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Abstract 

     The aim of this paper is adopted to give an approximate solution for advection 

dispersion equation of time fractional order derivative by using the Chebyshev 

wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties 

are presented. This technique is used to convert the problem into the solution of 

linear algebraic equations. The fractional derivatives are described based on the 

Caputo sense. Illustrative examples are included to demonstrate the validity and 

applicability of the proposed technique. 
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 كاليركن –تشيبشيف  
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 الخلاصة
هو ايجاد حل تقريبي لمعادلة الانتقال والتشتت ذات رتبة  الزمن الكسرية   ان الهدف الرئيسي  لهذا البحث  

كاليركن.  تم عرض خصائص مويجات تشيبيشيف وطريقة كاليركن  –باستخدام طريقة مويجات تشيبيشيف 
برية خطية . المشتقات الكسرية هنا هي من نوع كابوتو. هذه التقنية تعتمد تحويل المسالة الى حل معادلات ج

 . تم اعتماد عدد من الامثمة التوضيحية لاثبات صحة وامكانية تطبيق التقنية المقترحة

 
1. Introduction  
     Fractional calculus is a generalization of classical calculus, which provides an excellent tool to 

describe memory and hereditary properties of various materials and processes. Fractional calculus has 

found diverse applications in different scientific and technological fields[1–5], such as thermal 

engineering, acoustics, electromagnetism, control, robotics, viscoelasticity, diffusion, edge detection, 

turbulence, signal processing, information sciences, communications, and many other physical 

processes and also in medical sciences. 

     Differential equations of fractional order are generalizations of ordinary differential equations to an 

arbitrary (non integer) order. They have attracted considerable interest because of their ability to 
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model complex phenomenas. These equations capture nonlocal relations in space and time with 

power-law memory kernels. Due to the extensive applications of differential equations of fractional 

order in engineering and science, research in this area has grown significantly all around the world [6]. 

Partial differential equations of fractional order, as generalizations of classical integer order partial 

differential equations, are increasingly used to model problems in fluid flow, finance, physical and 

biological processes and systems [7-15].  

     As a special type of partial differential equations of fractional order, fractional order advection-

dispersion equation have been applied to many problem. For example, as mention in [16-18], in 

practical physical applications, dispersion or diffusion problems such as mixing in inlandand coastal 

waters [19], transport of thermal energy in a plasma, flow of a chemically reacting fluid from a flat 

surface, evolution of populations [20], and groundwater hydrology to model the transport of passive 

tracers carried by fluid flow are modeled by the advection-dispersion equation of fractional order.  

There are several methods to solve the advection–dispersion equation such as variable transformation 

[21], the Green function [22], the implicit and explicit difference method [23–26], and the Adomian 

decomposition method [27].  

     In this paper, we consider the following advection dispersion equation of time fractional order of 

the form: 

  
        

   
 

        

    
       

  
                                                                                     (1) 

                         
subject to the initial condition as  following: 

                                                                                                                (2) 

and boundary conditions  

  {
                                       

                          
                                                                                   (3) 

  

     The organization of the rest of this article is as follows. In section 2 we introduce some necessary 

definitions of the fractional calculus theory, in section 3 the Chebyshev  wavelet function, as well as, 

its properties are introduced. While in section 4 we illustrate how Chebyshev wavelet function with 

Galerkin method may be used to replace problem (1)–(3) by an explicit system of linear algebraic 

equations. In section 5, we present some numerical examples to demonstrate the effectiveness of the 

proposed method, concluding remarks are given in the final section. 

2. Fractional Derivative and Integration  

     In this section, we shall review the basic definitions and properties of fractional integral and 

derivatives, which are used further in this paper [28]. 

