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Abstract  

A modified Leslie-Gower predator-prey model with fear effect and nonlinear 

harvesting is developed and investigated in this study. The predator is supposed to 

feed on the prey using Holling type-II functional response. The goal is to see how fear 

of predation and presence of harvesting affect the model's dynamics. The system's 

positivity and boundlessness are demonstrated. All conceivable equilibria's existence 

and stability requirements are established. All sorts of local bifurcation occurrence 

conditions are presented. Extensive numerical simulations of the proposed model are 

shown in form of Phase portraits and direction fields. That is to guarantee the 

correctness of the theoretical results of the dynamic behavior of the system and to 

confirm the existence of various forms of bifurcations. The fear rate is observed to 

have a stabilizing effect up to a threshold value, after which it leads to prey extinction. 

The harvesting coefficients, on the other hand, serve as control parameters that, when 

exceeded, trigger the system to extinction. 

 

Keywords: predator-prey, Modified Leslie-Gower, local stability, fear effect, 

nonlinear harvesting, bifurcation analysis.  

 

 تحت تأثير الحصاد غير الخطي وتأثير الخوف   الفريسة  -  رالمعدل للمفترس جاو  - لي ز لي  ديناميكية نموذج 
 

 ناجي كامل رائد ،*المؤمن علي محمد سعد 
 العراق  بغداد،  بغداد،   جامعة العلوم،  كلية  الرياضيات،  قسم

 الخلاصة 
جاور المعدل للمفترس والفريسة مع تأثير الخوف والحصاد غير الخطي في هذه    –نموذج ليزلي    نوقش و ر  طو  

لهولينج.   الثاني  النوع  الوظيفية من  الى الاستجابة  استنادا  الفريسة  على  المفترس  يتغذى  افترضنا أن  الدراسة. 
إيجابية النظام    ت اثبت  الخوف من الافتراس ووجود الحصاد على ديناميكيات النموذج.   تأثيرالهدف هو معرفة  

أنواع  شروط حدوث  جميع    قدمتكما  .  ة التوازن الممكننقاط  وضع جميع متطلبات وجود واستقرار  و   وعدم حدوده 
صحة النتائج النظرية للسلوك الديناميكي للنظام وتأكيد وجود أشكال مختلفة  التحقق من  التشعب المحلي. لضمان  

وحقول الاتجاه.    الطورشكل صور  ب  ت ومثلسعة النطاق للنموذج المقترح  محاكاة عددية وا   اجرينامن التشعبات  
لوحظ أن معدل الخوف له تأثير استقرار يصل إلى قيمة عتبة ، وبعد ذلك يؤدي إلى انقراض الفريسة. من ناحية  

 ، إلى انقراض النظام.حدا معين أخرى ، تعمل معاملات الحصاد كمعايير تحكم تؤدي، عند تجاوزها 
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1. Introduction 

One of the most popular subjects in biomathematics is population dynamics. The study of the 

evolution of diverse populations has always been of special interest, beginning with populations 

of a single species and progressing to more realistic models in which several species exist and 

interact in the same ecosystem. Models that explore competitive interactions, symbiosis, 

commensalism, or predator-prey dynamics are some of them. The predator-prey model has been 

extensively studied by mathematical and biological researchers since its introduction made by 

Alfred J. Lotka  in 1925 and Vito Volterra [1] in 1926. They described the interaction between 

two species combined with the predator-prey relationship, where they define the problem with 

a system of polynomial differential equations of degree two.  The importance of this problem 

lies in understanding the dynamics between two species (a predator and prey) that live together 

in the same environment and looking for suitable conditions that allow both species to survive 

in equilibria. 

Later, applications of these systems began to increase. New applications on population 

dynamics had been developed, and these systems have also been utilized to represent a variety 

of other natural phenomena.  

Besides the basic relationship given by the Lotka-Volterra model; many factors may affect 

species growth. So, this model was developed by many researchers taking into consideration 

various environmental factors that affect the existence and stability of this system, such as prey 

refuge [2-4], disease [5, 6], delay [7], harvesting [7-9], Allee effect [4, 10, 11], age structure 

[12], sex structure and sexual favoritism [13], seasonal variation [14], and many other factors. 

The functional response is an essential part of the predator-prey model, which describes the 

change in prey number killed per individual predator per unit of time as a consequence of 

changes in prey density. The most commonly used functional response in the existing literature 

is a function of prey's density only (Holling I-III) [2, 4, 15, 16],  in which interfering among 

predators is not utilized whereas this will be common when predators contest for food. To 

address this important factor, functional responses (ratio-dependent [17], Beddington-

DeAngelis [18], and Crowley-Martin [7] have been developed which do not rely just on the 

density of the prey but rather on the density of both prey and predator. 

While many predator-prey models considered a logistic growth of predators, Leslie and Gower 

[19] assumed that the predator grows logistically, where its carrying capacity is proportional to 

the density of prey ℎ𝑦 (1 −
𝑦

𝛼𝑥
) where 𝑥 and 𝑦 are the populations of prey and predator 

respectively. The term 
𝑦

𝛼𝑥
 is called Leslie-Gower term. 

On the other hand, predators can devour other populations when food is scarce, but their growth 

will be limited since their primary prey is scarce. To consider this issue, Aziz-Alaoui and Okiye 

[20] suggested a modified Leslie–Gower model by introducing a constant 𝑏 in the denominator 

of Leslie-Gower term that measures environmental protection for the predator 
𝑦

𝑏+𝛼𝑥
 to avoid 

singularities when 𝑥 = 0. Since then, many researchers have examined the modified Leslie–

Gower models with a variety of functional responses [2, 21-23], harvesting [7, 22] Allee effect 

[24], etc. 

Moreover, from a financial income point of view, it is significant to consider the harvesting of 

species in predator-prey models. In the literature, several types of harvesting strategies have 

been utilized. Some of them used constant harvesting, ℎ(𝑥) = ℎ [25], proportional harvesting 

ℎ(𝑥) = 𝐸𝑥 [26] where 𝑥 is the population that presents the harvesting (prey or predator), age-

selective harvesting [27], while others considered nonlinear harvesting [7]. Nonlinear 

harvesting is more relevant than other approaches from both a financial and biological point of 

view [23, 28]. Many researchers consider Holling type II harvesting ℎ(𝑥) =
𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
. For 
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example, Gupta et al worked with a model with Holling type II harvesting in prey [23] and 

Holling type II harvesting in predator in [29]. 

Another factor to consider is that in some environments, prey may be afraid of predators and 

respond appropriately, making predator hunting more difficult [30]. Due to fear of predation 

risk, the prey population can change its feeding area to a safer place and sacrifice their highest 

intake rate areas, increase their vigilance, regulate their strategies for reproduction, etc. In recent 

years, many experts began to study the predator-prey model with fear effect; see [3, 6] 

The dynamics and bifurcations of a modified Leslie-Gower predator-prey model with Holling-

II functional response and nonlinear harvesting in both the prey and predator communities are 

investigated in this paper, as well as the influence of the fear factor. 

2. Mathematical Model Formulation 

The study considers a predator-prey problem, with 𝑁(𝑇) and 𝑃(𝑇), respectively, representing 

prey and predator population densities at time T. Resource-consumer, plant-herbivore, parasite-

host, tumor cells (virus)-immune system, susceptible-infectious interactions, and so on are 

examples. 

In the proposed model, prey population 𝑁(𝑇) is considered logistically growing in absence of 

predator 𝑃(𝑇) with a birth rate 𝑟1 and level of fear induced by predator population 𝐾 such that: 
𝑑𝑁

𝑑𝑇
=

𝑟1𝑁

1+𝐾𝑃
− 𝑑𝑁 − 𝑎1𝑁

2.              (1) 

The morality density is represented by the term 𝑑𝑁, where 𝑑 is the natural death rate of prey. 

