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Abstract

A modified Leslie-Gower predator-prey model with fear effect and nonlinear
harvesting is developed and investigated in this study. The predator is supposed to
feed on the prey using Holling type-11 functional response. The goal is to see how fear
of predation and presence of harvesting affect the model's dynamics. The system's
positivity and boundlessness are demonstrated. All conceivable equilibria's existence
and stability requirements are established. All sorts of local bifurcation occurrence
conditions are presented. Extensive numerical simulations of the proposed model are
shown in form of Phase portraits and direction fields. That is to guarantee the
correctness of the theoretical results of the dynamic behavior of the system and to
confirm the existence of various forms of bifurcations. The fear rate is observed to
have a stabilizing effect up to a threshold value, after which it leads to prey extinction.
The harvesting coefficients, on the other hand, serve as control parameters that, when
exceeded, trigger the system to extinction.

Keywords: predator-prey, Modified Leslie-Gower, local stability, fear effect,
nonlinear harvesting, bifurcation analysis.
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1. Introduction

One of the most popular subjects in biomathematics is population dynamics. The study of the
evolution of diverse populations has always been of special interest, beginning with populations
of a single species and progressing to more realistic models in which several species exist and
interact in the same ecosystem. Models that explore competitive interactions, symbiosis,
commensalism, or predator-prey dynamics are some of them. The predator-prey model has been
extensively studied by mathematical and biological researchers since its introduction made by
Alfred J. Lotka in 1925 and Vito Volterra [1] in 1926. They described the interaction between
two species combined with the predator-prey relationship, where they define the problem with
a system of polynomial differential equations of degree two. The importance of this problem
lies in understanding the dynamics between two species (a predator and prey) that live together
in the same environment and looking for suitable conditions that allow both species to survive
in equilibria.

Later, applications of these systems began to increase. New applications on population
dynamics had been developed, and these systems have also been utilized to represent a variety
of other natural phenomena.

Besides the basic relationship given by the Lotka-Volterra model; many factors may affect
species growth. So, this model was developed by many researchers taking into consideration
various environmental factors that affect the existence and stability of this system, such as prey
refuge [2-4], disease [5, 6], delay [7], harvesting [7-9], Allee effect [4, 10, 11], age structure
[12], sex structure and sexual favoritism [13], seasonal variation [14], and many other factors.
The functional response is an essential part of the predator-prey model, which describes the
change in prey number killed per individual predator per unit of time as a consequence of
changes in prey density. The most commonly used functional response in the existing literature
is a function of prey's density only (Holling I-111) [2, 4, 15, 16], in which interfering among
predators is not utilized whereas this will be common when predators contest for food. To
address this important factor, functional responses (ratio-dependent [17], Beddington-
DeAngelis [18], and Crowley-Martin [7] have been developed which do not rely just on the
density of the prey but rather on the density of both prey and predator.

While many predator-prey models considered a logistic growth of predators, Leslie and Gower
[19] assumed that the predator grows logistically, where its carrying capacity is proportional to

the density of prey hy (1 —%) where x and y are the populations of prey and predator

respectively. The term % is called Leslie-Gower term.

On the other hand, predators can devour other populations when food is scarce, but their growth
will be limited since their primary prey is scarce. To consider this issue, Aziz-Alaoui and Okiye
[20] suggested a modified Leslie-Gower model by introducing a constant b in the denominator

of Leslie-Gower term that measures environmental protection for the predator l:m to avoid

singularities when x = 0. Since then, many researchers have examined the modified Leslie—
Gower models with a variety of functional responses [2, 21-23], harvesting [7, 22] Allee effect
[24], etc.

Moreover, from a financial income point of view, it is significant to consider the harvesting of
species in predator-prey models. In the literature, several types of harvesting strategies have
been utilized. Some of them used constant harvesting, h(x) = h [25], proportional harvesting
h(x) = Ex [26] where x is the population that presents the harvesting (prey or predator), age-
selective harvesting [27], while others considered nonlinear harvesting [7]. Nonlinear

harvesting is more relevant than other approaches from both a financial and biological point of

view [23, 28]. Many researchers consider Holling type Il harvesting h(x) = — 95 For

miE+myx’
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example, Gupta et al worked with a model with Holling type Il harvesting in prey [23] and
Holling type Il harvesting in predator in [29].

Another factor to consider is that in some environments, prey may be afraid of predators and
respond appropriately, making predator hunting more difficult [30]. Due to fear of predation
risk, the prey population can change its feeding area to a safer place and sacrifice their highest
intake rate areas, increase their vigilance, regulate their strategies for reproduction, etc. In recent
years, many experts began to study the predator-prey model with fear effect; see [3, 6]

The dynamics and bifurcations of a modified Leslie-Gower predator-prey model with Holling-
Il functional response and nonlinear harvesting in both the prey and predator communities are
investigated in this paper, as well as the influence of the fear factor.

2. Mathematical Model Formulation

The study considers a predator-prey problem, with N(T") and P(T), respectively, representing
prey and predator population densities at time T. Resource-consumer, plant-herbivore, parasite-
host, tumor cells (virus)-immune system, susceptible-infectious interactions, and so on are
examples.

