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Abstract

The goal of this paper is to study dynamic behavior of a sporadic model (prey-
predator). All fixed points of the model are found. We set the conditions that
required to investigate the local stability of all fixed points. The model is extended
to an optimal control model. The Pontryagin's maximum principle is used to achieve
the optimal solutions. Finally, numerical simulations have been applied to confirm
the theoretical results.
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1. Introduction
In real world there is nothing surprising that organisms track spatial and environomental variation.
In fact there are many studies to try understand the dynamics behavior of the population or to study the
interrelation between species see [1,2]. The Lotka-Volterra model is the earliest ecological model. It is
formed by using a set of differential equations to investigate the interaction between predator-prey
species. The model is also used to describe a chemical reaction as well as to describe the animals.
Many authors have been given a modification for the system using nonlinear difference equations or
partial differential equations [3-5]. Some authors have been noted in their work that a chaotic
population dynamic can be raised [6, 7] in multispecies continuous time predator-prey models as well
as in discrete time model [8]. Their works have been carried out examine large competitions models
with many species [9-12]. A simple nonlinear difference equation x;,; = f(x;) is to describe the
growth of single population with discrete nonoverlapping generations. This model has been
investigated of is known to possess complicated dynamics [13, 1]. For the two-dimensional model,
system of first order difference equations widely used are used
Xev1 = f (X, Yt)
Yerr = 9(Xe, Vi)
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Such systems are especially relevant to the study of arthropod predator-prey as well as host-parasitic
interaction. This paper will give a modification of a discrete time predator prey model specified by
Neubert et. al. [1]. Their model is defined as follows:
Xpy1 = xter(l—xt—%) O
Vt+1 = CXtYt
Where x; represents the current prey-population, the Ricker function is used to describe the
growth of the prey population, and y, represents the current predator population with predator growth
being directly proportional to the number of prey present. The parameter r is the growth rate of the
prey which is also the consumption rate of the prey in to predator, and ¢ is the conversion rate of
predator. Our modified model is defined as follows:
Xepq = xpe"(TT¥eV) @
Yer1 = bxeye — ay;
Here the parameter a represents the decay rate of predator in the absence of prey. This system
has three fixed points.

All fixed points of the system (2) can be determined by solving the following algebraic equations:
X = xer(l_x_y)
y = bxy —ay
After simple calculations we have the following lemma.
Lemma 1: The system (2) has three fixed points for all parameters values, namely E;, i = 0,1,2.
These are:
1) E, = (0,0) is always exist.
2) E; = (1,0) is always exist.
3) B = (x",y") = (5%, 1-x")isexistif 1+a<b.
We will discuss the local stability analysis of system (2) around each fixed point. So that the
general Jacobain matrix of the system (2) at point (x, y) that is given by:
J11(x,y) T2 y)
x,y) =
D=1, 063 T y)
jll(x' y) — er(l—x—y) _ rxer(l—x—y) — er(l—x—y)(l _ rx)
J12(x,y) = —rxe” 7%
J21(x,¥) = by
J22(x,y) =bx—a

Therefore
_ ("Y1 - rx) —rxer(l‘x‘”)
Jen=(" e
Thus the characteristic polynomial of the Jacobain matrix J(x, y) of system (2) is
FA)=2+4+pl+q (3)

Where p = —trac(J) and q = det(J)
In order study stability analysis of the fixed point E, of the system (2) we have the following
theorem.
Theorem 2: For the fixed point E, we have:
i- Ey is never to be sink.
ii- Ey issourceif a > 1.
iii-E, issaddle point if a < 1.
iv- Ey is non-hyperbolicif a = 1.
Proof:
The Jacobain matrix at E, can be written as follows:
(e 0
=04 ")

Then the eigenvalues of g are 4; = e"and A, = —a, because of the e” is always greater than 1
so that E, is never to be sink. It is clear that if a > 1 the E, issource and if a < 1 the point E; is
saddle point. If a =1 then A, = —1 and the point E, is non-hyperbolic point

]
By the same way we can study the local stability of E;, the Jacobain matrix at E; is:
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_ /i1 Ji2
Je, = [ J21 ]22]
Jiu=eTt DA -r)=1-7r

]12 = —rer(l_l) = —71
]21 =0

Joz=b—a

So that

1-r -—r
Je, = ( 0 b-— a)

The eigenvalues of the Jacobain matrix Jz are 1;, =1—7r and A, =b — a, the next theorem
gives the local stability of the fixed point E;
Theorem 3: For the fixed point E; of the system(2) we have the following
1- E; is sink if the following conditions are holds:
i. r€(0,2)
ii.be(a—11+a)
2- E, is source if the following conditions are holds:
i. r€(0,2)
ii.be(a—11+a)
3- E; is saddle point either r € (0,2) and b ¢ (a—1,a+1) or r€ (2,0) and b € (a— 1,1+ a)
4- E; is non-hyperbolic point if one of the following conditions are holds:

i. r=2
ii.b=1+a
iiLb=a-1

Proof(1): Let |A;| <1 ifandonlyif —1<1—-r <1 ifandonlyif 0 <r < 2.
Now |A,| <1 ifandonlyif |b—al<1 ifandonlyif —1<b—-a<1 ifandonlyif a—1<
b <1+a sothat E; issinkpointif r € (0,2) and b € (a — 1,1 + a). It is clear that the proof of
(2) and proof (3) are coming from proof (1).
Proof (4): if r = 2 then A; = —1 and E; is non-hyperbolic point. If b=1+a or b =a —1 then
A, =—=1 or 4, =1 and E; is non-hyperbolic point.

