Abbas et al. Journal of Science, 2017, Vol. 58, No.3C, pp: 1720-1728
DOI: 10.24996/ ijs.2017.58.3C.15

Iraqi
Journal of

Science

ISSN: 0067-2904

Some Generalizations of Semisimple Gamma Rings

Mehdi S. Abbas, Saad Abdul kadhim Al-Saadi, Emad Allawi Shallal”
Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper we introduce and study the concepts of semisimple gamma modules
, regular gamma modules and fully idempotent gamma modules as a generalization
of semisimple I' —ring. An R —module M is called fully R, —idempotent
(semisimple , regular) if N = (N:z, M)I'N for all R —submodule N of M (every
R —submodule is a direct summand, for each m € M, there exists f €
Homg, (M,R) and y € I' such that m = f(m)ym. We study some properties and
relationships between them.
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1. Introduction

Let R and I" be two additive abelian groups, R is called a I —ring (in the sense of Barnes), if there
exists a mapping - : R X I' X R — R, written - (r,y,s) + rys such that (a + b)ac = aac + bac,
a(a + B)c = aac + afic,aa(b +c) = aab + bac and (aab)Bc = aa(bBc) for all a,b,c €R
and a,f €' [1]. A subset A of I" —ring R is said to be a right(left) ideal of R if A is an additive
subgroup of R and AT'R € A(RI'A € A), where ATR ={aar:a €A, a €', r € R}. If A is both
right and left ideal, we say that A is an ideal of R [1]. Anelement 1 in I' —ring R is unity if there
exists element y, € I" such that r = 1y,r = ry.1 for every r € R, in this paper we denote y, € I" to
the element such that 1y, is the unity [2]. A I" —ring can have more than one unity. A I' —ring R is
called commutative, if ayb = bya foranya,b € Randy € I' [2].

Let R be al —ring and M be an additive abelian group. Then M together with a mapping
“RXI'XM - M, -(r,y,m) — rymsuch that ry(m; + my) =rymy +rym, , (r +nr)ym=
nym+nrym ,r(y+p)m =rym +rfm, (nyr,)fm = ry(r,fm) where r,r,1, €R, y,B €T
and m,m;,m, € M is called a left R —module, similarly one can defined right R —module [1]. A
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left R —module M is unitary if there exist elements, say 1 in R and y, € I" such that 1y,m = m for
every m € M [1].

Let M be an R —module. A nonempty subset N of M is said to be an R —submodule of M
(denoted by N < M) if N isasubgroup of M and RI'N € N, where RN ={ran: r€R, a €T,
n € N }[1]. An R —module M is called simple if RI'M # 0 and the only R —submodules of M are
M and 0 [3]. AT —ring R is called simple if R is simple R —module. An R —submodule N of
R — module M is called essential (denote by N <, M) if every nonzero R —submodule of M has
nonzero intersection with N, equivalent to, for each nonzero element m in M there is ry, 75, ...,7, € R
and yq,v¥a, ..., ¥n € I such that X1~ r; y;m(# 0) € N [4]. If X is a nonempty subset of M, then the
R —submodule of M generated by X denoted by (X) and (X) =n{N < M:X < N}, X is called the
generator of (X) and (X) is finitely generated if |[X| < oo, then (X) = {312, n;x; + Z;‘zlrjijj tk,m €
N,n; € Z,y; €I',1; ER,x;,x; €EX} , In particular , if X ={x}, then(X) is called the
cyclic R —submodule of M generated by x. If M is unitary, then (x) = {3 riyix :n€N,y; €
I',r; € R} [1]. An R —submodule N of M is a direct summand if there is an R —submodule K of
Msuch that M =N+ K and NN K =0, in this case M is written as M = N @ K [5]. An R —
submodule N of M is closed in M if the only solution of the relation N <, K < M is N = K [5].