In the proposed model, prey population N(T) is considered logistically growing in absence of
predator P(T) with a birth rate r; and level of fear induced by predator population K such that:

&= O _ 4N - a;N2. (1)
ar 1+KP
The morality density is represented by the term dN, where d is the natural death rate of prey.
Also, the term a;N? is added to consider competition between prey community members,
where a; is the intraspecific competition.
Moreover, the interaction between prey and predator is assumed to follow Holling-11 functional
response. According to these considerations, the change in the density of prey takes the
following form in the presence of the predator:
d_N: N —dN—alNz— meP’ (2)
ar 1+KP c1+mN
where b represents the maximum attack rate, c; represents the half-saturation constant of
predation and the parameter m € (0,1) represents the availability constant rate of prey for
predation due to the assumption of the existence of a (1 — m) constant rate of prey's refuge in
the environment.
The density of predator population is assumed to follow the modified Leslie—Gower predation
as follows:
ap a,P
d_T - TZP [1 N c2+2mN] (3)
where the parameter r, represents the intrinsic growth rates of the predator, a, is the maximum
value which per capita reduction rate of P can attend, and c, is the carrying capacity of the
predator in the absence of the prey.
In the proposed model, prey and predator are assumed to follow nonlinear harvesting with the

harvesting function of Holling-11. The harvesting of prey is presented by the term yapp— ilf;n’rvn ~,
1 2
while that of predator is represented by the term %, where gq;,(i = 1,2) are the
3 4

catchability coefficient of prey and predator respectively, E is the effort made to harvest
individuals and p; , (i = 1,2,3,4): suitable constants. It's worth noting that the effort represented
by E in both equations is considered to be the same for both species, making this model more
appropriate for aquatic environments.

Combining all the above assumptions give the following set of dynamical differential
equations:
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dN _ nN bmNP q.EmN

= — dN — a;N? — - ,
dT ~ 1+KP TN T+ MmN p.E + p,mN @
dapr a,P q.EP

= TZP [1 -

dr ¢, +mNl  piE +p,P’
where all of the parameters are assumed to be positive and described as above.

Note that, using the scaling variables T = t, x = %N, andy = %P in the system (4) reduces
1 1

the number of parameters from 17 to 12 parameters and the system (4) takes the following
dimensionless form:

dx [ 1 k my k,Em ] _ )
dt_x1+k1y 27X ks + mx kgE + mx =xh(xy),
dy [k (1 k,y ) koE ] —h (%) (5)
de ~ 7" kg + mx k10E+y'_yf2x'y'
with the initial conditions:
x(0) =x0 =0, y(0) =y, =0, (6)
and the dimensionless parameters are given by:
_ krf _4a _ a1 _ Q1q, _ P1aq
ey = ba,’ kp = 1 s = r A _br12p2’ 57 Zl’)zﬁ,
_T _ 2 _ il _ baiqz __ baips
ke = ry’ kg = b’ ke = T ko = Pyy3 o = pari

Note that, since the right-hand side of the interaction functions of the system (5) are continuous
and have continuous partial derivatives, then system (5) has a unique solution that belongs to
the positive quadrant R2.

3. Positivity and Boundedness

Theorem (1) and theorem (2) below prove that the model formulation is ecologically relevant
by showing that solutions of system (5) together with the initial condition (6) are positive and
uniformly bounded.

Theorem 1: All solutions of system (5) with initial conditions (6) remain positive forever.
Proof: The proof is direct and hence it is omitted.

Theorem 2: All the solutions of system (5) with initial conditions (6) are uniformly bounded.
Proof: From the system (5),

%< x —kox — x?2
dt ~1+ky 7%
< x—kyx — x?
=x[(1 — k) — x],

and this shows that the solution of the system x(t) <1 — k, := M; ast — oo, by lemma 2 in
[1]. Clearly, due to the survival condition of the prey in the absence of a predator, we have
always that 1 — k, > 0.
Now substituting the maximum value M, in the second equation of system (5) gives that:

d k

d_Jt] < key (1 N k8+;r31]M1>'
Then, by solving the above differential inequality, it is observed that:

k
y(t) < 8+k—li =M, ast — oo,
7

which proves the boundedness of all the solutions. o

4. Existence and the Stability of Equilibria

The presence of equilibrium points of the dimensionless system, as well as a qualitative analysis
of their stability, are investigated in this section.

The number of equilibrium points of system (5) depends on the parameter values. For example,
Figure 1 shows that for the set of parameter values given in Table 1, the system has one trivial,
one predator-free, one prey-free, and one interior equilibrium point. While, for set of parameter
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values given in Table 2, the system has one trivial, one predator-free, two prey free and two
interior equilibrium points.
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Figure 1- The number of equilibrium points of the system (5) (a) there are 4

equilibrium points for set #1 of parameter values given in Table 1 (b) there are 6

equilibrium points for set #2 of parameter values given in Table 2.

4.1  Trivial Equilibrium Point

It is clear that the trivial equilibrium point E,(0,0) at the origin is always exists.