Also, the term 𝑎1𝑁
2 is added to consider competition between prey community members, 

where 𝑎1 is the intraspecific competition.  

Moreover, the interaction between prey and predator is assumed to follow Holling-II functional 

response. According to these considerations, the change in the density of prey takes the 

following form in the presence of the predator:  
𝑑𝑁

𝑑𝑇
=

𝑟1𝑁

1+𝐾𝑃
− 𝑑𝑁 − 𝑎1𝑁

2 −
𝑏𝑚𝑁𝑃

𝑐1+𝑚𝑁
,             (2) 

where 𝑏 represents the maximum attack rate, 𝑐1 represents the half-saturation constant of 

predation and the parameter 𝑚 ∈ (0,1) represents the availability constant rate of prey for 

predation due to the assumption of the existence of a (1 − 𝑚) constant rate of prey's refuge in 

the environment. 

The density of predator population is assumed to follow the modified Leslie–Gower predation 

as follows: 
𝑑𝑃

𝑑𝑇
= 𝑟2𝑃 [1 −

𝑎2𝑃

𝑐2+𝑚𝑁
]               (3) 

where the parameter 𝑟2 represents the intrinsic growth rates of the predator, 𝑎2 is the maximum 

value which per capita reduction rate of 𝑃 can attend, and 𝑐2 is the carrying capacity of the 

predator in the absence of the prey. 

In the proposed model, prey and predator are assumed to follow nonlinear harvesting with the 

harvesting function of Holling-II. The harvesting of prey is presented by the term 
𝑞1𝐸𝑚𝑁

𝑝1𝐸+𝑝2𝑚𝑁
, 

while that of predator is represented by the term 
𝑞2𝐸𝑃

𝑝3𝐸+𝑝4𝑃
, where  𝑞𝑖 , (𝑖 = 1,2) are the 

catchability coefficient of prey and predator respectively, 𝐸  is the effort made to harvest 

individuals and 𝑝𝑖 , (𝑖 = 1,2,3,4): suitable constants. It's worth noting that the effort represented 

by 𝐸 in both equations is considered to be the same for both species, making this model more 

appropriate for aquatic environments. 

Combining all the above assumptions give the following set of dynamical differential 

equations: 
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𝑑𝑁

𝑑𝑇
=

𝑟1𝑁

1 + 𝐾𝑃
− 𝑑𝑁 − 𝑎1𝑁

2 −
𝑏𝑚𝑁𝑃

𝑐1 + 𝑚𝑁
−

𝑞1𝐸𝑚𝑁

𝑝1𝐸 + 𝑝2𝑚𝑁
 , 

𝑑𝑃

𝑑𝑇
= 𝑟2𝑃 [1 −

𝑎2𝑃

𝑐2 + 𝑚𝑁
] −

𝑞2𝐸𝑃

𝑝3𝐸 + 𝑝4𝑃
 , 

(4) 

where all of the parameters are assumed to be positive and described as above. 

Note that, using the scaling variables 𝑟1𝑇 = 𝑡, 𝑥 =
𝑎1

𝑟1
𝑁, and 𝑦 =

𝑏𝑎1

𝑟1
2 𝑃 in the system (4) reduces 

the number of parameters from 17 to 12 parameters and the system (4) takes the following 

dimensionless form: 
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1 + 𝑘1𝑦
− 𝑘2 − 𝑥 −

𝑚𝑦

𝑘3 + 𝑚𝑥
−

𝑘4𝐸𝑚

𝑘5𝐸 + 𝑚𝑥
] ≔ 𝑥𝑓1(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
= 𝑦 [𝑘6 (1 −

𝑘7𝑦

𝑘8 + 𝑚𝑥
) −

𝑘9𝐸

𝑘10𝐸 + 𝑦
] := 𝑦𝑓2(𝑥, 𝑦), 

with the initial conditions: 

𝑥(0) = 𝑥0 ≥ 0,  𝑦(0) = 𝑦0 ≥ 0,             (6) 

and the dimensionless parameters are given by: 

𝑘1 =
𝐾𝑟1

2

𝑏𝑎1
,  𝑘2 =

𝑑

𝑟1
,  𝑘3 =

𝑎1𝑐1

𝑟1
,  𝑘4 =

𝑎1𝑞1

𝑟1
2𝑝2

,  𝑘5 =
𝑝1𝑎1

𝑝2𝑟1
, 

𝑘6 =
𝑟2

𝑟1
,  𝑘7 =

𝑎2𝑟1

𝑏
,  𝑘8 =

𝑎1𝑐2

𝑟1
,  𝑘9 =

𝑏𝑎1𝑞2

𝑝
4𝑟1

3
,  𝑘10 =

𝑏𝑎1𝑝3

𝑝4𝑟1
2  . 

Note that, since the right-hand side of the interaction functions of the system (5) are continuous 

and have continuous partial derivatives, then system (5) has a unique solution that belongs to 

the positive quadrant ℝ+
2 . 

3. Positivity and Boundedness 

Theorem (1) and theorem (2) below prove that the model formulation is ecologically relevant 

by showing that solutions of system (5) together with the initial condition (6) are positive and 

uniformly bounded. 

Theorem 1: All solutions of system (5) with initial conditions (6) remain positive forever. 

Proof: The proof is direct and hence it is omitted. 

Theorem 2: All the solutions of system (5) with initial conditions (6) are uniformly bounded. 

Proof: From the system (5), 
𝑑𝑥

𝑑𝑡
≤

𝑥

1 + 𝑘1𝑦
− 𝑘2𝑥 − 𝑥2 

     ≤ 𝑥 − 𝑘2𝑥 − 𝑥2 

     =𝑥[(1 − 𝑘2) − 𝑥], 
and this shows that the solution of the system 𝑥(𝑡) ≤ 1 − 𝑘2 ≔ 𝑀1 as 𝑡 → ∞, by lemma 2 in 

[1]. Clearly, due to the survival condition of the prey in the absence of a predator, we have 

always that 1 − 𝑘2 > 0.  

Now substituting the maximum value 𝑀1 in the second equation of system (5) gives that: 

 
𝑑𝑦

𝑑𝑡
≤ 𝑘6𝑦 (1 −

𝑘7𝑦

𝑘8+𝑚𝑀1
). 

Then, by solving the above differential inequality, it is observed that: 

 𝑦(𝑡) ≤
𝑘8+𝑚𝑀1

𝑘7
≔ 𝑀2 as 𝑡 → ∞. 

which proves the boundedness of all the solutions.   □                                                                          

4. Existence and the Stability of Equilibria 

The presence of equilibrium points of the dimensionless system, as well as a qualitative analysis 

of their stability, are investigated in this section. 

The number of equilibrium points of system (5) depends on the parameter values. For example, 

Figure 1 shows that for the set of parameter values given in Table 1, the system has one trivial, 

one predator-free, one prey-free, and one interior equilibrium point. While, for set of parameter 

(5) 
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values given in Table 2, the system has one trivial, one predator-free, two prey free and two 

interior equilibrium points. 

  
(a) (b) 

Figure 1- The number of equilibrium points of the system (5) (a) there are 4  

equilibrium points for set #1 of parameter values given in Table 1  (b) there are 6  

equilibrium points for set #2 of parameter values given in Table 2. 
 

4.1 Trivial Equilibrium Point  

It is clear that the trivial equilibrium point 𝐸0(0,0) at the origin is always exists. 