Let M and N be two R —modules. A mapping f:M — N is called homomorphism
of R —modules (simply R —homomorphism) if f(x +y) = f(x) + f(y) and f(ryx) = ryf(x) for
each x,y € M,r € R and y € I'. An R —homomorphism is R —monomorphism if it is one-to-one
and Ry —epimorphism if it is onto, the set of all R, —homomorphisms from M into N denote by
Homg (M, N) in particular if M = N, Homg (M, N) denote by Endg.(M). If M is R —module, then
Endg,.(M) is a I' —ring with the mapping -: Endg,.(M) X I' X Endg, (M) — Endg.(M) denoted by
“(f,v,9) » frg where fyg(x) = g(f(lyx)), for f,g € Endg (M) ,y €l and x € M. If M is a
left R —module, then M is a right Endg.(M) -module with the mapping =M X I' X Endg (M) —
M by - (x,v,f) » xyf where xyf = f(1yx), for f € Endg.(M) ,y € I' and x € M [1]. The set of
rational numbers and the set of integers will be denoted by Q and Z. All modules in this paper are
unitary left R, —modules
2. Fully Idempotent Gamma Modules

In this section we introduce the concept of fully idempotent gamma modules and give some basic
properties and characterizations of this concept.

Let N be an R —submodule of an R —module M. Then the residual of N in M denoted by
(N:g,. M) = {r € R:ir['M S N}, which is a left ideal of R [1]. An element r of a I' —ring R is called
idempotent if r = ryr for some y € I' [3]. The ideal I of a I' —ring R is called idempotent if I = IT'I
and R is called semisimple if every ideal of R is idempotent [6]. An element x of an R —module M
is called idempotent if there exists t € (Rx:g M) such that x =tx [7]. A submodule N of
an R —module M is called idempotent if N = (N:x M)N and M is called fully idempotent if every
submodule of M is idempotent [8].

Remarks (2.1): Let N,Kand L are R —submodules of an Rp —module M and f € Endg.(M).
Then

If K <N, then(K:.L) S (Nig,. L)

If K <N,then(L:z.N) S (Lig.K).

. (Nig, M)N(K:g,. M) = (NNK:g,. M).

. (Nig. M) € (N:g, f(M)N(F(N):,. f(M)).

. (Lg.N +K) = (Lig, N)N(Lig,. K).

Definition (2.2):

An R —submodule N of R —module M is called Ry —idempotent if N = (N:g. M)I'N and M is
called fully R —idempotent if every Ry —submodule of M is Ry —idempotent. A T —ring R is called
fully R —idempotent if it is fully R —idempotent R —module, that is R is semisimle I —ring.
Proposition(2.3): Let M be an R —module. Then M is fully R —idempotent if and only if every
cyclic R —submodule is R —idempotent.
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Proof:

Assume that N<M, if x €N, then (x)=((x).M)I(x), so x € ((x)r. M)['(x) <
(N:g,. M)I'(x) € (N:g M)I'N,hence N = (N:g. M)I'N.

Proposition (2.4): Let M be an Rr —module. Then M is fully R —idempotent if and only if for any
element x € M, there exist ty, tp, ..., t, € ({x):r. M) and y4,Y, ..., Yn € I such that x = ¥, tyyx.
Proof:

Assume that (x) = ((x):r, M)T(x), S0 x = ty X]L, ryyix where t € ((x):r. M), v,vi €T and r; € R,
then x = YjL,(tyr;)yix. Foreachi=1,..,n,B€,m e M, (tyr;)fm = ty(r;fm) € tI'M C (x), SO
tyr; € ((x):g, M) for each i=1,..,n. Conversely, for each x € M, x =YL, t;y;x where t; €
((x):r,M) and y; €T, s0 x € ((x):ig, M)T(x), s0 (x)=((x):g. M)I(x), hence M is fully
Rr —idempotent by proposition(2.3).

An R —module M is called multiplication if for each R —submodule N of M, then N = IT'M for
some left ideal I of R. This is equivalent to saying that N = (N:x. M)I'M for every
Ry —submodule N of M [2].

Proposition(2.5): Every cyclic Rr —module over commutative I' —ring is multiplication.

Proof: Let N be an R —submodule of cyclic R —module M, then there is x € M such that = (x) , if
n €N, then n=Y" ry;x where ; €ER and y; €' . Now for each B €' and m € M, then
Eizirvil)pm = Qe v DB =1 s4ix) = L1 Yo iyl BsiAx =
Y D (v DB Yx = X D (SiAD Brivil) vex = Yooy siA 1B Xy (ryil)yex =
Yi1si41Bn €N, so Y (ryi1) € (N:g, M), hence N & (N:g. M)y.x S (N:g. M)I'M, thus
N = (N:g,. M)['M.