4.2  Predator Free Equilibrium Points

The boundary equilibria on x —axis are calculated by solving the following quadratic equation:
E(kym + ks(ky — 1)) + (Eks + m(k, — 1))x + mx? = 0. (7)

The roots of Eq. (7) depend on the parameters k,, k4, ks, m and E, so according to Descartes's

rule there are the following cases:

Case 1. There is no equilibrium point with k, > 1, since the prey survives if the natural

mortality rate is lower than the birth rate.

Case 2. When k, < 1

a. If both k,m > ks(1 — k,) and Eks + m(k, — 1) > 0, then there is no equilibrium
point.
b. If kym > ks(1—k;,) and Eks + m(k, — 1) < 0, then either there is no equilibrium

point or there are two equilibrium points E;(x,,0) and E,(x,,0) where x; and x, are the
positive roots of Eq. (7) with x; < x, and are given by

—(Ek5+m(k2—1))—\/(Ek5+m(k2—1))2—4Em(k4m+k5(k2—1))

X1 = — :
—(Ek5+m(k2—1))+\/(Ek5+m(k2—1))2—4Em(k4m+k5(k2—1))
Xy = om .

C. If kym+ ks(k, —1) <0, then only E,(x,, 0) exits.

4.3 Prey Free Equilibrium Points

The boundary equilibria on y —axis are calculated by solving the following quadratic equation:
Ekg(ko — kekio) + ke(Ek7kio — kg)y + kek;y* = 0. 8)

The roots of Eq. (8) depend on the parameters kg, k-, kg, ko, k1o and E, so according to

Descartes's rule there are the following cases:

263



Al-Momen and Naji Iragi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282

Case 1. If both kg > kgkqo and Ek,kqy > kg there is no equilibrium point.

Case 2. If both kg > k¢kq, and Ek,k,, < kg, then either there is no equilibrium point or there
are two equilibrium points E5(0,y;) and E,(0,y,) where y; and y, are the positive roots of
Eq. (8) with y; < y, and are given by

k6(kS_Ek7k10)_\/kGZ(Ek7k10_k8)2_4‘Ek6k7k8(k9_k6k10)
Y3 = 2kgky '

k6(kS_Ek7k10)+\/kGZ(Ek7k10_k8)2_4‘Ek6k7k8(k9_k6k10)

Ya = 2kgky
Case 3. If kg < kgky, then only E,(0, y,) exits.
4.4 Interior Equilibrium Points
The positive interior points are found by solving system (5) for x > 0 and y > 0. It is obtained
that:
« _ (A1=A3)+(B1—By)y* +Cy*?

T ey ®)
where A, = Ekgkq, Ay = Ekgkgkqy, B = Ekgk, k19, B, = kekg, C = kgk;, Dy = Emkgk;,,
D, = Emkq and F = mky. It is clear that each one of them has a positive value. However, y*
Is the positive root of the polynomial (10) below:

ay + a1y + ayy? + azy P+ auyt + asy™® + agy*® + a,y*7 =0, (10)
where the polynomial coefficients a;;i = 0,1, ...,7 are depending on the system parameters
with a, = —C3m?k; is negative, while all other coefficients of Eq. (10) could be positive or
negative. Therefore, if @y > 0 then there exists at least one positive equilibrium point
E*(x*,y").

5. Stability Analysis of Equilibria
In this section, the nonlinear system (5) is linearized around each equilibrium point using the
Jacobian matrix to investigate the local stability of various equilibrium points.

The Jacobian matrix of system (5) about an arbitrary point (x, y) is determined by:
an +h x o

xa ay
L I (1)
ox ay 2
where
fr _ Ek,m? m2y

ax (Eks+mx)? (k3+mx)?

6f1 _ ( m kl )
ay ks+mx  (1+kqy)2)’
0fs _ keksmy

ax  (kg+mx)?’

af, _ Ekog kegk

8y (Ekip+y)?  kg+mx
Recall that, if all eigenvalues of the Jacobian matrix at an equilibrium point have negative real
parts then this point is locally asymptotically stable. Accordingly, the following theorems
present the local stability conditions for each of the above equilibria.
Theorem 3: The trivial equilibrium point Ej is:
i.Local asymptotically stable node if ks(1 — k,) < kym and kgkq < ko.
ii.Saddle point if either ks(1 —k,) < kym and kgk,9 > ko Or k(1 —k,) > k,m and
kekqio < ko.

iii.Unstable node if ks(1 — k,) > kym and kgkqo > ko.
Proof: Depending on the general Jacobian matrix that given by (11), the Jacobian matrix at
E,(0,0) is given by:

264



Al-Momen and Naji Iragi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282

k4_m

1—kp ==

J(0,0) =

M and 2, = “£“12=2 So_if (i) holds the two
10
eigenvalues are negative, and then E, is local asymptotically stable. If the condition in (ii) holds,
then A, and A, have opposite signs, hence E, is saddle-node. Finally, if the condition in (iii)
holds, then both eigenvalues are positive, hence the point E, is unstable node. o
Theorem 4: If any of the predator-free equilibrium points E;(x;, 0), (i = 1,2) exists, then it is:
i.Local asymptotically stable node if Ek,m? < (Eks + mx;)? and kgk,o < ko.
ii.Saddle point if either Ek,m? < (Eks + mx;)* and kgkyo > ko or Ek,m? > (Eks +
mx;)? and kgkyg < ko.

iii.Unstable node if Ek,m? > (Ekg + mx;)? and k¢k, > k.

