative ring with identity and | be a maximal ideal inR . If R is a
strongly coretractable ring . Then I=eR for some an idempotent elemente in R .

Corollary(2.11): Every maximal submodule K of a strongly coretractable R-module M is strongly
coretractable module .

Proof : It follows by Proposition(2.9) and Corollary(1.7) .

Recall that an R-module M is called multiplication module if for each submodule N of M, there
exists a right ideal in R such that MI=N [11] .

Corollary(2.12): Let M be a finitely generated R-module (or multiplication module) . If M is a
strongly coretractable module . Then M has a honzero simple direct summand.

Proof : Since M is a finitely generated module (or multiplication module) , then M has a maximal
submodule , say N . Hence by Proposition(2.9) , N is a direct summand of M ; that is M=N@W for
some a submodule W of M . It follows that M/N=W. But M/N is simple R-module, since N is
maximal submodule. Hence W is a simple submodule of M and it is a direct summand. Therefore M
has a nonzero simple direct summand.

The condition M is a finitely generated module (or M is a multiplication module) is necessary in
proposition (2.12). For example, consider the Z-module M=Z,« is strongly coretractable module , but
it is not finitely generated and it is not multiplication module . However M has no simple direct
summand.

Corollary (2.13): Let M be a strongly coretractable R-module . If M is a finitely generated module
(or multiplication module). Then every proper submodule of M is contained in a direct summand.
Proof: It follows by Proposition (2.9).

Corollary (2.14): Let M be a finitely generated R-module or (a multiplication module). Then M is a
strongly coretractable R-module if and only if M has no proper essential submodule (that is M is a
semisimple).

Proof: It is clear.

As application of Corollary(2.14) , each of Z-module Z , Z,, Zg, Zy, Z35 , ... is not strongly
coretractable module .

Corollary (2.15): Let R be a ring with identity. Then R is strongly coretractable ring if and only if R is
semisimple.

Proof: It is clear by Corollary (2.14).

Corollary (2.16): Let R be a commutative ring with identity. If for each proper nonzero ideal J of R,
there exists r € R with r € annJ, 1-r € J then R is a strongly coretractable ring .

Proof: Let (0) #] <R . Since there exists réER , re annJ , 1- re J, R=J + annJ . Now, let xeJnannJ.
Then x=x.1= x (1-r)+xr=0 and so R=J@annJ. Thus R is a semisimple and hence R is a strongly
coretractable ring

Corollary (2.17): Let R be a commutative ring with identity . If R is strongly coretractable ring , then
R is regular ring and hence L(R)=0 .

Proof: By Corollary (2.16) , R is a semisimple , so it is regular and hence L(R)=0 .

Corollary (2.18): Let R be a commutative ring with identity. If R is strongly coretractable ring. Then
R has no nonzero nilpotent ideal.

Proof: By Proposition (2.17), R is a regular ring . Suppose R has a nilpotent ideal | of R, then 1"=0 for
some positive integer n. But R is regular ring, so I"=""=0 = Thus 1=0 .

Proposition(2.19): Let R be a ring with identity . Then the following conditions are equivalent:

1. Risasemisimple ring.
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2. Every R-module is strongly coretractable.

3. Every finitely generated R-module is strongly coretractable.
4. Every free R-module is strongly coretractable.

Proof: It is clear.

By Examples and Remarks(1.2(4)) , we show that every epi-coretractable module is strongly
coretractable , but not conversely . However the converse is true under the class of hollow modules.

Recall that a proper submodule N of an R-module M is small (denoted by N<<M) whenever
N+W=M, where W < M then W=M [8]. And an R-module is called hollow if every proper submodule
of M is small submodule [12].

Proposition (2.20): Let M be a hollow R-module. If M is a strongly coretractable R-module. Then M
is an epi-coretractable R-module.

Proof: Let N be a proper submodule of M . Since M is a strongly coretractable module , then there
exists f#0 such that f :M/N—-M and Imf+N=M . But M is hollow module , so N<<M which implies
that Imf=M . Thus M is epi-coretractable module .

Recall that a submodule N of M is called essential small (briefly e-small and denoted by N<<.M) if
whenever N+W=M and W is an essential submodule of M , then W=M [13] . It is clear that every
small submodule is e-small but not conversely , for example in the Z-module Z;, , N=<2> is e-small
submodule , but it is not small . An R-module M is called e-hollow if every proper submodule is e-
small [12] . It is clear that every semisimple module is e-hollow , but not conversely, for example the
Z-module Z, is e-hollow and it is not semisimple .

Hence we have the following corollary :

Corollary(2.21): Let M be a finitely generated (or a multiplication R-module) . If M is a strongly
coretractable R-module , then M is e-hollow module .

Proof : By Corollary(2.12) , M has no proper essential submodule . Thus M is e-hollow module .
Corollary(2.22): Let M be a strongly coretractable e-hollow R-module .Then M is semisimple .

Proof : Suppose N is a proper essential submodule of M . As M is strongly coretractable , there exists
f=0 such that f :M/N-M and Imf+N=M , but this contradict the hypothesis , M is e-hollow . Thus M
has no proper essential , that is M is semisimple .

T.A.Kalati in[14] defined the notion of annihilator small submodule where a submodule N of an
R-module M is called an annihilator small (denoted by N<<, M) if N+W=M for some submodule W
of M implies that l-ann s(W)=0 where S= Endgr(M) , and I-ann s(W)={feS : f(W)=0} . It is clear that
every small is an annihilator small and not conversely (see[14]).

Corollary (2.23): Let M be a strongly coretractable R-module .Then K<<,M and N/K<<, M/K if and
only if N<<,;M .

Proof : (=) Let K<<, M . Since M is strongly coretractable module , then M is coretractable module
and hence K << M by [13,Proposition(2.2)] . But M/K is strongly coretractable module by
Theorem(1.5) , hence M/K is coretractable module but by hypothesis N/K<<,M/K , So by
[14,Proposition(2.2)] , N/K<<M/K , hence N<< M which implies that N<<, M .

(&) ltisclear .

Remark (2.24): Let M be an R-module . If E(M) ( The injective hull of M ) is a strongly
coretractable module . It may be that M is not coretractable module and hence it is not strongly
coretractable module .

For example , consider the Z-module Z, is not strongly coretractable module see Examples and
Remarks(1.3(1)) . In spite of E(Z;) =Z, is strongly coretractable module .

Remark(2.25): Let M be an R-module . If E(M) is a finitely generated and strongly coretractable R-
module . Then M=E(M) .

Proof: Since E(M) is finitely generated and strongly coretractable module . Then E(M) has no proper
essential submodule by Corollary(1.12). But M<.E(M) , so M=E(M) .
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