4.2 Predator Free Equilibrium Points  

The boundary equilibria on 𝑥 −axis are calculated by solving the following quadratic equation: 

𝐸(𝑘4𝑚 + 𝑘5(𝑘2 − 1)) + (𝐸𝑘5 + 𝑚(𝑘2 − 1))𝑥 + 𝑚𝑥2 = 0.                (7) 

The roots of Eq. (7) depend on the parameters 𝑘2, 𝑘4, 𝑘5, 𝑚 and 𝐸, so according to Descartes's 

rule there are the following cases: 

Case 1. There is no equilibrium point with 𝑘2 ≥ 1, since the prey survives if the natural 

mortality rate is lower than the birth rate. 

Case 2. When 𝑘2 < 1 

a. If  both 𝑘4𝑚 > 𝑘5(1 − 𝑘2) and 𝐸𝑘5 + 𝑚(𝑘2 − 1) > 0, then there is no equilibrium 

point. 

b. If  𝑘4𝑚 > 𝑘5(1 − 𝑘2) and 𝐸𝑘5 + 𝑚(𝑘2 − 1) < 0, then either there is no equilibrium 

point or there are two equilibrium points 𝐸1(𝑥1, 0) and 𝐸2(𝑥2, 0) where 𝑥1 and 𝑥2 are the 

positive roots of Eq. (7) with 𝑥1 < 𝑥2 and are given by 

𝑥1 =
−(𝐸𝑘5+𝑚(𝑘2−1))−√(𝐸𝑘5+𝑚(𝑘2−1))

2
−4𝐸𝑚(𝑘4𝑚+𝑘5(𝑘2−1))

2𝑚
. 

 

𝑥2 =
−(𝐸𝑘5+𝑚(𝑘2−1))+√(𝐸𝑘5+𝑚(𝑘2−1))

2
−4𝐸𝑚(𝑘4𝑚+𝑘5(𝑘2−1))

2𝑚
. 

c. If  𝑘4𝑚 + 𝑘5(𝑘2 − 1) < 0, then only 𝐸2(𝑥2, 0) exits.   

4.3 Prey Free Equilibrium Points  

The boundary equilibria on 𝑦 −axis are calculated by solving the following quadratic equation: 

𝐸𝑘8(𝑘9 − 𝑘6𝑘10) + 𝑘6(𝐸𝑘7𝑘10 − 𝑘8)𝑦 + 𝑘6𝑘7𝑦
2 = 0.                     (8) 

The roots of Eq. (8) depend on the parameters 𝑘6, 𝑘7, 𝑘8, 𝑘9, 𝑘10 and 𝐸, so according to 

Descartes's rule there are the following cases: 
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Case 1. If both 𝑘9 > 𝑘6𝑘10 and 𝐸𝑘7𝑘10 > 𝑘8 there is no equilibrium point. 

Case 2. If both 𝑘9 > 𝑘6𝑘10 and 𝐸𝑘7𝑘10 < 𝑘8, then either there is no equilibrium point or there 

are two equilibrium points 𝐸3(0, 𝑦3) and 𝐸4(0, 𝑦4) where 𝑦3 and 𝑦4 are the positive roots of 

Eq. (8) with 𝑦3 < 𝑦4 and are given by 

𝑦3 =
𝑘6(𝑘8−𝐸𝑘7𝑘10)−√𝑘6

2(𝐸𝑘7𝑘10−𝑘8)2−4𝐸𝑘6𝑘7𝑘8(𝑘9−𝑘6𝑘10)

2𝑘6𝑘7
. 

 

𝑦4 =
𝑘6(𝑘8−𝐸𝑘7𝑘10)+√𝑘6

2(𝐸𝑘7𝑘10−𝑘8)2−4𝐸𝑘6𝑘7𝑘8(𝑘9−𝑘6𝑘10)

2𝑘6𝑘7
. 

Case 3. If  𝑘9 < 𝑘6𝑘10, then only 𝐸4(0, 𝑦4) exits.   

4.4 Interior Equilibrium Points  

The positive interior points are found by solving system (5) for 𝑥 > 0 and 𝑦 > 0. It is obtained 

that: 

𝑥∗ =
(𝐴1−𝐴2)+(𝐵1−𝐵2)𝑦∗+𝐶𝑦∗2

(𝐷1−𝐷2)+𝐹𝑦∗
 ,                           (9) 

where 𝐴1 = 𝐸𝑘8𝑘9, 𝐴2 = 𝐸𝑘6𝑘8𝑘10, 𝐵1 = 𝐸𝑘6𝑘7𝑘10, 𝐵2 = 𝑘6𝑘8, 𝐶 = 𝑘6𝑘7, 𝐷1 = 𝐸𝑚𝑘6𝑘10, 

𝐷2 = 𝐸𝑚𝑘9 and 𝐹 = 𝑚𝑘6. It is clear that each one of them has a positive value. However, 𝑦∗ 

is the positive root of the polynomial (10) below: 

𝛼0 + 𝛼1𝑦
∗ + 𝛼2𝑦

∗2 + 𝛼3𝑦
∗3 + 𝛼4𝑦

∗4 + 𝛼5𝑦
∗5 + 𝛼6𝑦

∗6 + 𝛼7𝑦
∗7 = 0,          (10) 

where the polynomial coefficients 𝛼𝑖; 𝑖 = 0,1, … ,7 are depending on the system parameters 

with 𝛼7 = −𝐶3𝑚2𝑘1 is negative, while all other coefficients of Eq. (10) could be positive or 

negative. Therefore, if 𝛼0 > 0 then there exists at least one positive equilibrium point 

𝐸∗(𝑥∗, 𝑦∗).   
5. Stability Analysis of Equilibria 

In this section, the nonlinear system (5) is linearized around each equilibrium point using the 

Jacobian matrix to investigate the local stability of various equilibrium points. 

The Jacobian matrix of system (5) about an arbitrary point (𝑥, 𝑦) is determined by: 

𝐽(𝑥, 𝑦) = [
𝑥

𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦

𝑦
𝜕𝑓2

𝜕𝑥
𝑦

𝜕𝑓2

𝜕𝑦
+ 𝑓2

], (11) 

where 
𝜕𝑓1

𝜕𝑥
=

𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥)2
+

𝑚2𝑦

(𝑘3+𝑚𝑥)2
− 1, 

𝜕𝑓1

𝜕𝑦
= − (

𝑚

𝑘3+𝑚𝑥
+

𝑘1

(1+𝑘1𝑦)2
), 

𝜕𝑓2

𝜕𝑥
=

𝑘6𝑘7𝑚𝑦

(𝑘8+𝑚𝑥)2
, 

𝜕𝑓2

𝜕𝑦
=

𝐸𝑘9

(𝐸𝑘10+𝑦)2
−

𝑘6𝑘7

𝑘8+𝑚𝑥
. 

Recall that, if all eigenvalues of the Jacobian matrix at an equilibrium point have negative real 

parts then this point is locally asymptotically stable. Accordingly, the following theorems 

present the local stability conditions for each of the above equilibria. 

Theorem 3: The trivial equilibrium point 𝐸0 is: 

i.Local asymptotically  stable node if 𝑘5(1 − 𝑘2) < 𝑘4𝑚 and 𝑘6𝑘10 < 𝑘9. 

ii.Saddle point if either 𝑘5(1 − 𝑘2) < 𝑘4𝑚 and 𝑘6𝑘10 > 𝑘9 or 𝑘5(1 − 𝑘2) > 𝑘4𝑚 and 

𝑘6𝑘10 < 𝑘9. 

iii.Unstable node if 𝑘5(1 − 𝑘2) > 𝑘4𝑚 and 𝑘6𝑘10 > 𝑘9. 

