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Abstract

It is well known that the wreath product S ¢, 7, is the endmorphism monoid
of a free S-act with n-generators. If S is a trivial semigroup then S, 7, is
isomorphic to 7. The extension for 7, to T, where A is an independent algebra has
been investigated. In particular, we consider A is to be F,(S), where E,(S) =
U, Sx; is a free left S-act of n-generators. The eventual goal of this paper is to
show that Jg, (s) is an endomorphism monoid of a free left S-act of n-generators and

to prove that Jg (s is embedded in the wreath product S ¢, T5,.

Keywords: Semigroups, Transformation semigroups, Endomorphism monoid,
Wreath product.
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1. Introduction

Transformation semigroups such as the symmetric group Sy, the full transformation
semigroup Ty, and the partial transformation semigroup PJ are the most fundamental sets in
semigroup theory due to the Cayley’s theorem which states that every semigroup is
isomorphic to a transformation semigroup PJTy. Under the semigroup operation of
composition, the full transformation on a non-empty set X is a semigroup T of all functions
from the set X into itself. Throughout the paper, we write X,, for the finite set{1,2, ..., n}, and
T, for the transformation on X,.

The concept of an endomorphism of independent algebra was first investigated by Gould
[1]. She obtained results by characterizing Green’s relation on nd A, where A is an
independence algebra. Narkiewicz [2] introduced independence algebra which is a class of
universal algebras .
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The wreath product of semigroup theory is a specialized product of two semigroups,
which is based on a semidirect product. Any two semigroups can be combined to construct a
third semigroup which is known as a wreath product of the two semigroups. Many authors
have been used the construction of wreath product in group theories for many years as well
as in the middle of the last century is widely used in semigroups[3,4]. The abstract wreath
product construction was extended to semigroups by B.H. Neumann in[5].

For a monoid S and the full transformation semigroup 7;,, the wreath product S ¢,, 7;, can be
defined as S™ X 7;, such that for 1 <i <n,s; €S and a € T, then (sq, ..., S, @) €S 4, Tr,.
If S is a trivial monoid that means S = {1}, then S, T, = T, and if 7, = [, then
S, T, = S™, where I,: X,, = X,, the identity transformation on X,,. It has been known that
the wreath product S ¢, T;,is the endomorphism monoid of a free left S-act with n generators.
In this paper, we found the structure of the endomorphism monoid of a full transformation
semigroup T, where A is an independence algebra. First, we consider the semigroup Jg, s,
where F,(S) =UlL, Sx; is a free left S-act of n-generator. It is clear that if S = {15}, then
Tk, s) = Tn. We also show that Jg (g is isomorphic to EndF, (S). After that, the description
of Green’s relation for Jg (s) has been found. Finally, we prove that the semigroup Ty, (s) is
embedded in the wreath product S ¢, 7;,.
2. Preliminaries
Definition 2.2 [6,7] Let @ # X be a set and let
Ty = {a: a is a transformation on X}
If X=X,={1,..,n}, then we will write 7;, for J;. Under the semigroup operation of
composition the set Ty be a semigroup i.e., for any a, f € Ty we have x(a o ) = x(af) =
(xa)p for all x € X. We often write the operation of composition as multiplication. Note that
a semigroup Jyx is a monoid as it has the identity transformation Iy such that Iy ca =a o,
for any a € J.
If o € 7,,, we often write  as
q = ( 1 ... n )
la ... na
As not every element @ € 7, is one-to-one the second row in a is not a permutation of the
first row. It is easy to check that the number of elements in 7, is n", [7].
Definition 2.3 [7] Let S and T be semigroup. A mapping ¢:S = T is called a semigroup
morphism of S into T if (ss')@ = (s)e(s")e for all s,s' €S. A semigroup morphism
between monoids S and T with (1)@ = 1is called a monoid morphism.
Definition 2.4[7] Let S be a monoid and A is a non-empty set. We call A a left-S-act and
write sA, if we have a mapping w:S X A - A, (s,a) » sa = u(S, a) such that; s(ta) =
(st)aand 1ga = aforalla € Aand s, t € S.
Definition 2.5[7] Let sA and sB be two left S-acts. A mapping a: sA = sB is called an S-
morphism if (sa)a = s(aa) for all a € sA and s € S. The identity mapping Is: SA — sA is
clearly an S-morphism. An S-morphism a:sA — sA is called endomorphism of sA.The set
which forms a monoid under composition of mappings is denoted by End sA.
2.1 The structure of the endomorphism monoid of a free-left S-act
Definition 2.6 [6] Let X be a non-empty set, Fy(S) is called free S-act on X if
1. There is amap a: X = Fx(S);
2. For every S-act A and every map ¢:X — A there exist a unique morphism
Y: Fx(S) = A such that the diagram commutes.
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a
X —» Fx(S)