Proposition (2.6): Let M be an R —module, Kand N be Ry —submodules of M. Then

1- If N is Ry —idempotent submodule of M, then N is multiplication , and hence every fully
R —idempotent is multiplication.

2- If K and N are R —idempotent R —submodules of M, then so is K + N.

3-  Let R be commutative I' —ring. Then

(i) If I is idempotent ideal of R and N is R —idempotent M, then II'N is R, —idempotent
submodule in M.

(i) If K is R —idempotent in N and N is R —idempotent in M, then K is R —idempotent in M.
Proof:

1. N=(N:g.M)NES (Nig. M)ITM S N,s0N = (N:p. M)I'M.

2. K+N= (K M)TK+ (N:g, M)IN < (K+N:zg. M)TK+ (K+N:x.M) I'N =(K+

N:g. M)I' (K + N).

3. ()
(IFN:g, M) (ITN) € IT'N = (IFNDI’(N:g. M)I'N = IT'(N:g M)TITN S
(IFN:g. M)I (ITN), s0 IT'N = (II'N:g. M) (ITN).
(i) (K N)I'N = (K:g. N)[(N:g. M)I'N S (K:g. M)I'N S (K:g.N)I'N, then (K:p. N)I'N =
(K:g.M)IN, also K = (K:.N)[K S (K:g.N)IN = (K:g. M)[N S (K:p. M)IM S K, s0
K = (K:ig, M)IN, thus K = (K:z.N)I'K = (K:g. N)I'(K:g. M)I'N = (K:,. M)['(K:g,. N)I'N =
(K:z. M)IK.

The following proposition shows that the concept of fully R —idempotent generalizes that of
semisimple I' —ring.

Proposition (2.7): If R is fully R —idempotent I' —ring, then R is semisimple. The converse holds
when R is commutative.
Proof:

Assume R is a fully R —idempotent I' —ring and I'is an ideal of R, then I = (I:g, R)I'I. For each
t € (.. R), then t =ty, 1 € tTR € I, so (l:;g. R) €I, thus [ = (I:g . R)['T < ITT & RI'T < I and hence
[ = ITT. Conversely, let I be an ideal of R, it's enough to show that I < (I:g.R), since 'R € RI'T <
thenT < (L:ig.R), hence I=1IIT< (g, R)TT< I, thusI = (L:g, R)TT.
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Examples and Remarks (2.8):

1- Every idempotent element in R —module M is Ry —idempotent and every idempotent
submodule N of M is idempotent R —submodule.

2- Every R —submodule of fully R, —idempotent also fully R, —idempotent. Let B is an
R —submodule of M, for any R —submodule N of B, then N = (N:z. M)I'N , by Remarks(2.1)
(N:g,M) S (Nig.B), so N=(Nig.M)INS (N:ig. B)I[NSRINSN, thus N=
(N:g. B)IN.

3- Every simple R —module is fully R —idempotent.

4- Let R=2Z,,'=Zand M = Z,®Z,. Then M is not fully R —idempotent, since Z,@(0) is not
R —idempotent submodule. Note that M is not multiplication .

5- LetR={(nn),n€Q}and I' = {(;) ,X,y €Q},then Ris I' —ring with :R X I' X R = R by
(n n) (;) (m m) = ((nx + ny)m (nx + ny)m), since for any nonzero ideal I of R, take

0# (m m) el we can choose x:yzﬁ , then (m m) =(m m)(;)(m m) € IT'], so

I = IT'I, hence R is semisimple and by proposition(2.7) R is fully R —idempotent.
1- Fully R —idempotent R —module over simple I' —ring is simple. For each nonzero R, —
submodule N of M, then N = (N:gx M)I'N, so (N:x M) =R, hence M = R’'M = (N:x M)TM € N,
thus M = N.

The product of two R —submodules N and K of an R —module M define as
NK = (N:x M)(K:x M)M [9].
Definition (2.9):

Let N and K are R —submodules of an R —module M. The product of N and K define by
= (Nig. M)I'(K:p, M)I'M .