Proof: Depending on the general Jacobian matrix that given by (11), the Jacobian matrix at 

𝐸0(0,0) is given by: 
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𝐽(0,0) = [
1 − 𝑘2 −

𝑘4𝑚

𝑘5
0

0 𝑘6 −
𝑘9

𝑘10

]. 

The eigenvalues of 𝐽(0,0) are 𝜆1 =
𝑘5(1−k2)−𝑘4𝑚

𝑘5
, and 𝜆2 =

𝑘6𝑘10−𝑘9

𝑘10
. So, if (i) holds the two 

eigenvalues are negative, and then 𝐸0 is local asymptotically stable. If the condition in (ii) holds, 

then 𝜆1 and 𝜆2 have opposite signs, hence 𝐸0 is saddle-node. Finally, if the condition in (iii) 

holds, then both eigenvalues are positive, hence the point 𝐸0 is unstable node.    □   

Theorem 4: If any of the predator-free equilibrium points 𝐸𝑖(𝑥𝑖, 0), (𝑖 = 1,2) exists, then it is: 

i.Local asymptotically stable node if 𝐸𝑘4𝑚
2 < (𝐸𝑘5 + 𝑚𝑥𝑖)

2 and 𝑘6𝑘10 < 𝑘9. 

ii.Saddle point if either 𝐸𝑘4𝑚
2 < (𝐸𝑘5 + 𝑚𝑥𝑖)

2 and 𝑘6𝑘10 > 𝑘9 or 𝐸𝑘4𝑚
2 > (𝐸𝑘5 +

𝑚𝑥𝑖)
2 and 𝑘6𝑘10 < 𝑘9. 

iii.Unstable node if 𝐸𝑘4𝑚
2 > (𝐸𝑘5 + 𝑚𝑥𝑖)

2 and 𝑘6𝑘10 > 𝑘9. 

Proof: At 𝐸𝑖(𝑥𝑖, 0), (𝑖 = 1,2), the Jacobian matrix can be written as 

𝐽(𝑥𝑖, 0) = [
𝑥𝑖 (

𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥𝑖)
2
− 1) −𝑥𝑖 (𝑘1 +

𝑚

𝑘3+𝑚𝑥𝑖
)

0 𝑘6 −
𝑘9

𝑘10

],     

Therefore, the eigenvalues of 𝐽(𝑥𝑖, 0), (𝑖 = 1,2) are given by: 

𝜆1 =
(𝐸𝑘4𝑚2−(𝐸𝑘5+𝑚𝑥𝑖)

2)𝑥𝑖

(𝐸𝑘5+𝑚𝑥𝑖)
2  and 𝜆2 =

𝑘6𝑘10−𝑘9

𝑘10
 

Hence, if the condition (i) holds, the two eigenvalues are negative and 𝐸𝑖, (𝑖 = 1,2) is local 

asymptotically stable. If the condition (ii) holds, then 𝜆1 and 𝜆2 have opposite signs, hence 

𝐸𝑖, (𝑖 = 1,2) is saddle-node. Finally, if condition (iii) holds, then both eigenvalues are positive, 

hence the point is an unstable node.   □   

Theorem 5: If any of the prey free equilibrium points 𝐸𝑖(0, 𝑦𝑖), (𝑖 = 3,4) exists, then it is: 

i.Local asymptotically  stable node if 𝑘3𝑘5 < 𝑅1 and 𝐸𝑘8𝑘9 < 𝑅2. 

ii.Saddle point if either  𝑘3𝑘5 < 𝑅1 and 𝐸𝑘8𝑘9 > 𝑅2 or  𝑘3𝑘5 > 𝑅1 and 𝐸𝑘8𝑘9 < 𝑅2. 

iii.Unstable node if  𝑘3𝑘5 > 𝑅1 and 𝐸𝑘8𝑘9 > 𝑅2. 

where 𝑅1 = (𝑘2𝑘3𝑘5 + 𝑚(𝑘3𝑘4 + 𝑘5𝑦𝑖))(1 + 𝑘1𝑦𝑖),𝑅2 = 𝑘6𝑘7(𝐸𝑘1 + 𝑦𝑖)
2. 

Proof: At 𝐸𝑖(0, 𝑦𝑖), (𝑖 = 3,4), the Jacobian matrix is given by  

𝐽(0, 𝑦𝑖) =

[
 
 
 
 

1

1 + 𝑘1𝑦𝑖
− 𝑘2 −

𝑘4𝑚

𝑘5
−

𝑚𝑦𝑖

𝑘3
0

𝑘6𝑘7𝑚𝑦𝑖
2

𝑘8
2 𝑦𝑖 (

𝐸𝑘9

(𝐸𝑘10 + 𝑦𝑖)2
−

𝑘6𝑘7

𝑘8
)
]
 
 
 
 

 

Clearly, the eigenvalues of 𝐽(0, 𝑦𝑖), (𝑖 = 3,4) are: 

𝜆1 =
𝑘3𝑘5−(𝑘2𝑘3𝑘5+𝑚(𝑘3𝑘4+𝑘5𝑦𝑖))(1+𝑘1𝑦𝑖)

𝑘3𝑘5(1+𝑘1𝑦𝑖)
 and 𝜆2 =

(𝐸𝑘8𝑘9−𝑘6𝑘7(𝐸𝑘10+𝑦𝑖)
2)𝑦𝑖

𝑘8(𝐸𝑘10+𝑦𝑖)
2   

Hence, if the condition (i) holds, the two eigenvalues are negative and 𝐸𝑖(0, 𝑦𝑖), (𝑖 = 3,4) is 

local asymptotically stable. If the condition (ii) holds, then 𝜆1 and 𝜆2 have opposite signs, hence 

𝐸𝑖(0, 𝑦𝑖), (𝑖 = 3,4) is saddle-node. Finally, if condition (iii) holds, then both eigenvalues are 

positive, hence the point is an unstable node.    □   

Theorem 6: If any interior equilibrium point 𝐸∗(𝑥∗, 𝑦∗) exists, then this point is: 

i.Saddle point if 
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
− 1 and 

𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
–

𝑘6𝑘7

𝑘8+𝑚𝑥∗ have opposite signs, and 

𝑗11𝑗22 < 𝑗12𝑗21. 

ii.Unstable node if 
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
− 1  and  

𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
–

𝑘6𝑘7

𝑘8+𝑚𝑥∗ have the same signs 

and 𝑇(𝐽∗) > 0. 
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iii.Stable node if 
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
− 1  and  

𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
–

𝑘6𝑘7

𝑘8+𝑚𝑥∗ have the same signs and 

𝑇(𝐽∗) < 0. 

where 𝑇(𝐽∗) is trace of the Jacobian matrix at this point 𝐸∗(x∗, y∗). 
Proof: At 𝐸∗(𝑥∗, 𝑦∗), the Jacobian matrix is given by: 

𝐽(𝑥∗, 𝑦∗) = [
𝑥∗ (

𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
− 1) −𝑥∗ (

𝑘1

(1+𝑘1𝑦∗)2
+

𝑚

𝑘3+𝑚𝑥∗)

𝑘6𝑘7𝑚𝑦∗2

(𝑘8+𝑚𝑥∗)2
𝑦∗ (

𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
−

𝑘6𝑘7

𝑘8+𝑚𝑥∗)
] = [𝑗𝑖𝑗]. 