Proof: At E;(x;,0), (i = 1,2), the Jacobian matrix can be written as

' Ek,m? _ ) o ( m )
i ((Ek5+mxi)2 1 i kl + kz+mx;
0 ke

Therefore, the eigenvalues of J(x;, 0), (i = 1,2) are given by:
Ekym?—(Eks+mx;)?)x; -
A= = (Ek(5+rf1xi)2 - and A, = kekklfo =
Hence, if the condition (i) holds, the two eigenvalues are negative and E;, (i = 1,2) is local
asymptotically stable. If the condition (ii) holds, then A; and A, have opposite signs, hence
E;, (i = 1,2) is saddle-node. Finally, if condition (iii) holds, then both eigenvalues are positive,
hence the point is an unstable node. o
Theorem 5: If any of the prey free equilibrium points E; (0, y;), (i = 3,4) exists, then it is:
i.Local asymptotically stable node if ksks < R; and Ekgky < R,.
ii.Saddle point if either ks;ks < R, and Ekgkg > R, Or ksks > R, and Ekgky < R,.
iii.Unstable node if k3ks > R, and Ekgky > R,.
where Ry = (kyksks + m(ksks + ksy:))(1 + kyy),Ry = kek;(Eky + y)?.

Proof: At E;(0,y;), (i = 3,4), the Jacobian matrix is given by

The eigenvalues of (0,0) are A, =

](xiJ O) =

1 k,m my; 0
0.0 = 1+ky; > ks kg
10y = kek;my? (e _kako
ksza Vi (Ekio + y:)? kg

Clearly, the eigenvalues of J (0, y;), (i = 3,4) are:
21 = ksks—(koksks+m(kska+ksy))(1+k1y;) _ (Ekgko—kek7(Ek10+y)?)yi
| = and 1, =
ksks(1+k,y;) kg(Ek10+y;)?
Hence, if the condition (i) holds, the two eigenvalues are negative and E;(0,y;), (i = 3,4) is
local asymptotically stable. If the condition (ii) holds, then A, and A, have opposite signs, hence
E;(0,y;), (i = 3,4) is saddle-node. Finally, if condition (iii) holds, then both eigenvalues are
positive, hence the point is an unstable node. o
Theorem 6: If any interior equilibrium point E*(x*, y*) exists, then this point is:

. L Ekym? m2y* Ekq kek
I.Saddle point If(Ek5+mx*)2 (k3+mx*) (Ek10+y*)?2  kg+mx

J11J22 < J12J21-
ii.Unstable node if

and T(J*) > 0.

>—1and - have opposite signs, and

Ek,m? m2y* Ek kok
4 y —1 and 9 6%7

(Ekg+mx*)2 ~ (kz+mx*)?2 (Ekqg+y*)? - kg+mx

- have the same signs
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. Ek,m? m2y* Ekq keks
iii.Stable node if Frarmn T Garme 1 and Ehoty e atmn

TJ") <O0.

where T'(J*) is trace of the Jacobian matrix at this point E*(x*,y*).
Proof: At E*(x*,y*), the Jacobian matrix is given by:

* Ek,m? m2y* N kq m
](x* y*) _ x ((Ek5+mx*)2 + (k3+mx*)2 B 1) —X ((1+k1y*)2 + k3+mx*) _ []]
’ kek,my*2 . Ekqg keks yl
(kg+mx*)2 y ((Ek10+y*)2 - k8+mx*)

If the condition (i) holds, then j;4j,, < 0 and itis clear that j;,j,; < 0= |J(x*,y*)| < 0= E*
is a saddle point. If the condition (ii) holds, then j;1j,, > 0 = [J(x*,y*)| > 0 = E*is unstable
node when T(J*) > 0. Similarly, E* is stable node when T(J*) < 0. ©
6. Bifurcation Analysis
This section is dedicated to study some potential bifurcation scenarios at the stable equilibrium
points of the system (5) when the parameter values are varied.
System (5) can be rewritten in the following vector forms to simplify the notations:

ax _ R _ [y

= F(X),withX = [y] and F = [yfz(x,y) .

Then the second derivate of F with respect to X can be expressed as:
D?F(X)(V,V) =

2k%v22x _ 2k3mv1v2 2k1v1v2 + 2]]2 (mz ( E2k4_k5 k3y ) _ )
1

- have the same signs and

(1+k1)?  (kstmx)?  (L+kgy)? (Eks+mx)3 ' (kg+mx)? (12a)
2E%kqgkovs  2keky(kgvy+mu,x—mv,y)? ’
(Ek10+y)3 B (kg+mx)3
where V = (v,,v,)T is a general vector. Furthermore, we have
D3F(X)(V,V,V) =
k2m2viv,  EZkuksm3v3 | kamPvi(vox—v1y) | k3vE(01—Kivpx+kiv1Y)
((k3+mx)4 " (Eks+mx)*t (ks+mx)* (1+ky)* ) (12b)
6kgk,mvy (kgv,+mv,x—mviy)?  6E%ki0kovs
(kg+mx)*  (Bkyoty)*