The following proposition gives a characterizations of fully R —idempotent R- —modules.
Proposition (2.10):

Let M be R —module, then the following are equivalent:
1- M isfully R —idempotent.
2- N = N?forall R —submodule N of M.
3- NnNK = NK forall R —submodules N and K.
Proof:
(1)=>(2) For each R —submodule N of M, N = (N:z. M)I'N, then N = (N:g. M)I'(N:g. M)I'N S
(N:g, M)I'(N:g. M)IM S (N:g, M)IN S N, so N = (N:g. M) I'(N:g, M)IM = N2 (2) = (3)
For each R —submodules N and K, then NnK = (NN K)? = (NN K:z. M)[(N N K:p . M)['M S
(N:g, M)I'(K:g, M)TM =NK, so NNKGSNK, since NK= (N M)[(K:p.M)I'M S
(N:g, M)TK S K also NK = (N:g. M)I'(K:g, M)TM S (N:g. M)I'K S N , then NK S N n K, thus
NK=NnK.(3=(1)N=NnN=NN=N?2

We have proved that every fully R —idempotent R —module is multiplication, in the following
corollary we discuss the converse.
Corollary(2.11): Every multiplication Ry —module over semisimple T —ring is fully Rp—
idempotent.
Proof:

Let M be a multiplication Ry — module and N<M, then
N = (N:g, M)I'M = (N:g. M)I'(N:g, M)I'M = N?, hence M is fully R, —idempotent.

Let M and N be two R —modules. Then M is called N —injective if for any R —submodule A of
N and R —homomorphism f:A — M, there exists an R —homomorphism g: N — M such that
gi = f where i is the inclusion mapping. An R —module M is injective if it is N —injective for any
R —module N. Every R —module M can be embedding in injective R —module which is called
injective hull E(M) [4]. An R —module M is called quasi-injective if and only if M is M —injective
[5].
Proposition(2.12): Let M be an R —module with injective hull E(M). If M is R —idempotent of
E (M), then M is quasi-injective.
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Proof:
Assume that M is Ry —idempotent of E(M), then M = (M:z. E(M))I'M, then for each f €

Endg (E(M)), f(M)=f ((M:Rr E(M)) FM) = (Mg EQD)) TF(M) € (M:g, E(M)) TE(M) <
M, thus M is quasi-injective [5].

An Ry —module M is called duo if f(N) € N for each R —submodule Nof Mand f €
Endg,.(M). It is easy to see that every multiplication is duo.
Proposition(2.13): Let M be fully Rp — idempotent. Then M is duo.
Proof:

For each Rr — submodule N of M and f € Endg.(M), then N = (N:g. M)I'N. So f(N) =

f((N:g M)TN) = (N:g M)TF(N) S N.

The converse of Proposition(2.13) is not true in general for example Z,as Z, —module is
multiplication and hence duo but not fully R- —idempotent.

An R —submodule of quasi-injective need not be quasi-injective for example see Example(2.3) [4].
Corollary(2.14): Let M be fully R —idempotent. Then M is quasi-injective R —module if and only if
every R —submodule of M is quasi-injective R —module.

Proof:

Assume that N is R —submodule of a quasi-injective R —module M, let K be R —submodule of
N and let f: K - N be R —homomorphism, since M is quasi-injective, then there exists an R —
homomorphism g: M — M such that giyix = iyf where iy and iy are inclusion maps, clear that g is
extended of f and by Proposition(2.13) g(N) S N. The converse is obvious.

3. Semisimple Gamma Modules

In this section we extended the concept of semisimplicity from category of modules to the category
of gamma modules.
Definition(3.1):

An R —module M is called semisimple if every R, —submodule is a direct summand.
Examples(3.2):

1- R=1ZgisZ;—ringWwith :Zg ¢ Z ¢ Zg = Zg by (n, k, m) +— nkm, the only ideals of Z, are 0,
Ze , (2) and (3) , then Z is semisimple.

2- Let R={(a b),a,b € Q}(where Q is the ring of rational numbers) and I" = {(;) ,X,y € Q}.
Then R is I' —ring with R x I' x R = R by (a b) (;) (c d) = ((ax + by)c (ax + by)d). Take

J ={(2n2m),n,m € Q}, then (ab) (lz) (2n 2m) = (ax + by)(2n 2m) = (2(ax + by)n 2(ax +
by)m) = (2n, 2my) €] ,s0 RI'J ], hence J is a left ideal of R, for any anther left ideal N of R,

let 0% (k t)€N, then (2k 2t) €] and since RI'N € N, for (1 1)€R,G

11) (D (kt) = (2k 2t) € N, hence NnJ # 0, so J can not be direct summand of R, thus R is not
semisimple R —module. It is noted that R is semisimple I" — ring, since if I is an ideal of R, then for
each (a b) € I we can choose y = (lz) € I" such that if :
(1) a=0andb =0 then k=0andt =0.
(i)- a#0andb =0 then k =2 andt = 0.
(iii) a=0andb+#0then k=0andt =1
(iv)-a#0andb#0 thenk =L and t = L. Then (a b) = (ak + bt)(a b) = (a b) (]:) (a b) €
ITI,s01 € IT'l, hence I = II'l , therefore R is semisimple I —ring.
3- Everysimple R —module is semisimple.