 

Definition (1):- The Riemann-Liouville fractional integral operator of order        is defined as            

    

         
 

    
∫                              

 

 
                                                      (4) 

                                          

Definition (2):-The Riemann-Liouville fractional derivative operator of order          is defined as

  

    
      

 

      

  

   ∫            

 
                                                         (5) 

Where   is an integer and          
Definition (3):- The Caputo fractional derivative operator of order       is defined as 

                      
      

 

      
∫             

   

 

 
                                                         (6) 

Where   is an integer and          
The relation between Caputo fractional derivative and Riemann-Liouville: 

          
           ∑           

    
  

  

                                                                      (7) 

Where   is an integer and          
Also, for the Caputo fractional derivative we have 
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    { 

                                              ⌈ ⌉                                  
      

        
                                   ⌈ ⌉               ⌊ ⌋ 

                 (8)              

     We use the ceiling function ⌈ ⌉ to denote the smallest integer greater than or equal to  , and the 

floor function ⌊ ⌋ to denote the largest integer less than or equal to  . Also   {     } and     
{       }  
Recall that for        the Caputo differential operator concides with the usual identity differential 

operator of an integer order. Similar to the integer-order differentiation, the Caputo fractional 

differentiation is a linear operator; i.e. 

 

     
 (           )      

          
                                              

Where   and    are constants. 

3. Chebyshev Wavelets[29]: 

     Wavelets are family of functions constructed from dilation and translation of a single function 

called the mother wavelet. When the dilation parameter a and the translation parameter b vary 

continuously we have the following family of continuous wavelets as  

          | | 
 
  (

   

 
)                    

If we restrict the parameters a and b to discrete values as     
          

            , 

where   and   are positive integers, the family of discrete wavelets are defined as  

        |  |
 
  (  

      )       

where      form a wavelet basis for        For       and     , then         forms an 

orthonormal basis. 

 Chebyshev wavelets                    have four arguments:   can assume any positive 

integer,    is the degree of Chebyshev polynomials and   is the normalized time. They are defined on 

the interval       by  

          { 
 
 
 ̂                      

            

         
                                             

                                                        (9) 

Where 

 ̂     {

 

√ 
             

√
 

 
        

 and                  and                        

where       be the Chebyshev polynomials which are orthogonal with respect to the weighted 

function      
 

√    
  defined on the interval         , and satisfy the following recursive formula: 

                                                         
The Chebyshev wavelets         form an orthonormal basis for         with respect to weighted 

function                    , where    is the space of  square integrable function over      . 
A function      defined over         can be expanded in the terms of Chebyshev wavelets as 

       ∑ ∑           
 
   

 
                                                                                   (10) 

where     ⌌           ⌍  
, in which ⌌ ⌍ denotes the inner product. If the infinite series in (10) is 

truncated, then it can be written as 

       ∑ ∑                     
   

    

                                                                     (11) 

where   and      are           matrices given by 

                                          (    )    (    )      (    )     
 ..(12) 

                                               (    )    (    )      (    )     
 .(13) 

Taking the collocation points as follows: 

     
      

     
                 

Let we define the Chebyshev wavelet matrix      as: 

        * (
 

  
)   (

 

  
)      

    

  
 +                                                                (14) 
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An arbitrary function of two variables                defined over                    can 

expanded into Chebyshev wavelets basis as, 

       ∑ ∑ ∑ ∑      
   
   

     

   
   
   

     

                                                                                     (15) 

Let 

         ∑ ∑              
 ̂
   

 ̂
                                                                 (16) 

where   (   ) and     ⌌      ⌌            ⌍⌍  
   is unknown   ̂   ̂  matrix where  ̂  

         and  ̂          ,  the elements of the matrix   can be calculated from 

      ∫ ∫                      
 

 

 

 
             ̂             ̂   

  

3.1 Operational matrix of the fractional integration 

     The integration of the vector      defined in Eq.(13) can be approximated by Chebyshev series 

with Chebyshev coefficient matrix     as:  

  ∫           
 

 
                                                                                                 (17) 

where a  ̂   ̂ squre matrix     is called the Chebyshev wavelets operational matrix of integration. 