Theorem 7: If the parameter kg passes through the value ki = :—9 and ks(1 —k,) < kym,
10

then system (5) at the trivial equilibrium point E, has
i.No saddle-node bifurcation.
ii. Transcritical bifurcation provided that
kg # Eksky. (13)
iii.A pitchfork bifurcation otherwise.
Proof: At E, the Jacobian matrix of system (5) with kg = k¢ becomes:
1—k, -5 0
Jo = DF(Eo, k¢) = [ 2 ks l
0 0
Clearly, J, has a zero eigenvalue with another negative eigenvalue, and the corresponding

eigenvector for the zero eigenvalue can be written as:

0
While the eigenvector corresponding to the zero eigenvalue of J,” is determined as:
Wl = [0].
1

Differentiating F with respect to kg gives:

0
O

Therefore, straightforward computation shows that:
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W{ Fy (Eo, k¢) = 0.
Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near E, and
ke = k¢. Moreover, direct computation gives that:

W{[DFy, (Eo, k$)U;| =1 # 0.
Also, using the form of D2F given by equation (12a), and the eigenvectors U; with W, gives

that:
_ 2ko(kg—Ek7kq0)

WlT[DZF(EOI k;)(Ull Ul)] - Eksk%()
Therefore, condition (13) guarantees that W[[D?F(Ey, k;)(U;,U;)] # 0. Hence, by
Sotomayor’s theorem, a transcritical bifurcation takes place.
Otherwise, W[ [D?F(E,, k;)(U;,U;)] = 0. In addition, using the form of D3F given by

equation (12b), and the eigenvectors U; with W, gives that:
* 6k
W [D3F (Eo, kg)(Uy, Uy, Up)] = _Ez—kgfo * 0.
Hence, a pitchfork bifurcation takes place, and the proof is complete. o

Theorem 8: Assume that Ek,m? < (Eks + mx;)? near any of the predator-free equilibrium
points E;(x;, 0), (i = 1,2), then if the parameter k¢ passes through the value k; = :—9 then the
10

system (5) at this equilibrium point has
i.No saddle-node bifurcation.

ii.Transcritical bifurcation provided that
1 kioks
= F—
E kg+mx;
iii.A pitchfork bifurcation otherwise.
Proof: At E;(x;,0), (i = 1,2), the Jacobian matrix of system (5) with ks = k¢ becomes:

(14)

Ek,m? m
]i = DF(E“ k;) = [Xi ((Ek5+mxi)2 N 1) _xi (k1 T k3+mxi)l.
0 0

Clearly, J; has a zero eigenvalue with another negative eigenvalue, and the corresponding
eigenvector for the zero eigenvalue can be written as:
_[G
U, = | : |
where

C = (Eks+mx;)?[m+kq(k3+mx;)]
17 (kg+mx))[Ekam2—(Eks+mx;)2]

Clearly C; < 0, due to given condition.
While the eigenvector corresponding to the zero eigenvalue of J;” is determined as:

w, = [2].

1

And,

W Fi, (Ey, k§) = 0.
Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near E; and
ke = k¢. Moreover, direct computation gives that:

W [DFy (E;, kU,] =1 # 0.
Also, using the form of D2F given by equation (12a), and the eigenvectors U, with W, gives

that:
g . _ 2ko (1 Kkioky
Wz [D F(EU k6)(U21 UZ)] - k%O (E k8+mXi)'

Therefore, condition (14) guarantees that W.J[D2F(E; k2)(U,, Uy)] # 0. Hence, by
Sotomayor’s theorem, a transcritical bifurcation takes place.
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Moreover, if condition (14) does not satisfy, then we have W} [D?F (E;, k})(U,, U,)] = 0. In
addition, using the form of D3 F given by equation (12b), and the eigenvectors U, with W, gives

that:
6k9 k6 k7mC1 1

T 3 * = 9 —
WIIDF (B k) Uy, U, Up)] = 2 [Jekomes L] g,
Hence, a pitchfork bifurcation takes place, and the proof is complete. o

Theorem 9: Assume that Ekgkq < kegk,(Ek, + y;)? near any of the prey free equilibrium
points E;(0,y;), (i = 1,2), then if the parameter k, passes through the value k; =

k":m —%, then system (5) at this equilibrium point has
5 3
i.No saddle-node bifurcation.
ii.Transcritical bifurcation provided that
B, #0 (15)

where
By = Eksk?(m(1 + kyy)? + kiks) — Co(1+ kyy)? (m?(ksks + Eks®y;) — Eks’ks” ).
iii.A pitchfork bifurcation if condition (15) does not satisfy and

mZCZZ _ k4m3C23 _ m3C23yi k%CZ
k3? E2kg® k33 + (1+kqy;)3 * 0. (16)
Proof: At E;(0,y;), (i = 3,4), the Jacobian matrix of system (5) with k, = k; becomes:
0 0

Ji = DF(Ei, k;) = |kekymy? ] ( Eko _ k6k7) .
k3 P \(Ek10+y)? kg
Clearly J; has a zero eigenvalue with another negative eigenvalue, and the corresponding
eigenvector for the zero eigenvalue can be written as:
_ [C2
Us = | : |
where