4- LetR' = {(g lc’),a, b,c € R ring of real numbers}, I' = R, then R" is I' —ring with -: R" X I' X

, / a b X Y\ _ (axn ayn+ bzn _((0 b . .
R' - R' by (0 c)n(O Z)—( 0 czn ).Take Ll—{(0 0),beR}, L, is a left ideal
of R" and R’ is not semisimple I —ring since L;I'L; = 0 # L;.

) € we have

1724



Abbas et al. Journal of Science, 2017, Vol. 58, No.3C, pp: 1720-1728

In the category of module it is known that a submodule is a direct summand if an only if there exists
f € End(M) suchthat N = f(M) and f = f2.

Proposition(3.3): Let M be Rr —module, then M = Myf@My, (I — Iyf) for any f € Endg.(M) such
that f = fyf for somey €T.

Proof:

For each x € M, then x = x + f(1yx) — f(1yx) = f(lyx) + I(x) — f(Qyx) = f(Qyx) + (I —
Iyf)(Ayv.x) = xyf +xy.(I — Iyf) € Myf + My.(I = Iyf) , so M = Myf + My.(I — Iyf). Now if
y € Myf n My,(I — Iyf), then y = xyf = ty,(I — Iyf) where x,t € M, hence y = f(1lyx) = (I —
Iyf)(Ay.t) = t = Iyf()=t — f(1yt), S0 yf(y) = 1yf(®) = lyf(F(yt) = 1yf(t) —
f(lyf(yt)) = yf(©) = (FyH(Ayt) = 1yf(8) — 1yf(t) = 0, hence 0 = f(lyf(»)) = f(¥), but
fO) = f(f(yx)) = (Ffyf)(x), therefore y = 1yf (x) = 0, thus M = Myf®My.(I — Iyf).
Corollary(3.4): Let M be R —module, then M = MI'f@®MI (I — Iyf) for any f € Endg,.(M) such
that f = fyf forsomey €I
Proof:

For any y € MI'f@®MI' (I — Iyf), y = xAf +tB(U — Iyf) where x,te€ M and A,B €T, so
y=fQAAx) + (I =Iy)ABt) = fyf(1Ax) +(I = Iyf)(1y.(1p1)) = f(1yf(1Ax)) + (1Bt)y.(I —
Iyf) =fA1yf+ Ay —Iyf) €Myf®My.(I —Iyf), hence MIfO®MI'(I—Iyf) <
Myf@®&My,(I — Iyf), thus MI'f@MI' (I — Iyf) = Myf@My.(I — Iyf).

Corollary(3.5): Let N be an Ry —submodule of R —module M. Then N is a direct summand of M if
and only if N = Myfwhere f € Endg (M) and f = fyf for somey € T.
Proof:

Assume N is a direct summand of M, then M = N®K for some R —submodule K of M, take
fiM—->Mbyf(n+k)=n foranyn € Nand k € K, then fy.f(x) = f(1y°f(x)) = f(x) forany
x€EMandN = f(M) = f(1y.M) = My.f.

Proposition(3.6): Every R —submodule of a semisimple R —module M is semisimple R —module.
Proof: For any R —submodule N of M, if K < N, then there exists an R- —submodule K; such that
M = K®K; ,hence N=NnM =N n (K®K,) = (NNK,)DK.

Proposition(3.7): If R is semisimple R —module, then R is semisimple I —ring.

Proof: Let I be anideal of R, then R = I®L for some ideal L of R,s01 =e; + e, fore; €1,e, €L
, then for each n € I,n = ny,1 = ny,(e; + e,), thus ny.e, =n—ny.e; EINL =0, hence n=
ny.e; € Iy,e; S Iy, 1,501 € IT'l < I, hence I = IT'I, therefore R is semisimple I' —ring.

