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Abstract 

     The goal of this paper is to study dynamic behavior of a sporadic model (prey-

predator). All fixed points of the model are found. We set the conditions that 

required to investigate the local stability of all fixed points. The model is extended 

to an optimal control model. The Pontryagin's maximum principle is used to achieve 

the optimal solutions. Finally, numerical simulations have been applied to confirm 

the theoretical results. 
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 للنموريكر  ةديناميكية و سياسة مثلى لنظام متقطع مع دال
 

صادق ناجي ناصر الناصر ،*غصون محمد حمودي  

 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.
 

 الخلاصة
تم يجاد نقاط  طع )الفريسة المفترسة(.هو دراسة السلوك الديناميكي لنموذج متقالبحث  الهدف من هذا     

تم . لقد ر المحلي لجميع النقاط الاتزانالاستقرا الاتزان للنموذج المقترح. كذلك تم وضع الشروط اللازمة لتحقيق
للحصول على الحل الامثل  عظمالأ بونترياجينستخدم مبدأ . حيث اىمثلالنموذج إلى مسألة سيطرة توسيع 
 عددية لتأكيد النتائج النظرية. اعطيت امثلة .للنظام

1. Introduction 

     In real world there is nothing surprising that organisms track spatial and environomental variation. 

In fact there are many studies to try understand the dynamics behavior of the population or to study the 

interrelation between species see [1,2]. The Lotka-Volterra model is the earliest ecological model. It is 

formed by using a set of differential equations to investigate the interaction between predator-prey 

species. The model is also used to describe a chemical reaction as well as to describe the animals. 

Many authors have been given a modification for the system using nonlinear difference equations or 

partial differential equations [3-5]. Some authors have been noted in their work that a chaotic 

population dynamic can be raised [6, 7] in  multispecies continuous time predator-prey models as well 

as in discrete time model [8]. Their works have been carried out examine large competitions models 

with many species [9-12]. A simple nonlinear difference equation             is to describe the 

growth of single population with discrete nonoverlapping generations. This model has been 

investigated of is known to possess complicated dynamics [13, 1]. For the two-dimensional model, 

system of first order difference equations widely used are used  
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Such systems are especially relevant to the study of arthropod predator-prey as well as host-parasitic 

interaction. This paper will give a modification of a discrete time predator prey model specified by 

Neubert et. al. [1]. Their model is defined as follows: 

                      
          

          
                                                                                                                 (1) 

     Where      represents the current prey-population, the Ricker function is used to describe the 

growth of the prey population, and      represents the current predator population with predator growth 

being directly proportional to the number of prey present. The parameter     is the growth rate of the 

prey which is also the consumption rate of the prey in to predator, and     is the conversion rate of 

predator. Our modified model is defined as follows: 

        
          

              
                                                                                                                             (2) 

     Here the parameter     represents the decay rate of  predator  in the absence of prey. This system 

has three fixed points.  

All fixed points of the system (2) can be determined by  solving  the following algebraic equations: 

              

        
 

After simple calculations we have the following lemma. 

Lemma 1:  The system (2) has three fixed points for all parameters values, namely               
These are: 

1)          is always exist. 

2)          is always exist. 

3)            (
   

 
     ) is exist if       . 

     We will discuss the local stability analysis of system (2) around each fixed point. So that  the 

general Jacobain matrix of the system (2) at point       that is given by: 

       [
                

                
] 

                                               

                      

            

               
Therefore   

       (
                           

      
) 

Thus the characteristic polynomial of the Jacobain matrix         of system (2) is   

                                                                                                           (3) 

Where             and            
     In order study stability analysis of the fixed point      of the system (2) we have the following 

theorem.  

Theorem 2: For the fixed point      we have: 

i-     is never to be sink. 

ii-     is source if     . 

iii-     is saddle point if       
iv-     is non-hyperbolic if      . 