Because the Chebyshev wavelets are piecewise constant, it may be expanded into m – term Block 

Pulse Function (BPF) as: 

 

                                                                                                               (18) 

where 

                                      

 

With                      {
        

 

 
   

   

 

                      
                                                               (19) 

 

The function       are disjoint and orthogonal, that is: 

 

             {
                       
                    

   

 

Next, we shall derive the Chebyshev wavelets operational matrix of the fractional order integration by 

letting: 

 

                  
                                                                                         (20) 

 

where the matrix       
  is called the Chebyshev wavelets operational matrix of the fractional 

integration 

Kilicman and Al-Zhour in [30] have given the Block Pulse operational matrix of the fractional 

integration is 

 

                                                                                                                 (21) 

 

where  

     
 

   
 

      

(

 
 

          

         

        
 
 

 
 

 
             

 
 )

 
 

                                                              (22)   

 

With                              
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Now using (18) we have 

 

                                        
 

             
Then 

        
              

         

 

                  

 

So the Chebyshev wavelet operational matrix of the fractional integration       
  is given by 

 

        
            

                                                                                        (23) 

 

 

 

 

4.Function approximation 
 

Consider advection dispersion equation of time fractional order derivative of the form: 

 

  
        

    
        

    
       

  
                                                                               (24)                                         

                      
subject to the initial condition as  following: 

 

                                                                                                             (25)   

and boundary conditions  

  {
                                       

                          
                                                                                 (26) 

 

By applying the Riemann–Liouville fractional integration of order   with respect to t on both sides of 

Eq. (24) and using the initial condition in Eq. (25), we obtain: 

              (  
   

   )       (  
  

  
)                                                     (27) 

Now, we approximate 
        

    by the Chebyshev wavlet as: 

    
        

                                                                                                             (28)   

Where   [   ] ̂  ̂
 is an unknown matrix which should be computed and      is defined in Eq.(13). 

Now integrating two times Eq. (28) with respect to x, we get 

  
       

  
 

       

  
|
   

         
                                                                         (29) 

                 (
       

  
|
   

)       (   
 )

 
                                           (30) 

 

and by putting     in Eq. (30), and considering Eq.(26), we obtain 

  
       

  
|
   

                  (   
 )

 
                                                    (31) 

 

Let we expand       and       by the Chebyshev wavlets as follows: 

          
         and            

                                                                     (32) 

 

Where    and   are the Chebyshev vectors. 

By substituting Eq.(32) into Eq.(31), we obtain 
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|
   

 (  
    

       (   
 )

 
 )      ̃                                     (33) 

 

Now, by substituting Eq.(33) into Eq.(29) and Eq.(30), we have 

  
       

  
   ̃     

                                                                               (34) 

              *   
    ̃  (   

 )
 
 +                                             (35) 

 

Where X and E are the Chebyshev wavelets coefficient vectors for x and the unit function (or 

Heaviside function) respectively. 

Furthermore, we expand      and        by the Chebyshev wavelet as: 

                                                                                                  (36) 

 

Then by substituting Eqs.(28), (34)-(36) into Eq.(27), and using operational matrices of fractional 

integration of Chebyshev wavelets, we can write the residual function         for equation (24) as 

follows: 

                        
         

             
        

 

The expansion coefficients              ̂          ̂  are determined by Galerkin equations: 

 

  ⌌                 ⌍  
                                                                                       (37) 

Where ⌌ ⌍ denotes inner product defined as 

 

⌌                 ⌍  
 ∫ ∫                                  ̂          ̂

 

 

 

 
                  (38) 

Galerkin equations (37) give a system of equations that can be solved for the elements of        

       ̂          ̂  

4. Numerical Examples: 

     In this section, we will examine the accuracy and efficiency of the proposed method by the two 

following examples. 