If the condition (i) holds, then 𝑗11𝑗22 < 0 and it is clear that 𝑗12𝑗21 < 0 ⇒ |𝐽(𝑥∗, 𝑦∗)| < 0 ⇒ 𝐸∗ 

is a saddle point. If the condition (ii) holds, then 𝑗11𝑗22 > 0  ⇒ |𝐽(𝑥∗, 𝑦∗)| > 0 ⇒ 𝐸∗is unstable 

node when 𝑇(𝐽∗) > 0. Similarly, 𝐸∗ is stable node when 𝑇(𝐽∗) < 0.    □ 

6. Bifurcation Analysis 

This section is dedicated to study some potential bifurcation scenarios at the stable equilibrium 

points of the system (5) when the parameter values are varied. 

System (5) can be rewritten in the following vector forms to simplify the notations: 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), with 𝑋 = [

𝑥
𝑦], and 𝐹 = [

𝑥𝑓1(𝑥, 𝑦)

𝑦𝑓2(𝑥, 𝑦)
]. 

Then the second derivate of 𝐹 with respect to 𝑋 can be expressed as: 

𝐷2𝐹(𝑋)(𝑉, 𝑉) =                                                                                                                   

[

2𝑘1
2𝑣2

2𝑥

(1+𝑘1𝑦)3
−

2𝑘3𝑚𝑣1𝑣2

(𝑘3+𝑚𝑥)2
−

2𝑘1𝑣1𝑣2

(1+𝑘1𝑦)2
+ 2𝑣1

2 (𝑚2 (
𝐸2𝑘4𝑘5

(𝐸𝑘5+𝑚𝑥)3
+

𝑘3𝑦

(𝑘3+𝑚𝑥)3
) − 1)

2𝐸2𝑘10𝑘9𝑣2
2

(𝐸𝑘10+𝑦)3
−

2𝑘6𝑘7(𝑘8𝑣2+𝑚𝑣2𝑥−𝑚𝑣1𝑦)2

(𝑘8+𝑚𝑥)3

] ,
      (12a) 

where 𝑉 = (𝑣1, 𝑣2)
𝑇 is a general vector. Furthermore, we have  

𝐷3𝐹(𝑋)(𝑉, 𝑉, 𝑉) =                                                                                                          

[
6 (

𝑘3
2𝑚2𝑣1

2𝑣2

(𝑘3+𝑚𝑥)4
−

𝐸2𝑘4𝑘5𝑚3𝑣1
3

(𝐸𝑘5+𝑚𝑥)4
+

𝑘3𝑚3𝑣1
2(𝑣2𝑥−𝑣1𝑦)

(𝑘3+𝑚𝑥)4
+

𝑘1
2𝑣2

2(𝑣1−𝑘1𝑣2𝑥+𝑘1𝑣1𝑦)

(1+𝑘1𝑦)4
)

6𝑘6𝑘7𝑚𝑣1(𝑘8𝑣2+𝑚𝑣2𝑥−𝑚𝑣1𝑦)2

(𝑘8+𝑚𝑥)4
−

6𝐸2𝑘10𝑘9𝑣2
3

(𝐸𝑘10+𝑦)4

] .
          (12b) 

Theorem 7: If the parameter 𝑘6 passes through the value 𝑘6
∗ =

𝑘9

𝑘10
 and 𝑘5(1 − 𝑘2) < 𝑘4𝑚, 

then system (5) at the trivial equilibrium point 𝐸0 has 

i.No saddle-node bifurcation. 

ii.Transcritical bifurcation provided that 

𝑘8 ≠ 𝐸𝑘7𝑘10.                          (13) 

iii.A pitchfork bifurcation otherwise. 

Proof: At 𝐸0, the Jacobian matrix of system (5) with 𝑘6 = 𝑘6
∗ becomes: 

𝐽0 = 𝐷𝐹(𝐸0, 𝑘6
∗) = [

1 − 𝑘2 −
𝑘4𝑚

𝑘5
0

0 0
]. 

Clearly, 𝐽0 has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

𝑈1 = [
0
1
]. 

While the eigenvector corresponding to the zero eigenvalue of 𝐽0
𝑇 is determined as: 

𝑊1 = [
0
1
].  

Differentiating 𝐹 with respect to 𝑘6 gives:   

𝐹𝑘6
= [

0

𝑦 (1 −
𝑘7𝑦

𝑘8+𝑚𝑥
)]. 

Therefore, straightforward computation shows that: 
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𝑊1
𝑇𝐹𝑘6

(𝐸0, 𝑘6
∗) = 0. 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near 𝐸0 and  

𝑘6 = 𝑘6
∗. Moreover, direct computation gives that: 

𝑊1
𝑇[𝐷𝐹𝑘6

(𝐸0, 𝑘6
∗)𝑈1] = 1 ≠ 0. 

Also, using the form of 𝐷2𝐹 given by equation (12a), and the eigenvectors 𝑈1 with 𝑊1 gives 

that: 

𝑊1
𝑇[𝐷2𝐹(𝐸0, 𝑘6

∗)(𝑈1, 𝑈1)] =
2𝑘9(𝑘8−𝐸𝑘7𝑘10)

𝐸𝑘8𝑘10
2 . 

Therefore, condition (13) guarantees that 𝑊1
𝑇[𝐷2𝐹(𝐸0, 𝑘6

∗)(𝑈1, 𝑈1)] ≠ 0. Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 

Otherwise, 𝑊1
𝑇[𝐷2𝐹(𝐸0, 𝑘6

∗)(𝑈1, 𝑈1)] = 0. In addition, using the form of 𝐷3𝐹 given by 

equation (12b), and the eigenvectors 𝑈1 with 𝑊1 gives that: 

𝑊1
𝑇[𝐷3𝐹(𝐸0, 𝑘6

∗)(𝑈1, 𝑈1, 𝑈1)] = −
6𝑘9

𝐸2𝑘10
3 ≠ 0. 

Hence, a pitchfork bifurcation takes place, and the proof is complete.    □                

Theorem 8: Assume that 𝐸𝑘4𝑚
2 < (𝐸𝑘5 + 𝑚𝑥𝑖)

2 near any of the predator-free equilibrium 

points 𝐸𝑖(𝑥𝑖, 0), (𝑖 = 1,2), then if the parameter 𝑘6 passes through the value 𝑘6
∗ =

𝑘9

𝑘10
, then the 

system (5) at this equilibrium point has 

i.No saddle-node bifurcation. 

ii.Transcritical bifurcation provided that 
1

𝐸
≠

𝑘10𝑘7

𝑘8+𝑚𝑥𝑖
.                         (14) 

iii.A pitchfork bifurcation otherwise. 

Proof: At 𝐸𝑖(𝑥𝑖, 0), (𝑖 = 1,2), the Jacobian matrix of system (5) with 𝑘6 = 𝑘6
∗ becomes: 

𝐽𝑖 = 𝐷𝐹(𝐸𝑖, 𝑘6
∗) = [

𝑥𝑖 (
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥𝑖)
2 − 1) −𝑥𝑖 (𝑘1 +

𝑚

𝑘3+𝑚𝑥𝑖
)

0 0
]. 

Clearly, 𝐽𝑖 has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

𝑈2 = [
𝐶1

1
]. 

where 

𝐶1 =
(𝐸𝑘5+𝑚𝑥𝑖)

2[𝑚+𝑘1(𝑘3+𝑚𝑥𝑖)]

(𝑘3+𝑚𝑥𝑖)[𝐸𝑘4𝑚2−(𝐸𝑘5+𝑚𝑥𝑖)
2]

. 

Clearly 𝐶1 < 0, due to given condition.  

While the eigenvector corresponding to the zero eigenvalue of 𝐽𝑖
𝑇 is determined as: 

𝑊2 = [
0
1
].  