¢\A/w

For a non-empty set X, we can define the set S X X into left S-act by defining an action of S
on S X X by s(t,x) = (st,x) and 15(t,x) = (¢t,x). It is clear that S X X is free left S-act on
X.

Let Fyx(S) be the set of all expression of the form sx, s€ S, x € X, sx =ty for s,t €S,
x,y €EXifandonlyifs =tandx = y.
We can say Fy(S) is a left S-act by putting s(tx) = (st)x and 1gx = x. It is clear that X X =
Fx(S) , where (s,x) + sx.
We shall usually consider the set Fx(S) = E,(s) , where X = {1, ...,n}. Let S be a monoid
and F,(S) = Sx; U ... U Sx, such that Sx; = {sx;:s € S}, where i € {1, ...,n}, 1x; = x; and
sx; = txjifand only if i = j ands = t. Anaction of S on F,(S) is defined by
s(tx;) = (st)x;
forall s € S, tx; € F,(S).
Definition 2.7 [9] The set of all morphism from the free left S-act into itself is called the
endomorphism monoid of a free left S-act and denoted by EndFE, (S) such that
EndF,(S) = {a|a: E,(S) - E,(S),and a is morphism }.
Let @ € EndFE,(S) , then « is a map defining by x;a = s{x;5, where 1 < i <nand @ € Tp,,
and (sf,...,s%) € S™.
Note that for each a € EndF,(S) it depends on its action on the free generators {x;: 1 < i <
n}only. If a € EndFE,(S), then a is an S-morphism and for s € S and 1 < i < n we have
(sx)a = s(x;a) = ss{x;z-

2.2 Wreath product multiplication
In this section, we define wreath product multiplication on a direct product of semigroup S™
and T7;, by setting
(R a)(slﬁ, ...,Sf,ﬁ) = (sf‘sfa, ...,s,‘fsfa, a,B) , where a, 8 € T,,.
Under this multiplication S™ X 7;, , the wreath product becomes a monoid with identity
(1, ...,1, 1) where I, is the identity transformation in 7, and it is denoted by S ¢,, 7;,.
The following lemma has been proved in [9].
Lemma 2.1 For n € N, EndF,(S) is isomorphic to S ¢, 7.
For more details about the wreath product multiplication, we refer to [10,11] .
3. Semigroups T, and Ty

Let A be an algebra and A a universe of A, [12,13]. The semigroup of all maps from
A to A, which is denoted by T, and the semigroup of all morphisms A — A is denoted by Ty.
The following lemma shows that 7 is a submonoid of 7.
Lemma 3.1 The semigroup T3 is a submonoid of 7j.
Proof. Let a, B € T4 such that a:A - A, and S:A — A be morphism. Since Dom(af) =
Doma = A and Im(aB) = Im(B) = A. We define the composition of @ and S as x(af) =
(xa)pB for all x € Dom af3. Thus aff is a map between two universes.
Now to show that af € Tawhich means for all (aq,..,a,) € Domaf and terms
(t(al, ...,an))(aﬁ) = t(al(aﬁ), ...,an(aﬁ)).