C. = kek7(Ek10+y;)2—Ekgky
278 kekmy;(Ekio+y)?
Clearly C, > 0, due to given condition.
While the eigenvector corresponding to the zero eigenvalue of J;” is determined as:

ws =[]

0

And,

W3TFk2 (E;, k3) = 0.
Consequently, by Sotomayor’s theorem, system (5) has no saddle-node bifurcation near E; and
k, = k3. Moreover, direct computation gives that:

WJ[DFy, (E;, k3)Us] = —C, # 0.
Also, using the form of D2F given by equation (12a), and the eigenvectors U; with W5 gives
that:

TIN2 * _ —2C3B;

W3 [D F(Ei' kz)(U3: U3)] - Ek33k52(1+k1yi)2'
Therefore, condition (15) guarantees that WJ[D2F(E; k;)(Us,U3)] # 0. Hence, by
Sotomayor’s theorem, a transcritical bifurcation takes place.
Moreover, if condition (15) does not satisfy, then we have WY [D?F (E;, k3) (U3, U3)] = 0. In
addition, using the form of D3 F given by equation (12b), and the eigenvectors U; with W5 gives

. m2C,%2  kym3C,2 m3G3y; k2c

that: W4 [D3F (E;, k3)(Us, Us, U3)] = 6( k322 - ‘*EZRS; - k323y (1+;1;i)3>.
Note that, condition (16) guarantees that W. [D3F (E;, k3)(Us, U3, U3)] # 0. Hence, a pitchfork
bifurcation takes place, and the proof is complete. ©

268



Al-Momen and Naji Iragi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282

2 2.0,%
Theorem 10: Assume that —4™ mY < 1and —2k “6k7_ near the any of
(Ekg+mx*)2 =~ (kz+mx*)?2 (Ekqo+y*)? kg+mx*
the interior equilibrium points E*(x*, y*), then if the parameter k, passes through the value:
* % j11Ek9(k3+mx*)2
k6 =
k7 (Ek1o+y*)2(my* jip+(kg+mx*)j11)
Then system (5) at this equilibrium point has saddle-node bifurcation provided that:
mk,y*? 2k7y”
(kg+mx*)2 C3 +1- kg+mx* #0, (17)
C4611 + 521 * O, (18)

where all new symbols are given in the proof.
Proof: Consider the Jacobian matrix of system (5) at E* with k, = k" that can be written as:

jll j12
]*(E*, k6**) == . * . * |-
J21 J22
where
. Ek,m? m2y* ) — *( kq m )
Jin =X ((Ek5+mx*)2 T (kg +mx*)2 1) jiz=—x (1+k,y*)? t ks+mx*)’
. ox _ keTkymy*? . . *( Eko _ ke"ky )
Jz1 (kg+mx*)2’ J22 y (Ekio+y*)?  kg+mx*/)’

Straightforward computation shows that |J,| = j;1j22" — ji2j21~ = 0, and hence J, has a zero
eigenvalue, and the corresponding eigenvector for this eigenvalue can be written as:

_[G
Uy = | . |
where _
C;=—-22<0.
J11
While the eigenvector corresponding to the zero eigenvalue of J,” is determined as:
_ [Ca
w, = - |
where
C,=—-2>0.
J11
And,

* *k % k.y*
W] Fiey (B ke™) = y* (1 —7—y) £0.

kg+mx*
Consequently, by Sotomayor’s theorem, system (5) satisfies the first condition of saddle-node
bifurcation near E* and k,"*. Moreover, direct computation with the use of conditions (17) and
(18) gives that:

T % *% _ mk7y*2 _ 2k7y*
W/ [DFy (E*, k"™ U,] = G Gt 1= # 0
WS [D?F(E* kg )(Uy, Uy)] = C4811 + 821 # 0
where
_ _2kix*  2ksmC3  2k4Cs 2 [ 5 E?kuks ksy* _ ]
117 (14kyy"3  (kz+max®)?2 (1+kyy*)? +2637|m ((Ek5+mx*)3 t (k3+mx*)3) 1],

50r = 2E%kq0ko _ 2k k7 (kg+mx*—mCzy*)?
217 (Bkyo+y™)3 (kg+mx*)?

represent the elements of D2F (E*, k") (U,, U,). Hence, a saddle node bifurcation takes place,

and the proof is complete. o

7. Numerical Analysis

The overall dynamics of system (5) are numerically investigated in this section for various sets

of initial values and parameter values. This study aims to demonstrate the impacts of changing

parameter values on the system's dynamical behavior and to validate the theoretical results

achieved. The numerical simulations are carried out using a combination of parameter values

given in Table (1) and Table (2).
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Table 1- Set #1 of parameter values

Parameter: ky k, ks ks ks ke k, kg ko ki E m
Value: 235 | 0.13 | 047 | 0.3 | 061 | 0.87 | 079 | 0.06 | 0.1 | 0.4 | 0.92 | 0.12
Table 2- Set #2 of parameter values
Parameter: ki | ky | ks | ky | ks | ke | ky | kg | ko | ko | E m
Value: 2.37 [ 024 [ 013 [ 008 |01 |01 |017 [013 |01 |0.15 |0.11 |0.75

As previously mentioned in section 4, there is a various number of equilibrium points for
different values of parameters. Figure 1 shows two examples of that.