Example 1[31]: Consider the following advection dispersion equation of time fractional order: 

 

  
        

    
        

     
       

  
                                                                             (39)                                         

                         
subject to the initial condition as  following: 

 

                                                                                                                (40)   

and boundary conditions  

  {
                                   
                      

                                                                                        (41) 

Where        
     

      
                          

     The exact solution of this problem is                   
We Apply the present method for solving  Eq. (39), the diagram of the comparison between the exact 

and approximate solution for  ̂   ̂                     , and       is presented in 

Figure-1 and the error for different values of alpha is presented in Figure-2 also the absolute errors 

when solving this problem are listed in Table- 1 for different values of   and   with various value of   

for  ̂   ̂                     . 
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Figure 1- The comparison between the exact and approximate solution for  ̂   ̂     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Plot the error for different values of alpha 

 

 

Table 1-The absolute errors for some different  values of   and     

(x,t)                          

(0.1,0.1) 5.2065e-006 7.0789e-006 8.1245e-006 7.3206e-006 

(0.2,0.2) 7.4259e-005 9.6464e-005 1.1836e-004 1.2244e-004 

(0.3,0.3) 3.5494e-004 4.4501e-004 5.4504e-004 5.8270e-004 

(0.4,0.4) 1.0498e-003 1.2808e-003 1.5450e-003 1.6619e-003 

(0.5,0.5) 2.3137e-003 2.7605e-003 3.2678e-003 3.5004e-003 

(0.6,0.6) 4.0896e-003 4.7865e-003 5.5550e-003 5.9000e-003 

(0.7,0.7) 5.9111e-003 6.8004e-003 7.7381e-003 8.1332e-003 

(0.8,0.8) 6.7225e-003 7.6181e-003 8.5068e-003 8.8416e-003 

(0.9,0.9) 5.0516e-003 5.6551e-003 6.2069e-003 6.3780e-003 

(1.0,1.0) 4.4541e-004 4.4541e-004 4.4784e-004 4.4834e-004 
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Example 2[32]: We consider the following non-homogeneous advection dispersion equation of time 

fractional order 

 

  
        

   
 

        

    
       

  
                                                                                   (42) 

                        

Where        
             

      
        *

 

    
 

  

    
+         *

  

    
 

   

    
+  

 

With initial condition 

                                                                                                      (43) 

and boundary conditions  

  {
                                   
                      

                                                                                        (44) 

The exact solution is                          
 

     We Apply the present method for solving  Eq. (42), The diagram of the comparision between the 

exact and approximate solution for  ̂   ̂                     , and       is 

presented in Figure-3. Also in Table- 2 we compares the Numerical result for the present methods that 

we have been obtained when       with result given in [32] for different values of   and     for 

 ̂   ̂                     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- The comparison between the exact and approximate solution for  ̂   ̂     and       

 

Table 2- The absolute errors for       and different values of            

(x,t) Exact solution 
Present method 

Numerical solution 

Method [32] 

Numerical solution 

(0.1,1.0) 0.1800000 0.17775401 0.17760929 

(0.2,1.0) 0.6400000 0.63545182 0.63439865 

(0.3,1.0) 1.2600000 1.25138745 1.25076281 

(0.4,1.0) 1.9200000 1.90954789 1.90718308 

(0.5,1.0) 2.5000000 2.48700110 2.48418437 

(0.6,1.0) 2.8800000 2.87001534 2.86234006 

(0.7,1.0) 2.9400000 2.92456444 2.92227732 

(0.8,1.0) 2.5600000 2.55014586 2.54468333 

(0.9,1.0) 1.6200000 1.61125478 1.61031324 

 

 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

xt

th
e
 n

u
m

e
ri
c
a
l 
s
o
lu

ti
o
n

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

xt

th
e
 E

x
a
c
t 

s
o
lu

ti
o
n



AL-Safi and Hummady                                     Iraqi Journal of Science, 2017, Vol. 58, No.3B, pp: 

4114 

6. Conclusions 

In this work, the Chebyshev wavelets –Galerkin methods was successfully extended to solve the 

advection dispersion equation of time fractional order. The obtained results revealed that the proposed 

method is accurate and efficient in comparison with the result of [31] and  [32]. The solution obtained 

by this method is in excellent agreement with the exact one. 
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