Proof: 

The Jacobain matrix at     can be written as follows: 

    
 (

   
   

) 

     Then the eigenvalues of     
 are      and       , because of the      is always greater than 1 

so that    is never to be sink. It is clear that if       the      is source and if       the point      is 

saddle point. If        then         and the point      is non-hyperbolic point 

  

By the same way we can study the local stability of    , the Jacobain matrix at      is: 
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 [

      
         

] 

                     

                 

      

        
So that 

   
 (

     
    

) 

     The eigenvalues of  the Jacobain matrix     
 are          and        , the next theorem 

gives the local stability of the fixed point     

Theorem 3: For the fixed point     of  the system(2) we have the following 

1-    is sink if the following conditions are holds: 

i.         
ii.             
2-    is source if the following conditions are holds: 

i.         
ii.             
3-    is saddle point either           and               or           and              
4-    is non-hyperbolic  point if one of the following conditions are holds: 

i.     

ii.       

iii.       

Proof(1): Let  |  |     if and only if            if and only if       . 

Now  |  |     if and only if   |   |     if and only if            if and only if      
       so that      is sink point if            and               It is clear that the proof of 

(2) and proof (3) are coming from proof (1). 

Proof (4): if       then         and     is non-hyperbolic point. If         or         then  

       or        and     is non-hyperbolic point. 

  

For studying the local stability of the unique positive fixed point       the next lemma gives the 

stability criterions which are needed to the local stability of the unique positive fixed point    . This is 

found in [14] so that the proof is omitted. 

Lemma 4: Let                suppose that         , and       are the roots of    then:  

1- |  |    and |  |    if and only if           and      
2- |  |    and |  |    if and only if          and    . 

3- |  |    and |  |    (or |  |    and |  |   ),if and only if             
4-       and |  |     if and only if          and      . 

we will find the Jacobain matrix at    . This is given by: 

         
   
 

   
   
 

 (   
   

 
)     (

   

 
) 

      (
   

 
)  

 (  
   
 

   
   
 

)
   (

   

 
) 

     (  
   

 
)        

     (
   

 
)      

So that 

   
 [   (

   

 
)   (

   

 
)

      

] 

     The corresponding characteristic polynomial of     
 is                 where 

     (   (
   

 
)   )       [ 

   

 
       ] 
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     and           

  

 
 

   

 
 

   

 
 

The next theorem gives the dynamics behavior of the positive fixed point. 

Theorem 5: For the unique fixed point     we have: 

1.    is sink if                               where   

   
        √          

  
  and     

        √          

  
 

2.     is source if                     
3.    is saddle point if             [              ] 

4.    is non-hyperbolic if and only if       or        and    
  

 
    or    

  

 
   

Proof  

1-  We will apply lemma 4, so that                if and only if   

  
 

 
 

  

 
          

  

 
 

   

 
 

   

 
   if and only if 

     
 

 
 

   

 
 

   

 
    if and only if                  if and only if 

                   . The solution of this inequality for   gives         if and only if  

          . 
Now, we have to show that          and     

        
 

 
 

  

 
          

  

 
 

   

 
 

   

 
. Then          if and only if 

         
  

 
 

   

 
 

   

 
   if and only if                          if and only if  

                         . After solving this inequality for     we have           if 
and only if             

Now,      if and only if         
  

 
 

   

 
 

   

 
    if and only if       

  

 
 

   

 
 

   

 
    if and only if                 if and only if                   .  

The solution of this inequality for   gives       if and only if                    
By lemma 4 (1)     is sink if                              
2- From proof (1) we have        if and only if              and          if and only if  

         . Now we have to prove     . It is clear that     if and only if           .  
According to lemma 4 (2), we have that     is source if and only if                     
        . 
3- From proof (1) we have         if and only if            , and one can easily to get  

         if and only if                    so that ,  according to lemma 4 (3)     is saddle 

point if and only if             [              ]. 
4- By applying (4) in lemma 4 we have           if and only if   

       
  

 
 

   

 
 

   

 
   if and only if                          if and only if 

                         . So that          if and only if        or    

    Now       if and only if   
 

 
 

  

 
      if and only if    

  

 
    If       if and only if   

 

 
 

  

 
      if and only if    

  

 
  . Therefore     is non-hyperbolic point.. 