Now, using the parameters given in Table 1 with various sets of initial points, system (5) is
solved numerically, and then the trajectories that have been obtained are drawn in form of
direction field and phase portrait as shown in Figure 2. It is clear from this figure that there are
4 equilibrium points: one trivial, one predator-free, one prey-free, and one interior equilibrium
point. The interior equilibrium point is stable (spiral sink), while the others are unstable.
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x(t) x(t)
@ (b)
I‘\ \ \ R e
\ . Nl i Sl
IR INSS————
|\ 9 N e T
AN B NN
\ ~2 > ST R T ~
e e
L] e *f —_— .
ﬂ-/ P
‘.‘ / P
| r'/ // /
[/
/Y
(c) (d) (e)

Predator free

Trivial equilibrium

Prey free equilibrium

Interior equilibrium

point (0,0) nodal point (0,0.057543) equilibrium point point
source saddle point (0.81979,0) saddle (0.559785,0.126559)
point spiral sink

Figure 2- For the parameters given in Table (1) with different initial points (a)
The direction field of the system (5) (b) The phase portrait of the trajectories of
the system (5) (c)-(f) The dynamic behavior near the 4 equilibrium points.
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Three different initial points near the interior equilibrium point are selected randomly and then
the time series for the obtained trajectories of system (5) are drawn in Figures 3. The trajectories
of system (5) approach to that point as shown in Figure 3.

——started at 0.032633 ——started at 0.24252
started at 0.74875 started at 0.86019
08" -~ started at 0.16924 08¢t ~——started at 0.47942
0.6 506
- 2
g 3
a o
04| 004
0.2 0.2 \
O L L L 1 1 1 L 1 L 1
0 20 40 60 80 100 20 40 60 80 100
t t
(@) (b)

Figure 3- The solutions of system (5) approaches asymptotically to the interior
point (0.559785,0.126559) using parameters in Table (1) (a) Prey trajectories (b)
Predator trajectories as a function of time.

Figure 4 shows that by putting k¢ = :—9 and keeping the values of other parameters in Table
10

(1), then instead of four equilibrium points, system (5) will have just two: the trivial and the
predator-free equilibrium points. Both of them are nonhyperbolic equilibrium points. This
agrees with the results of both Theorem 7 and Theorem 8.

10/
|
»l

0.8

0.6
=
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x(t) x(t)
(a) (b)

Figure 4-The dynamical behavior of system (5) with parameter values in Table (1)
(a) when kg >-2 = 0.25 (b) when k; <= = 0.25.
10 10
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1 kym  my;

Figure (5) shows that by putting k5 > — ——-—==0.81 and keeping the value of other
1+k1yi k5 k3

parameters in Table 1 then instead of four equilibrium points, system (5) will have three
equilibrium points: the trivial, one predator-free, and one prey-free equilibrium point.
Moreover, the prey-free equilibrium point will change its behavior from saddle-node to nodal
sink. This agrees with the result of Theorem 9.

y(t)

00 02 04 06 08 10 00 02 04 06 08 10
x(t) x(t)

. (a) . . (b) .

Figure 5- The dynamical behavior of system (5) with parameter values in Table-1

% 1 kym my; _ % 1 ksm my;
(a) when k; < Ty s 0.81 (b) when k; > = 0.81.

As mentioned previously, system (5) has a rich dynamic behavior, for example, Figure (6)
shows the behavior of the system under influence of set #2 of parameter values which are given
in Table 2. In this case, there are six equilibrium points: (i) one trivial saddle equilibrium point
(ii) one predator-free nodal sink (iii) two prey-free equilibrium points, one of them is saddle
point and the other is a nodal sink (iv) two interior equilibrium points, one spiral source and the
other is a saddle point.
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Figure 6-For the parameters given in Table 2 with different initial points (a) The
direction field of the system (5) (b) The phase portrait of the trajectories of system
(5) (c)-(f) The dynamic behavior near the 4 boundary equilibrium points. (g)-(h)
The dynamic behavior near the 2 interior equilibrium points.

Figure 7 shows that for set #1, as the value of the level of fear induced by predator population
(k,) increases, the unique interior equilibrium point converges to the prey-free equilibrium
point and preserves its behavior as a spiral sink. While Figure 8 shows that for set #2 with an
increase in the level of fear induced by predator population (k,), the two interior equilibrium

273



Al-Momen and Naji

Iraqi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282

points converge to each other and then unify and disappear. When these two points exist, they
preserve their behavior, the right one is always saddle-node while the left one is always a spiral
source.
re
|
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x(t) x(t)

(c) (d)
Figure 7- The interior equilibrium point of set #1 (the point in green) converges
to the prey-free equilibrium point with the increase of the value of k, (a) k; =2
(b) ky =15 (¢) ky =30 (d) k; = 68.
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00 02 04 06 08 10 00 02 04 06 08 10
x(t) x(t)
(c) (d)

Figure 8-The two interior equilibrium points of set #2 (the points in green)
converge to each other with the increase of the value of k; (a) k; =1 (b) k; = 2.5
(C) kl = 3.2 (d) k]_ = 3.3

Moreover, to explore the effect of harvesting, Figure 9 shows that for set #1, as the value of the
catchability coefficient of prey (k,) increases, the unique interior equilibrium point converges
to the prey-free equilibrium point and preserves its behavior as a spiral sink. While Figure 10
shows that for set #2, the two interior equilibrium points converge to each other and then unify
and disappear. When these two points exist, they preserve their behavior, the right one is always
saddle-node while the left one is always a spiral source.