Now,

(t(al, s an))(aﬁ) = (t(aq, ...,ap)a)B
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= (t(ya, ..., ana))p (as a is morphism)
=t((q,@)B, ..., (ana)pB) (as £ is morphism)
= t(al(aﬁ)' L] an(aﬁ))'

It is clear, the identity I, of .
4. Semigroup g, (s)-
The semigroup of all morphism A — Ais denoted by J, (s). Let @ € Tg (s) , then a can be

described by
< xil xik )
a = )
S{Xiyg o SiXigg
where @ € Ty, i}, ..., s, € S suchthat 1 <i; <.+ < iy <n, k>0andx;,a=s;x;,. For
every choice of § € 7;, with Dom(B) = {jy, ....js} for 1<j, << j,<n, t>0 and

tjl’ ""tjt € S this gives
le x]-t
B=\;8 By | € Trs)

j1xj1B Ve

Lemma 4.1 Forn € N, T, (s) is morphic to EndF, (S).

Proof. Define y: Tg, sy = EndF,(S) by ay = a@ where (sx;)a = (sx;)a foralls € S. First,
we need to show that @ is an S- act morphism, that means s(a@) = (sa)@ for all s € S and
a € F,(S). Assume a = tx;. An element x; € Dom(a) if and only if tx; € Dom(«) for all
t €S. If tx; € Dom (), then for each s € S, stx; € Dom (a) , we have

(stx))a = (stx)a = s((txl-)a) = s((txi)c_r)

To prove y is bijection. Let ay = By, for an element sx; € F,(S) we have (sx;)ay =
(sx;)By forall i, so that

(sx)a = (sx)& = (sx))ay = (sx;)By = (sx;) = (sx;)B, so a = 8. Therefore, y is one-
to-one. To prove y is onto. Let i € EndF,(S) and define u € Jg () such that u: F,(S) -
Fy(S) by

sx;u = (sx;) i, for all sx; € E,(S).

It is obvious that u is an S-act morphism, since for any sx; € Dom u = F,(S)and t € S, we
have t((sxi)u) = t((sxl-)ﬂ) = (tsx;) i = (tsx;)u.

Now, (sxp)u = (sx))it = (sx;)uy, forall sx; € E,(S),s €S, hence uy =, so that y is
onto.
To prove y is homomorphism. Let a, f € T, (s). We have to show that (af)y = ayBy. For
all i we have

(sx) (@B)y = (sx)aB = (sx)ap. _
On the other hand, (sx;)(ayBy) = (sx;)a@ B. It is clear that &, € EndFE,(S), therefore &
and f are an S-act morphism .
Now, (sxic?ﬁ_ = g(sxi)&)ﬁ_ = ((sx)a)B = ((sx)a)B = (sx)ap = (sx;)ap. Hence,
(aB)y = aff = a B = ay By, as it required.
Lemma 4.2 Forn € N, Jg (5) is embeded in S ¢, T5,.
Proof. Let a € g (s), then « is described by

_ xil xl-k
a= <s{'ixim s{’,‘cxika)’

where @ € Ty, s, ..., si, € Sfor 1<iy <+ < iy <n,and k > 0.
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Let ¥:Tg sy = S 1, T be given by ay = (s7, ..., s, @). To prove 1 is an embeding, we
need to show that 1 is one-to-one homomorphism map. To prove 1 is homomorphism, let
a, € Tg,(s)- It is enough to prove (af)y = ay [. Notice that

ap By = (s%, ..., s%, c‘r)(sf, ...,sf, _) = (sf‘sfa, e, SISI, aﬁ)
and
@B = (s, .. 5" aB)
If a,B € T, (s), then a, B are morphism that take F, (S) into itself. From that we obtain for all
i the following :
xiaf = (x;a)B = (sfxiz)B = s{ (xizB) = s§ s aXizp and x;aff = .B Xizp- Therefore, for

all i we have

ap aB
S, Xigp = S{'SigXiap

so that we obtain
s = i'siz andaff =ap.

l
Hence, l/) is homomorphlsm.