[ ]
For studying the local stability of the unique positive fixed point E, the next lemma gives the
stability criterions which are needed to the local stability of the unique positive fixed point E,. This is
found in [14] so that the proof is omitted.
Lemma 4: Let F(A) = A% + pA + q suppose that F(1) > 0, and A,, A, are the roots of F then:
1- |m| <1land|A,| < 1ifandonlyif F(—1) >0andgq < 1.
2- |[A| > 1and |r,| > 1ifandonly if F(—1) > 0andq > 1.
3- A >1and|A,| <1(or|iy| <1and]|A,|> 1)ifandonlyif F(—1) < 0.
4- ), = —1and|r,| # 1ifandonlyif F(—1) =0and P # 0,2.
we will find the Jacobain matrix at E,. This is given by:

_lta ) 1ta 1+a 1+a
Jiu=e 7D 1+b)<1—r > >=1—r( )

b
1 1
oo = = (L) ol (140
1+a
]21:b<1_ b ):b_l_a
1+a
]22=b< b )—a=1
So that

o5 )

b—1—-a 1
The corresponding characteristic polynomial of Jg, is F(1) = A2 +pA+q where

F(A)=(1—r(1+a)—,1)(1—,1)+[r1+a(b—1—a)]

b b
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2

_1_T_ra_/1_/1+r/1+raa+/12+ N _r_ra_ra_ra
T Tb T »* " ATy Ty T T D
F(A)—/12+(r+m 2)/1+ 147+ 2r _3ra_ra?

- b b e A

2r 3ra ra?

p——+——2 and g =1+r+ra———=———

The next theorem gives the dynamics behavior of the positive fixed point.
Theorem 5: For the unique fixed point E, we have:

1. Eyissinkif a€ (=1,b—1)n (b —2,0) N (ky,k;) Where

k1 (rb— 4r)—m and k _ _ (rb- 47)"‘\W

2r

2. E, is source |f a€ (ky,ky)n(=1,b—-1)

3. E, issaddle pointif a € (—1,b — 1) N [(—o0, k) U (ky, )]

4. E, is non-hyperbolicifand only if a =k, or a=k, and a # % —1ora=# 4T—b -1
Proof

1- We will apply lemma 4,sothat F(1) =1+ p +q > 0 ifand only if

2r 3ra ra?

1+- +——2+1+r+ra—7—7——>Olfandonlylf
r+ra—£—2:7a—7>0 ifand only if b+ ba — 1 — 2a —a? > 0 ifand only if
a? — (b — 2)a — (b — 1) < 0. The solution of this inequality for a gives F(1) > 0 if and only if
a€(—1,b-1).
Now, we have to show that F(—1) > 0andg <1
2

F(-1)=1-1-242+1+7+ra—2—Z2-T Then F(-1) > 0if and only if

2
4+7+ra—>—22-TC > 0ifand onlyif 4b +7b +rab—3r —4ra—ra® > 0 if and only if

ra? — (rb — 4r)a — (4b — 3r + rb) < 0. After solving this inequality for a we have F(—=1) > 0 if
and only if a € (kq, k).
2r 3ra

2
Now, ¢ <1 ifand only if 1+7+ra—2—22-" <1 ifand only if r+ra—2—22-

T%Z<O ifandonly if b+ba—2—-3a—a? <0ifandonlyif a> —(b—3)a—(b—2) > 0.

The solution of this inequality for a gives ¢ < 1 ifandonly if a € (—o0,—1) U (b — 2, )

By lemma4 (1) E,issinkif a€ (—=1,b—1) N (b —2,00) N (ky,k3)

2- From proof (1) we have F(1) > 0 ifand only if a € (—1,b —1) and F(—1) > 0 if and only if
a € (kq,k;). Now we have to prove g > 1. It is clear that ¢ > 1 if and only if a € (—1,b — 2).
According to lemma 4 (2), we have that E, is source if and only if a € (ky, k)N (=1,b—2) N
(-1,b—1).

3- From proof (1) we have F(1) > 0 if and only if a € (—1,b — 1), and one can easily to get
F(—1) <0 ifand only if a € (—o0,k;) U (k,,00) so that, according to lemma 4 (3) E, is saddle
pointifandonly if a € (—1,b — 1) N [(—o0, k) U (k,, )].

4- By applying (4) in lemma 4 we have F(-1)=0 if and only if
2
4+r+ra—%—“:7“—r7=oifandonlyif 4b+71b +rab — 3r — 4ra —ra? = 0 if and only if

ra’?— (rb—4r)a— (4b—3r+rb)=0. So that F(-1)=0 if and only if a=k; or a=
kp-Now p#0 ifandonlyif *+2—2=0 ifandonlyif a ¢%—1. If p#2 ifandonly if
S+ot—2=2 ifandonlyif a # % — 1. Therefore E, is non-hyperbolic point..