The converse of Proposition(3.7) is not true in general, see Example(3.2)(2).

Proposition(3.8): Let M be a nonzero R —module. Then the following are equivalent:

1- M issemisimple R —module.

2- M issum of simple R —submodules.

3- M has no proper essential R —submodules.

Proof:

(1) = (2) To show M has simple R —submodule , if 0 # N < M, then for each K < N we have K is
a direct summand of N , so M =K@ K, ,hence N=NnM =Nn (K®K;) = (NN K,)®PK. Let
a(+ 0) e M, take 2 ={B < M:a & B} , then 2 # ¢ since 0 € 2 by using Zorn’s lemma there is
maximal element B of 2, a € B, hence B is a direct summand of M , then M = B@®C for some
R —submodule € of M. We claim C is simple , if not C has a proper R —submodule D # 0, so
C = D@E for some R, —submodule E # 0 since D is proper, hence M = B@D®E , by maximality
of B,ae B®&Danda € BOF ,soa=b+d=>b"+eforb,b’eB,deDande € E,thend =e +
(b'—b)eEDN(B®E) and e=d+ (b—-b')EEN(D®B) , hence d=e=0 and b =D>b', so
a = b € B which is a contradiction, thus C is simple R —submodule. Let N, is the sum of all simple
R —submodule of M, then there is L < M such that M = N,@L. If L # 0, then by proof L has a
nonzero simple R —submodule T, then T ¢ L n N, = 0 which is a contradiction, hence L = 0 and
M = N,. (2) = (3) Assume that M has a proper R —submodule A, then there is x € M — A and by
(2) M has simple R —submodule B’ such that x € B’, then AN B’ < B’, so either ANB' =B’ a
contradiction or An B’ = 0, thus A is not essential R —submodule of M. (3) = (1) Let A < M and
B complement of 4, then A®B <, M [5],so M = A®B.
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Proposition(3.9): Let R bea I' — ring. Then the following are equivalent:

1- R issemisimple R —module.

2- Everyideal of R is generated by an idempotent element.

3- Rissum of simple R —submodules.

4- Every R —module M has no proper essential R —submodules.

5- Every R —module is injective.

6- Every R —module is semisimple.

Proof:

(1)=(2) Let I be an ideal of R , By proof of Proposition(3.7), there exists e; € I such that n = ny,e;
for each n € I. In particular e; = e;y.e; therefore e, is an idempotent and n € (e;) , thus I < (e;).
(2)=>(1) Let I be an ideal of R. Then there exists an idempotent element e € R such that e = eye for
some yerland [ =(e). Foreach reR,r =rye+r—rye =rye+ry,1 —rye=rye+ry,1 —
(ry.1)ye , hence r =rye+ry,(1—1ye) , SO R S Rl'e+ RI'(1 — 1ye). For each x € Rle ,
X =Y nvie = e rivi(eve) = Qi rivie)ye = xye. Now if x € RI'(1 —1ye) , then x =
Yicanyi (L —1ye) = ¥l nyi 1 — Xiiinyilye, hence xye =YL ry; lye — X nyilyeye =
Yranyilye=Yi ryilye=0 , thus R = RTe®RI'(1 —1ye). (1)=B)=(4) by
proposition(3.8). (5)=(6) By proposition(1.9) [4]. (6)=(1) Clear. (1)=(5) Let M be an R —module,
for each ideal I of R and R —homomorphism f:1 — M, since R is semisimple R —module, then
there exists an ideal J of R such that R=1@ ] , define g:R—->M by g(r)=f() if rel
otherwise g(r) = 0 for each r € R, then g is extension of f ,so M is injective [4].

Semisimple R —modules and multiplications are different for example any semisimple
R —module over simple I —ring is not multiplication. Since for any nonzero R, —submodule N of
M, if there exists an ideal I of R suchthat N =II’'M = II'(N®K) = RN+ RI'K =N+ K # N for
some R, —submodule K of M which is a contradiction. In Particular ,Z,@®Z, as Z, — module is
semisimple R —module but not multiplication. The Z, — module Z, is multiplication but not
semisimple. Also semisimple R —module and fully R, —idempotent are different for example
M =27,®Z, as Z, —module is not fully R, —idempotent since every fully R, —idempotent is
multiplication. For fully R, —idempotent which is not semisimple see examples and remarks(2.8)(5)
R is not semisimple by proposition(3.7).