To prove ¥ is one-to-one. Let a, B € Jf, (s) such that ay = B, this implies

(s§,...,s%, @) = (slﬁ, ...,sf, _).
Then for any sx; € F,(S), we have

(sx)a = s(sfxiz) = s(sfxip) = sGup) = (sx)B,
and this means & = f3, and v is one-to-one, as it required.
S. Description of Green’s relations on Jg_(s).
Let A and B be algebras of the same type [12,13], and 8: A = B be a homomorphism, then
Im (0) = {af:a € A},
Ker(0) = {(x,y) € AX A: xa = ya}.
In our case we have A = B = F,(S).
Lemma 5.1 A subset B is a subalgebra of F,(S) if and only if B = Sx;, U Sx;, U ... U Sx;
forsome 1 <i; <ip, < <ip<nand0<m<n.
Proof. Let B be a subalgebra of F,(S). Claim that B = Sx; U Sx;, U.. USx; for 1<
W <ip<<ip<nand 0 <m<n. Let sx, EB; as B is a subalgebra we obtain that
(hi1y) (sxk) € B for all h € S, hence (hs)x; € B. Therefore, one direction of our claim is
proved. It 1is already known that for any 1<i;<i, < <i,<n, A=
Sx;, U Sx;, U ... USx; is a subalgebra of F,(S). To show that, let sx;, € B, s' € S this

implies s’ (sxij) = s’sxl-j € B.
Remark 5.2:
1. For a subalgebra B = Sx; U Sx;, U.. USx; for 1<i; <i, <+ <i,<nand

0 <m < n,wesay thatrank B, p(B) ism .

2. For a € Jp, sy = EndF,(S), we define p(a) be p(Im(a)) such that X, =
{x1,...,xp}and Im @ =U,¢y S, Y S X, then p(a) = p(Im(a)) = |{Sy:y ev}|=1vl.

The next example explain the procedure of the Remark 5.2.:

Example 5.3
Let X = {x1,x,,x3} and a, B € Tg,(5) such that

X1 X2 X3 X1 X2 X3
a_(sxz Xy tx3)’ﬁ_(x1 ux, xz)
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Im(a) = (Sx; U Sx, U Sx3)a = S(x;a) U S(x,a) U S(xza)
= S5(sx3) U S(x3) U S(tx3) = S(x3) U S(x3).
By the same way we have
Im(B) = (Sx; U Sx, U Sx3)B
= S(1f) U S(6B) U S0xsf)
=S5(x1) U S(uxz) U S(x2) = S(x1) US(x2),

As p(a) = p(Im(a)) = |{Sy:y € Y}| = |Y|, Where Y € X3 then p(a) = p(Im(a)) = 2 and
p(B) = 2.
Definition 5.4[6] Green’s relations characterize the elements of a semigroup in terms of the
principal ideals they generate. They are five equivalence relations, namely for a,b € S, we
have
1- a < bifandonlyif a € bS?!
2- a <; b ifand only if a € S'b,
3- a <y b ifand only ifa € S*hS?,
4- The Green’s relations by a R b if and only if aS! = bS? as well as a Lb if and only if
Sta =S
5- a J b if and only if StaS? = S'bS?t,
whereas S?! denotes S with identity element adjoined ,unless S already has one. In addition,
H =R N L, where the join of the equivalences R and Lis D =R oL =LoR. It is clear
that for finite semigroups, we usually have D = 7, while the general inclusions H € R, L €
D c J is satisfied.
The characterization of Green’s relations has been obtained by V. Gould [1], on EndA where
A is an independent algebra. While A. Alaadhmi [9] obtained a description of Green’s
relations on the special case of EndA where A = F,,(G) and G is a finite group.
Our main results in this section are to give an explicit description of [1,9] for </, <g, <,
L,R,H,D, and J, where A = F,(S), and S is a finite semigroup with identity 15 .
Before state the main results, we give the following proposition:
Proposition 5.5: For arbitrary a, f € 7,,, the following is true,
1. Dom(af) < Dom(a);
2. Im(aB) € Im(B),
Proof:
1. x € Dom(aB) < x € Dom(a) and x € Dom(f). Therefore, Dom(af) S Dom(a).
2. If x € Im(aB) = x = y(aB), for some y € Dom(ap), ie., x = (ya)B € Im(B), then
Im(af) < Im(pB).
Now we state the main result of this section:
Lemma 5.6: For a, 8 € EndF,(S), where S be any monoid, we have the following:
i.a <, f if and only if Im(a) S Im(p),
ii.a <g B if and only if ker(B) < ker(a),
iii.p(ap) < p(a), p(B).
Proof.
i.Clearly, if @ <, B in EndF,(S), then a <; B in T (s) which means ¢ sya S T, (s and
this implies @ = yf for some y € EndF, (S) by using Proposition 5.5 we obtain Im(a) =
Im(yB) < Im(B).
Conversely, suppose that Im(a) S Im(B), for 1 < i < n we have x;a € Im(a) € Im(pB),
so we choose b; € F,(S) such that x;a = b;5. Now, define u € EndFE,(S) by x;u = b; for
1 <i<n. This gives x;uf = b;f§ = x;a. From this, we obtain pf = a, which means
a <, ,8
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ii. If @ <g B in EndF,(S), this means a <z B in T, (s), which implies a = v, for some v €
EndFE,(S).