And,  

𝑊2
𝑇𝐹𝑘6

(𝐸𝑖, 𝑘6
∗) = 0. 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near 𝐸𝑖 and  

𝑘6 = 𝑘6
∗. Moreover, direct computation gives that: 

𝑊2
𝑇[𝐷𝐹𝑘6

(𝐸𝑖, 𝑘6
∗)𝑈2] = 1 ≠ 0. 

Also, using the form of 𝐷2𝐹 given by equation (12a), and the eigenvectors 𝑈2 with 𝑊2 gives 

that: 

𝑊2
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘6

∗)(𝑈2, 𝑈2)] =
2𝑘9

𝑘10
2 (

1

E
−

k10k7

k8+𝑚𝑥𝑖
). 

Therefore, condition (14) guarantees that 𝑊2
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘6

∗)(𝑈2, 𝑈2)] ≠ 0. Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 
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Moreover, if condition (14) does not satisfy, then we have 𝑊2
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘6

∗)(𝑈2, 𝑈2)] = 0. In 

addition, using the form of 𝐷3𝐹 given by equation (12b), and the eigenvectors 𝑈2 with 𝑊2 gives 

that: 

𝑊2
𝑇[𝐷3𝐹(𝐸𝑖, 𝑘6

∗)(𝑈2, 𝑈2, 𝑈2)] =
6𝑘9

𝑘10
[

𝑘6𝑘7𝑚𝐶1

𝑘9(𝑘8+𝑚𝑥𝑖)
2
−

1

𝐸2𝑘10
2] ≠ 0.  

Hence, a pitchfork bifurcation takes place, and the proof is complete.    □ 

Theorem 9: Assume that 𝐸𝑘8𝑘9 < 𝑘6𝑘7(𝐸𝑘1 + 𝑦𝑖)
2 near any of the prey free equilibrium 

points 𝐸𝑖(0, 𝑦𝑖), (𝑖 = 1,2), then if the parameter 𝑘2 passes through the value 𝑘2
∗ =

1

1+𝑘1𝑦𝑖
−

𝑘4𝑚

𝑘5
–

𝑚𝑦𝑖

𝑘3
, then system (5) at this equilibrium point has 

i.No saddle-node bifurcation. 

ii.Transcritical bifurcation provided that 

𝐵2 ≠ 0                               (15) 

where 

𝐵2 = 𝐸𝑘3𝑘5
2(𝑚(1 + 𝑘1𝑦𝑖)

2 + 𝑘1𝑘3) − 𝐶2(1 + 𝑘1𝑦𝑖)
2 (𝑚2(𝑘3

2𝑘5 + 𝐸𝑘5
2𝑦𝑖) − 𝐸𝑘3

2𝑘5

2
). 

iii.A pitchfork bifurcation if condition (15) does not satisfy and  
𝑚2𝐶2

2

𝑘3
2 −

𝑘4𝑚3𝐶2
3

𝐸2𝑘5
3 −

𝑚3𝐶2
3𝑦𝑖

𝑘3
3 +

𝑘1
2𝐶2

(1+𝑘1𝑦𝑖)
3 ≠ 0.                         (16) 

Proof: At 𝐸𝑖(0, 𝑦𝑖), (𝑖 = 3,4), the Jacobian matrix of system (5) with 𝑘2 = 𝑘2
∗ becomes: 

𝐽𝑖 = 𝐷𝐹(𝐸𝑖, 𝑘2
∗) = [

0 0
𝑘6𝑘7𝑚𝑦𝑖

2

𝑘8
2 𝑦𝑖 (

𝐸𝑘9

(𝐸𝑘10+𝑦𝑖)
2 −

𝑘6𝑘7

𝑘8
)]. 

Clearly 𝐽𝑖 has a zero eigenvalue with another negative eigenvalue, and the corresponding 

eigenvector for the zero eigenvalue can be written as:   

𝑈3 = [
𝐶2

1
]. 

where  

𝐶2 = 𝑘8
𝑘6𝑘7(𝐸𝑘10+𝑦𝑖)

2−𝐸𝑘8𝑘9

𝑘6𝑘7𝑚𝑦𝑖(𝐸𝑘10+𝑦𝑖)
2 . 

Clearly 𝐶2 > 0, due to given condition.  

While the eigenvector corresponding to the zero eigenvalue of 𝐽𝑖
𝑇 is determined as: 

𝑊3 = [
1
0
].  

And,  

𝑊3
𝑇𝐹𝑘2

(𝐸𝑖, 𝑘2
∗) = 0. 

Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near 𝐸𝑖 and  

𝑘2 = 𝑘2
∗. Moreover, direct computation gives that: 

𝑊3
𝑇[𝐷𝐹𝑘2

(𝐸𝑖, 𝑘2
∗)𝑈3] = −𝐶2 ≠ 0. 

Also, using the form of 𝐷2𝐹 given by equation (12a), and the eigenvectors 𝑈3 with 𝑊3 gives 

that: 

𝑊3
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘2

∗)(𝑈3, 𝑈3)] =
−2𝐶2𝐵2

𝐸𝑘3
3𝑘5

2
(1+𝑘1𝑦𝑖)

2
. 

Therefore, condition (15) guarantees that 𝑊3
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘2

∗)(𝑈3, 𝑈3)] ≠ 0. Hence, by 

Sotomayor’s theorem, a transcritical bifurcation takes place. 

Moreover, if condition (15) does not satisfy, then we have 𝑊3
𝑇[𝐷2𝐹(𝐸𝑖, 𝑘2

∗)(𝑈3, 𝑈3)] = 0. In 

addition, using the form of 𝐷3𝐹 given by equation (12b), and the eigenvectors 𝑈3 with 𝑊3 gives 

that: 𝑊3
𝑇[𝐷3𝐹(𝐸𝑖, 𝑘2

∗)(𝑈3, 𝑈3, 𝑈3)] = 6 (
𝑚2𝐶2

2

𝑘3
2 −

𝑘4𝑚3𝐶2
3

𝐸2𝑘5
3 −

𝑚3𝐶2
3𝑦𝑖

𝑘3
3 +

𝑘1
2𝐶2

(1+𝑘1𝑦𝑖)
3
). 

Note that, condition (16) guarantees that 𝑊3
𝑇[𝐷3𝐹(𝐸𝑖, 𝑘2

∗)(𝑈3, 𝑈3, 𝑈3)] ≠ 0. Hence, a pitchfork 

bifurcation takes place, and the proof is complete.    □      
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Theorem 10: Assume that 
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
< 1 and  

𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
>

𝑘6𝑘7

𝑘8+𝑚𝑥∗ near the any of 

the interior equilibrium points 𝐸∗(𝑥∗, 𝑦∗), then if the parameter 𝑘6 passes through the value:  

𝑘6
∗∗ =

𝑗11𝐸𝑘9(𝑘8+𝑚𝑥∗)2

𝑘7 (𝐸𝑘10+𝑦∗)2(𝑚𝑦∗𝑗12+(𝑘8+𝑚𝑥∗)𝑗11)
, 

Then system (5) at this equilibrium point has saddle-node bifurcation provided that: 
𝑚𝑘7𝑦∗2

(𝑘8+𝑚𝑥∗)2
𝐶3 + 1 −

2𝑘7𝑦∗

𝑘8+𝑚𝑥∗ ≠ 0,       (17) 

𝐶4𝛿11 + 𝛿21 ≠ 0,        (18) 

where all new symbols are given in the proof. 
Proof: Consider the Jacobian matrix of system (5) at 𝐸∗ with 𝑘6 = 𝑘6

∗∗
 that can be written as: 

𝐽∗(𝐸
∗, 𝑘6

∗∗) = [
𝑗11 𝑗12

𝑗21
∗ 𝑗22

∗]. 

where 

𝑗11 = 𝑥∗ (
𝐸𝑘4𝑚2

(𝐸𝑘5+𝑚𝑥∗)2
+

𝑚2𝑦∗

(𝑘3+𝑚𝑥∗)2
− 1),   𝑗12 = −𝑥∗ (

𝑘1

(1+𝑘1𝑦∗)2
+

𝑚

𝑘3+𝑚𝑥∗), 

𝑗21
∗ =

𝑘6
∗∗𝑘7𝑚𝑦∗2

(𝑘8+𝑚𝑥∗)2
,    𝑗22

∗ = 𝑦∗ (
𝐸𝑘9

(𝐸𝑘10+𝑦∗)2
−

𝑘6
∗∗𝑘7

𝑘8+𝑚𝑥∗
). 