2. An optimal harvesting policy
This section concerns with an optimal harvesting problem. The aim of the problem is to maximize
the amount of money that one can earn by selling the harvesting on the market, so that the system (2)
can be extended, including the harvesting, to the following system
xt+1 = xter(l_xt_Yt)

Vi1 = bxeye — ay. — heyy
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where x;,y;,7,a, and b are defined as before. The control variable is h; sincethat 0 < h, <M <
1, for t =0,1,---,T — 1. For a given time T which represents the harvesting amount and M is
maximum removing amount.
Therefore objective functional will be given by the following
T-1
J(he) = Z crheye — cayr — c3h?,
t=0
The term c,y, is associated with the cost of supporting the fish, c3h?, is associated with the cost of
catching the fish. The quadratic term of control is to penalize the amount of harvesting [15, 16]. While
c1h:y; represents the amount of money that one has to earn. The pontryagin’s maximum principle is
used to get the optimal harvesting solution, so that the adjoints variables A, and A, are introduced as
well as Hamiltonian function which defined by
He = ciheye — c2¥e = C3h% ¢ + Aq g (e 7 Y0) 4 25 14 (bXeye — aye — heye)
For=0,1,2,.... According to the pontryagin's maximum principle, the necessary conditions are

0H
My = a_xt = /11,t+1(er(1_xt_yt) - Txter(l_xt_yt)) + A2t41bYe

0H

Aar = FI Cihe + c2ye + Apprr (—rxee™ @ YI) £ 2y 01 (bx — a — he)
t

and A, (T) = 1,(T) = 0, and the optimality condition which is given by

an = 1y — 2c3hy” — 25041y = 0, then the characterization of the optimal harvesting policy

dht ht‘:ht*
is
ci—A
0 if (c1 2,t+1)Vt <0
2c3
cl—A ci—A
hy = (c1 2,t+1)Vt if 0< (1 2,t+1)Vt <M
2c3 2c3
M if M< (c1 = A2,t41)Ye
\ - 2c3

The optimal harvesting h; at time t will be determined numerically by maximizing the Hamiltonian
function at that ¢.
3. Numerical results and discussions

To confirm the theoretical analysis of system (2) we use a different set of parameters values that
shows the stability of the fixed point E; as well as the unique positive fixed point E,. For the fixed
point E;, we choose the values of parameters as follows r =0.9,b = 0.75 and a = 0.1, with the
initial condition (0.23, 0.6). Therefore the (i) in Theorem 3 is satisfied. Figure-1 shows that the fixed
point E; is locally stable. For the positive fixed point E, we choose the following set of values,
r=0.7,b = 1.75 and a = 0.2, with these values the condition (i) in Theorem 5 is satisfied. Figure-2
illustrates the local stability of E,. Other set of values of parameters may be given. For the optimal
control problem we apply which is found in [2]. For that we choose the set of values of parameters as
follows:
r=0.7,b =1.75,a = 0.2 and T = 60, we get the total optimal harvesting ] = 0.7972. In Figure-3
the prey population is plotted according to the system (4). The dotted line shows the prey species
without control while the solid line represents the prey species with control. Figure-4 shows the effect
of the harvesting on the predator species according to the system (4). Figure-5 illustrates the optimal
harvesting solution which is plotted as a function of time.

One can see that the optimal solution of this problem takes three phases; the first phase is a time of
recovering the population from low levels. This phase depends on the initial values of population, then
the removing at optimal rate and the final phase, the unrestricted harvesting sets in Table a comparison
is given between the optimal harvesting result and other harvesting strategies by using the same values
of parameters with the same condition.
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Figure 1-This figure shows the local stability of the fixed point fixed point E;
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Figure 2-This figure shows the local stability of the unique positive fixed point E,

=0.7;a=0.2;b=1.75,c1=0.01,c2=0.1, c3=0.5; and (x0 y0)=({0.5,0.3)
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Figure 3-This shows illustrates the prey density population with and without control
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Figure 4- This shows illustrates the affect of harvesting on the predator population with and without

harvesting
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Figure 5-The optimal harvesting is plotted as a function of time

Table 1-The results of optimal harvesting with other strategies. All values of parameters are the same.

The control variable Total net harvesting(J)
hy = h* J =0.7972
hy =0.1 J =0.5225
h; = 0.15 J =0.7010
hy =0.2 J = 0.7645
h; =0.3 J = 0.5482

4. Conclusions

A discrete time prey-predator model with Ricker function growth has been studied. The model has
three fixed points. The trivial fixed point is always exist and the other fixed points are exist for some
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values of parameters. The conditions for the local stability of all fixed points are discussed. An optimal
harvesting policy is investigated to the model. The pontryagin's maximum principle is applied to
determine the optimal strategy. Numerical analysis confirms and indicates the theoretical results.
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