Proposition (3.10): Let M be multiplication Ry —module. If M is semisimple Ry —module. Then
M is fully Rp —idempotent.
Proof:

For each Ry —submodule N of M, M = N @ K for some R, —submodule K of M, since M is
multiplication, then N = (N:g. M)I'M = (N:g. M)I' (N + K) = (N:g, M)I'N + (N:p. M)I'K but
(N:g, M)TK € N NK = 0,s0N is R —idempotent submodule.

Proposition (3.11): If M is semisimple Rp —module, then M is quasi-injective.
Proof:

For each R —submodule N of M and R —homomorphism f: N — M, since M is semisimple
R —module, then M = N @ K for some K < M . So for each x € M, then x =n+ k wheren € N
and k € K, define g:M — M by g(x) = f(n) for each x € M, clear that g is R —homomorphism
and g is extended of f,so M is quasi-injective [5].

Lemma(3.12): Every I' —ring R is R —isomorphic to Endg.(R).
Proof:

Let R bea I' —ring. For a fixed element r in R we can define A,:R — R, by 1,(x) = xy,r for
each x € R, then 4, is R —homomorphism, that is A, € Endg.(R). Let R = {A,:7 € R}, then R is
abelian group with (1, + A) = A,.(x) + A,.(x) and R® is a I' —ring with -: R x I' x R®* — R¥, by
* (A, 7, As) — Ay A where A, yAg(x) = A;(1yA,(x)). For each f € Endg.(R), f(x) = f(xy.1) =
x¥.f(1) = A¢1)(x) , SO f = A¢(1y , hence RY = Endg_.(R). Define ¢: R —» R by (1) = 4,, it is easy
to show that ¢ is a Ry — isomorphism see[4,example(2.12)], hence R = R = Endg.(R).

Lemma(3.12) show that if R is a commutative then Endg, (R) is commuatative. But this may not
be true for an arbitrary R —module. For example consider V is a vector space over a field F of
dimension 2, then V is an Fr —module. Let f:V -V by f(v u)=(u v) and g:V =V by
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gw u)=(@w 0) be two R, —homomorphisms, then for each (v u)eV and yer ,
grfw W=f(lyglv w)=1yflv 0= 1yv) and frgv w)=g(lyf(v w)=
lyg(u v)=(1yu 0),so fyg # gvf.

Proposition(3.13): Let R be a commutative I —ring. If M is fully R —idempotent , then
Endg,.(M)is commutative.

Proof: For each f, g € Endg,. (M), y € I' and x € M, since f({x)) < (x) by Proposition(2.13), then
f@x)=Xionyix and g(x) =XTL;s;8jx where r,s;€R , y;,B €, then (fyg)(x)=
gAyf(x) = lygEisinvix) = lyQleanvig(x) = lyElea v Xie siBjx) =

ly(Qie1 XieanyisiBix) = Wyt XimanivisiBix) . but  myysiBix = (i Dy.(si8; Dy.x =
(B Y. (ryiDye.x = siBjmivix , s0 (fyg)(x) = ly(Xjr1 Xivq siBimivix) = ly Xz ;B8 f (%)) =
Lyf (X1 siBx) = (gvf)(x).

4. Regular Gamma Modules

In this section we extended the concept of regular gamma modules as a generalization of regular
modules and semisimple gamma modules.

There are deferent of definitions of the regular I' —ring. In [3] if R is I —ring , then x € R is called
regular if there exists s € R such that x = xysyx for some y € I' and R is called regular if every
element of R is regular. In [6] a I —ring R is called regular if for each x € R there exists s € R and
y,B € I' such that x = xysfx. In [10] a I' —ring R is called regular if for each x € R there exists
y € I' such that x = xyx. Note that if a I' —ring is regular in the sense of [10] and [3] ,then R is
regular in the sense of [6]. In this paper we take the definition of regular in the sense of [6]. A left
module M is called regular if for any element m € M there exists f € Homgz(M, R) such that
m = f(m)m [11].

Definition (4.1):

Let M be R —module. Then M is called regular if for each m € M, there exists f € Homg.(M, R)
andy € I' such that m = f(m)ym.

If R is a regular R —module, for each x € R, there exists f € Endg.(R) and y € I' such that
x = f(x)yx = 4.(x)yx = xy,ryx by lemma(3.12), so regular R —module is a generalization of
regular I —ring.