2. An optimal harvesting policy 
     This section concerns with an optimal harvesting problem. The aim of the problem is to maximize 

the amount of money that one can earn by selling the harvesting on the market, so that the system (2) 

can be extended, including  the harvesting, to the following system 
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     where            and   are defined as before. The  control variable is    since that         
   for            . For a given time   which represents the harvesting amount  and   is 

maximum removing amount. 

     Therefore objective functional will be given by the following   

      ∑                
 
 

   

   

 

     The term      is associated with the cost of supporting the fish,    
 
  is associated with the cost of 

catching the fish. The quadratic term of control is to penalize the amount of harvesting [15, 16]. While 

       represents the amount of money that one has to earn. The pontryagin’s maximum principle is 

used  to get the optimal harvesting  solution, so that the adjoints variables    and    are introduced as 

well as Hamiltonian function which defined by  

                  
 
        (   

          )                         

For          . According to the  pontryagin's maximum principle, the necessary conditions are  

     
  

   
       ( 

               
          )            

     
  

   
                   (     

          )                   

and               , and the optimality condition which is given by  
  

   
|
     

 
           

            , then the characterization of the optimal harvesting policy 

is  

 

  
  

{
  
 

  
                                                              

             

   
                                   

             

   
                             

             

   
                

                                                             
             

   

 

 

The optimal harvesting   
  at time   will be determined numerically by maximizing the Hamiltonian 

function at that  . 
3. Numerical results and discussions 

     To confirm the theoretical analysis of system (2) we use a different set of parameters values that 

shows the stability of the fixed point     as well as the unique positive fixed point    . For the fixed 

point    , we choose the values of parameters as follows                and       , with the 

initial condition (0.23, 0.6). Therefore the (i) in Theorem 3 is satisfied. Figure-1 shows that the fixed 

point     is locally stable. For the positive fixed point    we choose the following set of values, 

              and       , with these values the condition (i) in Theorem 5 is satisfied. Figure-2 

illustrates the local stability of     . Other set of values of parameters may be given.  For the optimal 

control problem we apply which is found in [2]. For that we choose the set of values of parameters as 

follows: 

                    and     , we get the total optimal harvesting         . In Figure-3 

the prey population is plotted according to the system (4). The dotted line shows the prey species 

without control while the solid line represents the prey species with control. Figure-4 shows the effect 

of the harvesting on the predator species according to the system (4). Figure-5 illustrates the optimal 

harvesting solution which is plotted as a function of time. 

     One can see that the optimal solution of this problem takes three phases; the first phase is a time of 

recovering the population from low levels. This phase depends on the initial values of population, then 

the removing at optimal rate and the final phase, the unrestricted harvesting sets in Table a comparison 

is given between the optimal harvesting result and other harvesting strategies by using the same values 

of parameters with the same condition.  
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Figure 1-This figure shows the local stability of the fixed point fixed point    

 

 
Figure 2-This figure shows the local stability of the unique positive fixed point     

 

 
Figure 3-This shows illustrates the prey density population with and without control 
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Figure 4- This shows illustrates the affect of  harvesting on the predator  population with and without 

harvesting 

 

 
Figure 5-The optimal harvesting is plotted as a function of time 

 

Table 1-The results of optimal harvesting with other strategies. All values of parameters are the same. 

The control variable Total net harvesting    

               

                

                 

                

                

4. Conclusions 

     A discrete time prey-predator model with Ricker function growth has been studied. The model has 

three fixed points. The trivial fixed point is always exist and the other fixed points are exist for some 
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values of parameters. The conditions for the local stability of all fixed points are discussed. An optimal 

harvesting policy is investigated to the model. The pontryagin's maximum principle is applied to 

determine the optimal strategy. Numerical analysis confirms and indicates the theoretical results. 
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