Now, let (x,y) € ker (B), so that xB = yfB, and then xa = x(Bv) = (xB)v = (yB)v =

y(Bv) = ya. Hence, (x,y) € Ker (), so we obtain ker(f) < ker(a).

Conversely, suppose Kker(B) € ker(a). Define u € E,(S), u:E,(S) — E,(S), by let
Im(B) = Sx;, U Sx;, U... USx; and define X =wja, where w;f=x;, for i¢
{ie, o) im}

In order to prove that a <g B, first we need to show that u is well-define and an S-
morphism. If w;f =w;f = Xi;, then we have (Wj,wj') € ker(f) € ker (@), so we have
wia = W]-’ a, hence u is well-define.

Now, as F,(S) is a free-left S- act on n generators over S, which means F,(S) has a basis
{x41, ..., xp}. So, u must be an S-morphism.

Let w € F,(S) be such that w = sx;,, s € S and x;, 8 = tx; ,t € S, then we obtain

wp = (sxp)f =s(xxB) =s (txl-j) = st (xl-j) = st(wjﬁ).

Hence, wBu = (stxl-].)u = (st) (xiju) = (st)(wja) = (stwj)a.

Now, if wf = (stwj)ﬁ, and ker(f) < ker («), then we have wa = (stwj)a = wpu. This
gives ¢ = [u which means a <3 .

iii.We claim for any y,u € EndF,(S), that p(yp) < p(y) and p(yu) < p(u). We know that
p(y) = p(Im(y)) and let Im(y) =Uyey S,, where Y € X,,, so that p(y) = |Y|. Since
Im(yw) = Im(y)u =Uyey (S,)u =Uyey Sy,. From this we obtain p(yu) < Y] = p(y).
Now, p(uy) = pIm(uy) = p(UIm(uw)y).
Since Im(uy) € Im(y), we have pIm(uy) < p Im(y) which implies p(uy) < p(y). So
that p(apf) < p(a),p(B).

Remark 5.7: Given sets A, and B, we say that A is of cardinality at most that of B, and write
|A| < |B| if there is an injective one-one functionf:A — B. We say that A and B has
cardinality, |A| = |B| if and only if there is a bijective function f: A — B. If A has cardinality
strictly less than |A| < |B| if and only if there is a one-one function f: A — B by there is no
bijection f: A - B.
Lemma 5.8 For a, f € End F,(S) = Ty, (s), we have the following

i.a L B ifand only if Im(a) = Im(B);

ii.a R B if and only if ker(a) = ker (B);
ii.a H f ifand only if Im (a) = Im(p); ker(a) = ker(f);

iv.aa D B if and only if p(a) = p(B);