Straightforward computation shows that |𝐽∗| = 𝑗11𝑗22
∗ − 𝑗12𝑗21

∗ = 0, and hence 𝐽∗ has a zero 

eigenvalue, and the corresponding eigenvector for this eigenvalue can be written as:   

𝑈4 = [
𝐶3

1
]. 

where 

𝐶3 = −
𝑗12

𝑗11
< 0. 

While the eigenvector corresponding to the zero eigenvalue of 𝐽∗
𝑇 is determined as: 

𝑊4 = [
𝐶4

1
].  

where 

𝐶4 = −
𝑗21

∗

𝑗11
> 0. 

And,  

𝑊4
𝑇𝐹𝑘6

(𝐸∗, 𝑘6
∗∗) = 𝑦∗ (1 −

𝑘7𝑦∗

𝑘8+𝑚𝑥∗) ≠ 0. 

Consequently, by Sotomayor’s theorem, system (5) satisfies the first condition of saddle-node 

bifurcation near 𝐸∗ and  𝑘6
∗∗. Moreover, direct computation with the use of conditions (17) and 

(18) gives that: 

𝑊4
𝑇[𝐷𝐹𝑘6

(𝐸∗, 𝑘6
∗∗)𝑈4] =

𝑚𝑘7𝑦∗2

(𝑘8+𝑚𝑥∗)2
𝐶3 + 1 −

2𝑘7𝑦∗

𝑘8+𝑚𝑥∗ ≠ 0. 

𝑊4
𝑇[𝐷2𝐹(𝐸∗, 𝑘6

∗∗)(𝑈4, 𝑈4)] = 𝐶4𝛿11 + 𝛿21 ≠ 0 
where 

 𝛿11 =
2𝑘1

2𝑥∗

(1+𝑘1𝑦∗)3
−

2𝑘3𝑚𝐶3

(𝑘3+𝑚𝑥∗)2
−

2𝑘1𝐶3

(1+𝑘1𝑦∗)2
+ 2𝐶3

2 [𝑚2 (
𝐸2𝑘4𝑘5

(𝐸𝑘5+𝑚𝑥∗)3
+

𝑘3𝑦∗

(𝑘3+𝑚𝑥∗)3
) − 1], 

 𝛿21 =
2𝐸2𝑘10𝑘9

(𝐸𝑘10+𝑦∗)3
−

2𝑘6
∗∗𝑘7(𝑘8+𝑚𝑥∗−𝑚𝐶3𝑦∗)2

(𝑘8+𝑚𝑥∗)3
, 

represent the elements of 𝐷2𝐹(𝐸∗, 𝑘6
∗∗)(𝑈4, 𝑈4). Hence, a saddle node bifurcation takes place, 

and the proof is complete.    □ 

7. Numerical Analysis  

The overall dynamics of system (5) are numerically investigated in this section for various sets 

of initial values and parameter values. This study aims to demonstrate the impacts of changing 

parameter values on the system's dynamical behavior and to validate the theoretical results 

achieved. The numerical simulations are carried out using a combination of parameter values 

given in Table (1) and Table (2). 
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Table 1- Set #1 of parameter values 

Parameter: 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝐸 𝑚 

Value: 2.35 0.13 0.47 0.3 0.61 0.87 0.79 0.06 0.1 0.4 0.92 0.12 

 

Table 2- Set #2 of parameter values 
Parameter: 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝐸 𝑚 

Value: 2.37 0.24 0.13 0.08 0.1 0.1 0.17 0.13 0.1 0.15 0.11 0.75 

 

 

As previously mentioned in section 4, there is a various number of equilibrium points for 

different values of parameters. Figure 1 shows two examples of that. 

Now, using the parameters given in Table 1 with various sets of initial points, system (5) is 

solved numerically, and then the trajectories that have been obtained are drawn in form of 

direction field and phase portrait as shown in Figure 2. It is clear from this figure that there are 

4 equilibrium points: one trivial, one predator-free, one prey-free, and one interior equilibrium 

point.  The interior equilibrium point is stable (spiral sink), while the others are unstable. 

 

  
(a) (b) 

 

    
(c) 

Trivial equilibrium 

point (0,0) nodal 

source 

(d) 

Prey free equilibrium 

point (0,0.057543) 

saddle point 

(e) 

Predator free 

equilibrium point 

(0.81979,0) saddle 

point 

(f) 

Interior equilibrium 

point 

(0.559785,0.126559) 

spiral sink 

Figure 2- For the parameters given in Table (1) with different initial points (a) 

The direction field of the system (5) (b) The phase portrait of the trajectories of 

the system (5) (c)-(f) The dynamic behavior near the 4 equilibrium points.   
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Three different initial points near the interior equilibrium point are selected randomly and then 

the time series for the obtained trajectories of system (5) are drawn in Figures 3. The trajectories 

of system (5) approach to that point as shown in Figure 3. 

 

 

  
(a) (b) 

Figure 3- The solutions of system (5) approaches asymptotically to the interior 

point (0.559785,0.126559) using parameters in Table (1) (a) Prey trajectories (b) 

Predator trajectories as a function of time. 
 

 

Figure 4 shows that by putting 𝑘6
∗ =

𝑘9

𝑘10
 and keeping the values of other parameters in Table 

(1), then instead of four equilibrium points, system (5) will have just two: the trivial and the 

predator-free equilibrium points. Both of them are nonhyperbolic equilibrium points. This 

agrees with the results of both Theorem 7 and Theorem 8. 

 

  
(a) (b) 

Figure 4-The dynamical behavior of system (5) with parameter values in Table (1) 

(a) when 𝑘6
∗ >

𝑘9

𝑘10
= 0.25 (b) when 𝑘6

∗ ≤
𝑘9

𝑘10
= 0.25. 
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Figure (5) shows that by putting 𝑘2
∗ ≥

1

1+𝑘1𝑦𝑖
−

𝑘4𝑚

𝑘5
–

𝑚𝑦𝑖

𝑘3
= 0.81 and keeping the value of other 

parameters in Table 1 then instead of four equilibrium points, system (5) will have three 

equilibrium points: the trivial, one predator-free, and one prey-free equilibrium point. 

Moreover, the prey-free equilibrium point will change its behavior from saddle-node to nodal 

sink. This agrees with the result of Theorem 9. 

 

  
(a) (b) 

Figure 5- The dynamical behavior of system (5) with parameter values in Table-1 

(a) when 𝑘2
∗ <

1

1+𝑘1𝑦𝑖
−

𝑘4𝑚

𝑘5
–

𝑚𝑦𝑖

𝑘3
= 0.81 (b) when 𝑘2

∗ ≥
1

1+𝑘1𝑦𝑖
−

𝑘4𝑚

𝑘5
–

𝑚𝑦𝑖

𝑘3
= 0.81. 