An R —module M is called projective if for each R —epimorphism a: A = B and : M — B , there
exists an R —homomorphism A: M — A such that aA=p [12].

Proposition (4.2): Let M be an Rp —module. Then M is regular if and only if every cyclic Ry —
submodule of M is a projective direct summand.
Proof:

Assume N = (x) be a cyclic R —submodule of a regular R —module M , there exists f €
Homg,.(M, R) such that x = f(x)yx for some y € I, define W = {m € M: f(m)yx = 0}, clear W is
R —submodule of M and for each teM , t — f(t)yx € W since f[t— f(O)yxlyx =[f(t) —
fU@r)lyx = fFOyx — fFOyfyx = f@yx — f(O)yx =0, hence t=(t—f(Oyx)+
f®yx €W +(x), so M €W +(x). Now if X, riy;x € WN(x), then 0= f L, riyix)yx =

LnyifOyx =Y ryx, thus M = (x)@W. Take e=f(x), then eye = f(x)yf(x) =
f(fx)yx) =f(x) =e, define @:Ry.e—>{(x) by ¢@(y.e)=(y.e)yx, then ¢ is an
R —isomorphism, hence (x) = Ry.e, so (x) is projective [12]. Conversely, for any x € M, there
exists an R —submodule N of M such that M = (x)@N. Define an R —homomorphism f: R — (x)
by f(r) =ry.x for each r € R. for each Y¥  ry;x € (x), then ¥X ryx = Gk ryiyx =
f(EX  rv:1), 50 fisan R —epimorphism , since (x) is projective, then there exists g: (x) — R such
that id.,, = fg. Define an R —homomorphism h:M — R by k(T ryix +n) = gCL,ryix),
then x = id(y(x) = f(g(x)) = g(x)¥.x = h(x)y.x , hence M is regular.

Examples (4.3):

1- Every R —submodule of regular R —module is regular.

2- In examples and remarks(2.8)(5) R is semisimple I —ring and fully R —idempotent, let J any
principle ideal of R generated by the element (m m), for any another ideal L # 0 of R, take 0 #
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(s s) €L, then (s S)G)(m m)=(m+sm sm+sm)eJNL, hence JNnL=+=0,s0] can not

be direct summand in R, thus R is not regular.
Proposition (4.4): If Ris regular I —ring, then R is semisimple.
Proof:

Foreachideal I of R, let n €1, then n = nysfn forsome s€ Rand y, €I ,s0n € Iyl € ITT,
hence I = IT'L.

Proposition( 4.5): Let M be duo regular Rr —module. Then M is fully Ry —idempotent.
Proof:

For each x € M, there exists f € Homg (M, R) and y € T' such that x = f(x)yx. If f{(x)Pm € f(x)I'M
where 8 € T'and m € M, define g:R — M by g(r) = rPm, clear that g is an R —homomorphism, so
h = gf:M - M is Ry —endomorphism and f(x)Bm = g(f(x)) = h(x), but h(x) € (x) since M is duo,
hence f(x) € ((x):r. M), thus M is fully R —idempotent by proposition(2.4).

Corollary (4.6): Let M be multiplication regular Rr —module. Then M is fully Ry —idempotent.

Proposition (4.7): Let M be an R —module. Then the following statements are equivalent:

1-  Misregular.

2-  For each Rp —module K, R —homomorphism h:K - M and x € h(K) , there exists

R —homomorphism g: M — K (g depends on x) such that x = h(g(x)).

3-  For each R —homomorphism h: R - M and € h(R) , there is R —homomorphism g: M — R

such that x = h(g(x)).

Proof:

(1)=(2) Assume h: K — M is Ry —homomorphism and x € h(K) , then there exists g € K such that

x = h(q) , since M is regular, then there exists an R —homomorphism f: M — R such that x =

f(x)yx for some y € I', define g: M — Q by g(m) = f(m)yq , then g is an R —homomorphism and

h(g(x)) = h(f(x)yq) = f(x)yh(q) = f(x)yx = x. (2)=(3) Clear. (3)=(1) For each x € M , define

an R —homomorphism h: R — M by h(r) = ry.x, then there exists R —homomorphism g:M — R

suchthat x = h(g(x)) = g(x)v.x.
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