v.a <7 B ifand only if p(a) < p(B);
vi.a J B if and only if p(a) = p(B);
vii.D = J.
Proof: It is easy to prove (i) and (ii) by using pervious Lemma.
For (iii), this immediate consequence of (i) and (i1).
By using previous lemma, we can say that
p(a) = p(uBv) < p(up) and p(B) = p(yad) < p(ya) < p(a), so that p(a) = p(B).
(iv) Let p(a) = p(B). Im(a) =Uyey S), , Im(B) =U,ez S, for some Y,Z S X, with |V]| =
1Z] = p(a) = p(B).
Suppose 1:Y — Z is a bijection and define 7: Im(a) —» Im(B) by (sy)fq = s(yn) for all
s €S and y €Y. Itis clear that 7 is one-to-one. Since (sy) = (ty')f7 this implies that
s(yn) =t(y'n) forall s,t € Sand y,y’' €Y. As Im(B) is free S-act with basis Z, then this
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forces yn = y'n and s = t. Since 7 is bijective, we obtain y = y’. Furthermore, 7} is onto
and from the definition of 7 we have (sy)7 = s(yn) for all s € S and y €Y, and since or
all n is bijection sz € Im(f), pick y € Y with yn = z, then sy € Im(a) and we get sz =
s(yn) = (sy)n.

Let = aff , then y € EndF,(S). Note that Im(y) = Im(an) = (Im(a))7 = Im(B), so that
BLy. By letting u, v € E,(S), it is clear ua = va if and only if (ua) = (va)7n as 7 is one-to-
one, so ker a« = ker a 7] = kery. Therefore, aRy and we get aDp.

Conversely, suppose aDf, then a R u L  for some u € EndFE,(S). From (i) and (ii) we have

ker () = ker (1), and Im(y) = Im(f). Now since Im(a) = rer(@) = kor) = Im(u), by

the Fundamental Theorem of Semigroup theory and since p(a) = p(Im(a)) = p(Im(w)) =

p(u) we obtain p(a) = p(u), moreover, p(y) = p(Im(w)) = Im(B) = p(B) so that we have
p(a) = p(B).

(v) If @ <5 B, then @ = vfBu, so by Lemma 5.6 (iii) we have p(a) = p(vfu) < p(vp) <
p(B).

Conversely, suppose p(a) < p(B) and let Im(a) =U,,ey Sy, and Im(B) =U,cz S,, for some
Y,Z € X,,; form this we have p(a) = |Y| and p(B) = |Z]. As p(a) < p(B) so that there is
one-to-one map ¢:Y — Z. By letting W = Im(¢p), so W € Z and |Y| = [W]. Fix wy € Wand
define k: Z - W by zk = z, for all z € W, zk = w,, for all z € Z\W, so Imkx = W. Now
define p:Im(a) =U,e; S, 2Uyew Sw by zu = zk. It is clear that u extends to an S-act
morphism so fu € EndF,(S). Now since

Im(Bp) = (Im(B))pt = (Uzez Sz =Useyz Szu =Uzez Szk =Uwew Gy we obtain p(fu) =
[W| = |Y| = p(a). Hence p(Bu) = p(a). By (iv) we have fuDa this means fuJa as D S
d,and hence a <; .

(vi) If p(a) = p(B), then by (iv) we have aDf that means aJf as D S J. Conversely,
suppose aJf, then « = yf38, f = pav, for u,v,y,6 € EndE,(S). Using Lemma 5.6 we have
p(a) = p(yBd) < p(yB) < p(B) and p(B) = p(pav) < p(ya) < p(a), so p(a) = p(B)
(vii) This is an immediate sequence of (iv) and (vi).

Conclusions

In this work, The extension for 7;, to J,, where A is an independent algebra has been
discussed and studied. By considering that A is to be F,(S), the g (s) is an endomorphism

monoid of a free left S-act of n-generators has been shown, as well as the Jg (s is embedded

in the wreath product S, 7, is shown. Many results are also given and we find the
description of Green’s relation for Ty, (s) . In the end of this paper, the semigroup Ty, (s) is
embedded in the wreath product S ¢, 7, is proved.
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