 
As mentioned previously, system (5) has a rich dynamic behavior, for example, Figure (6) 

shows the behavior of the system under influence of set #2 of parameter values which are given 

in Table 2. In this case, there are six equilibrium points: (i) one trivial saddle equilibrium point 

(ii) one predator-free nodal sink (iii) two prey-free equilibrium points, one of them is saddle 

point and the other is a nodal sink (iv) two interior equilibrium points, one spiral source and the 

other is a saddle point. 
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(a) (b) 

 

    
(c) 

Trivial equilibrium 

point (0,0) saddle 

point 

(d) 

Predator free 

equilibrium point 

(0.74847,0) nodal 

sink 

(e) 

Prey free equilibrium 

point (0,010663) 

saddle point 

(f) 

Prey free equilibrium 

point (0,0.87687) 

nodal sink 

    
 

  

 

 (g) 

Interior equilibrium 

point 

(0.88011,0.10225) 

spiral source 

(h) 

Interior equilibrium 

point 

(0.36854,0.097753) 

saddle point 

 

Figure 6-For the parameters given in Table 2 with different initial points (a) The 

direction field of the system (5) (b) The phase portrait of the trajectories of system 

(5) (c)-(f) The dynamic behavior near the 4 boundary equilibrium points. (g)-(h)  

The dynamic behavior near the 2 interior equilibrium points.  
 

Figure 7 shows that for set #1, as the value of the level of fear induced by predator population 

(𝑘1) increases, the unique interior equilibrium point converges to the prey-free equilibrium 

point and preserves its behavior as a spiral sink. While Figure 8 shows that for set #2 with an 

increase in the level of fear induced by predator population (𝑘1), the two interior equilibrium 
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points converge to each other and then unify and disappear. When these two points exist, they 

preserve their behavior, the right one is always saddle-node while the left one is always a spiral 

source. 

  
(a) (b) 

  
(c) (d) 

Figure 7- The interior equilibrium point of set #1 (the point in green) converges 

to the prey-free equilibrium point with the increase of the value of 𝑘1 (a) 𝑘1 = 2 

(b) 𝑘1 = 15 (c) 𝑘1 = 30 (d) 𝑘1 = 68. 
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(a) (b) 

  
(c) (d) 

  

Figure 8-The two interior equilibrium points of set #2 (the points in green) 

converge to each other with the increase of the value of 𝑘1 (a) 𝑘1 = 1 (b) 𝑘1 = 2.5 

(c) 𝑘1 = 3.2 (d) 𝑘1 = 3.3. 

 

Moreover, to explore the effect of harvesting, Figure 9 shows that for set #1, as the value of the 

catchability coefficient of prey (𝑘4) increases, the unique interior equilibrium point converges 

to the prey-free equilibrium point and preserves its behavior as a spiral sink. While Figure 10 

shows that for set #2, the two interior equilibrium points converge to each other and then unify 

and disappear. When these two points exist, they preserve their behavior, the right one is always 

saddle-node while the left one is always a spiral source. 
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(a) (b) 

  
(c) (d) 

 

Figure 9-The interior equilibrium point of set #1 (the point in green) converges to 

the prey-free equilibrium point with the increase of the value of 𝑘4 (a) 𝑘4 = 0.25 

(b) 𝑘4 = 0.9 (c) 𝑘4 = 1.8 (d) 𝑘4 = 3.74. 
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(a) (b) 

  
(c) (d) 

  

Figure 10-The two interior equilibrium points of set #2 (the points in green) 

converge to each other with the increasing of the value of 𝑘4 (a) 𝑘4 = 0.08 (b) 𝑘4 =
0.11 (c) 𝑘4 = 0.18 (d) 𝑘4 = 0.2013. 
 

Also, Figure 11 shows that for set #1, as the value of the catchability coefficient of predator 

(𝑘9) increases, the unique interior equilibrium point converges to predator-free equilibrium 

point and preserves its behavior as a spiral sink. At the same time, for set #2, the two interior 

equilibrium points follow a similar scenario to that appear in Figures 8 and 10, where the two 

points combine with each other and then disappear. On the other hand, decreasing the value of 

this parameter toward zero makes the right interior equilibrium point goes toward the predator-

free equilibrium point, while the left interior equilibrium point goes toward the prey-free 

equilibrium point and then toward the trivial equilibrium point as shown in Figure 12. 
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(a) (b) 

  
(c) (d) 

Figure 11- The interior equilibrium point of set #1 (the point in green) approaches 

the predator-free equilibrium point with the increase of the value of 𝑘9 (a) 𝑘9 = 0.1 

(b) 𝑘9 = 0.2 (c) 𝑘9 = 0.3 (d) 𝑘9 = 0.3475. 
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(a) (b) 

  
(c) (d) 

  

Figure 12- The right and left interior equilibrium points of set #2 (the points in 

green) go toward the predator-free and prey-free equilibria respectively, when the 

value of 𝑘9 decreases toward zero, (a) 𝑘9 = 0.1 (b) 𝑘9 = 0.07 (c) 𝑘9 = 0.04 (d) 𝑘9 =
0.0155. 

 

8. Discussion and Conclusions 

     In this study, a modified Leslie-Gower predator-prey model is proposed and discussed. Fear 

of predation and harvesting are both factored into the model's design and studied. According to 

Holling type-II functional response, which is also used to characterize the harvesting process, 

the predator consumes food. The solution's positivity and boundlessness have been 

demonstrated. All of the system's probable equilibrium positions are identified. These 

equilibrium points' local stability is explored, and their requirements are provided. The system 

shows it has several boundaries and interior equilibrium points, which complicates the study. 

The effect of changing the parameters on the model's dynamics is investigated by looking at the 

possibilities of local bifurcation types such as saddle-node, transcritical, and pitchfork 

bifurcation. Two sets of hypothetical data parameters are used to analyze the system's global 
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dynamics numerically. The existing equilibrium locations and the solution behavior 

surrounding them are depicted using phase portraits and direction fields. The system has a 

single globally asymptotically stable interior equilibrium point with two axial saddle-node 

equilibrium points and an unstable trivial equilibrium point for the data in set #1. The system 

has two unstable interior equilibrium points (one unstable spiral and the second is a saddle 

point) with three axial equilibrium points (two of which are locally asymptotically stable with 

their own basin of attraction for each of them and the third point is a saddle point) and a saddle-

node trivial equilibrium point for data set #2. This ensures that the system's dynamics are rich, 

and the number of equilibrium points is determined by the data parameters. 

The impact of fear rate on the system's dynamics is also explored. For set # 1 data, increasing 

fear rate produces a gradual decrease in prey population until the system reaches prey 

extinction, and the interior equilibrium point coincides with the prey-free equilibrium point, 

which becomes globally asymptotically stable. In the set #2 data, however, raising the fear rate 

causes the two inner equilibrium points in the positive quadrant to be combined, resulting in a 

saddle-node point. According to the preceding discovery, fear rate acts as a bifurcation 

parameter, causing extinction in prey species when its value rises above a certain threshold. 

When the value of the catchability coefficient of the prey increases, similar observations are 

made as with the fear rate. Furthermore, when using set # 1 data, as the value of the predator's 

catchability coefficient increases, the system behaves similarly to that obtained when increasing 

the value of the prey's catchability coefficient, except that the interior equilibrium point 

combines with the predator-free equilibrium point, which then becomes globally asymptotically 

stable. The system behaves similarly when using set # 2 data. Finally, given set # 2 data, 

decreasing the predator species' catchability coefficient causes each of the interior equilibrium 

points to be combined with the nearest axial equilibrium point, and the system's solution 

approaches asymptotically to the prey-free equilibrium point. 
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