275



Al-Momen and Naji

Iraqi Journal of Science, 2022, Vol. 63, No. 1, pp: 259-282

1.0»"1111

0.8} 1

0.6/
= =
0.4/
0.2/
0.0t
00 02 04 06 08 10
x(t) x(t)
(@)

(b)

y(t)

y(t)

00 02

04 06 08 10 00 02 04 06
x(t) x(t)
(c) (d)

Figure 9-The interior equilibrium point of set #1 (the point in green) converges to
the prey-free equilibrium point with the increase of the value of k, (a) k, = 0.25
(b) k4, =09 (c) k, = 1.8 (d) k4 = 3.74.
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Figure 10-The two interior equilibrium points of set #2 (the points in green)
converge to each other with the increasing of the value of k, (a) k, = 0.08 (b) k, =
0.11 (c) k, = 0.18 (d) k, = 0.2013.

Also, Figure 11 shows that for set #1, as the value of the catchability coefficient of predator
(ko) increases, the unique interior equilibrium point converges to predator-free equilibrium
point and preserves its behavior as a spiral sink. At the same time, for set #2, the two interior
equilibrium points follow a similar scenario to that appear in Figures 8 and 10, where the two
points combine with each other and then disappear. On the other hand, decreasing the value of
this parameter toward zero makes the right interior equilibrium point goes toward the predator-
free equilibrium point, while the left interior equilibrium point goes toward the prey-free
equilibrium point and then toward the trivial equilibrium point as shown in Figure 12.
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Figure 11- The interior equilibrium point of set #1 (the point in green) approaches

the predator-free equilibrium point with the increase of the value of kq () kg = 0.1
(b) kg = 0.2 (¢) kg = 0.3 (d) kg = 0.3475.
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Figure 12- The right and left interior equilibrium points of set #2 (the points in
green) go toward the predator-free and prey-free equilibria respectively, when the
value of k4 decreases toward zero, (@) ko = 0.1 (b) kg = 0.07 (C) kg = 0.04 (d) kg =
0.0155.

8. Discussion and Conclusions

In this study, a modified Leslie-Gower predator-prey model is proposed and discussed. Fear
of predation and harvesting are both factored into the model's design and studied. According to
Holling type-I1 functional response, which is also used to characterize the harvesting process,
the predator consumes food. The solution's positivity and boundlessness have been
demonstrated. All of the system's probable equilibrium positions are identified. These
equilibrium points' local stability is explored, and their requirements are provided. The system
shows it has several boundaries and interior equilibrium points, which complicates the study.
The effect of changing the parameters on the model's dynamics is investigated by looking at the
possibilities of local bifurcation types such as saddle-node, transcritical, and pitchfork
bifurcation. Two sets of hypothetical data parameters are used to analyze the system's global
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dynamics numerically. The existing equilibrium locations and the solution behavior
surrounding them are depicted using phase portraits and direction fields. The system has a
single globally asymptotically stable interior equilibrium point with two axial saddle-node
equilibrium points and an unstable trivial equilibrium point for the data in set #1. The system
has two unstable interior equilibrium points (one unstable spiral and the second is a saddle
point) with three axial equilibrium points (two of which are locally asymptotically stable with
their own basin of attraction for each of them and the third point is a saddle point) and a saddle-
node trivial equilibrium point for data set #2. This ensures that the system’s dynamics are rich,
and the number of equilibrium points is determined by the data parameters.

The impact of fear rate on the system's dynamics is also explored. For set # 1 data, increasing
fear rate produces a gradual decrease in prey population until the system reaches prey
extinction, and the interior equilibrium point coincides with the prey-free equilibrium point,
which becomes globally asymptotically stable. In the set #2 data, however, raising the fear rate
causes the two inner equilibrium points in the positive quadrant to be combined, resulting in a
saddle-node point. According to the preceding discovery, fear rate acts as a bifurcation
parameter, causing extinction in prey species when its value rises above a certain threshold.
When the value of the catchability coefficient of the prey increases, similar observations are
made as with the fear rate. Furthermore, when using set # 1 data, as the value of the predator’s
catchability coefficient increases, the system behaves similarly to that obtained when increasing
the value of the prey's catchability coefficient, except that the interior equilibrium point
combines with the predator-free equilibrium point, which then becomes globally asymptotically
stable. The system behaves similarly when using set # 2 data. Finally, given set # 2 data,
decreasing the predator species' catchability coefficient causes each of the interior equilibrium
points to be combined with the nearest axial equilibrium point, and the system's solution
approaches asymptotically to the prey-free equilibrium point.
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