

ISSN: 0067-2904

Some Generalizations of Semisimple Gamma Rings

Mehdi S. Abbas, Saad Abdul kadhim Al-Saadi, Emad Allawi Shallal*
Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple Γ-ring. An R_{Γ}-module M is called fully R_{Γ}-idempotent (semisimple, regular) if $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$ for all R_{Γ}-submodule N of M (every R_{Γ}-submodule is a direct summand, for each $m \in M$, there exists $f \in$ $\operatorname{Hom}_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $m=f(m) \gamma m$. We study some properties and relationships between them.

Keywords: Semisimple Gamma Module, Multiplication Gamma Module, Duo Gamma Module, Fully Idempotent Gamma Module, Regular Gamma Module.

> بعض التعميمات للمقاسات شبه البسيطة من نمط كاما

مهـي صادق عباس، سعد عبدالكاظم الساعدي، عماد علاوي شلال
 قسم الرياضيات، كلية العلوم ، الجامعة المسنتصرية، بغداد، العراق.

الخلاصة
في هذا البحث قدمنا تعريف مفاهيم المقاسات شبه البسيطة من نمط كاما ، المقاسات المنتظمة من نمط
كاما و المقاسات تامة اللانمو من نمط كاما كاعمام الى حلقة كاما شبه البسيطة . المقاس من نمط كاما
يسمى تام اللانمو (شبه بسيط ، منتظم) اذا كان $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$ لكل مقاس شبه جزئي منه (كل
مقاس جزئي منه مجموع مباشر ، لكل عنصر m m ينتمي له يوجد تشناكل من نمط كام
. $m=f(m) \gamma m$ بما درسنا بعض الخواص لهذه المفاهيم والعلاقة فيما بينها.

1. Introduction

Let R and Γ be two additive abelian groups, R is called a Γ-ring (in the sense of Barnes), if there exists a mapping $\cdot: R \times \Gamma \times R \rightarrow R$, written $\cdot(r, \gamma, s) \mapsto r \gamma s$ such that $(a+b) \alpha c=a \alpha c+b \alpha c$, $a(\alpha+\beta) c=a \alpha c+a \beta c, a \alpha(b+c)=a \alpha b+b \alpha c$ and $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma[1]$. A subset A of Γ-ring R is said to be a right(left) ideal of R if A is an additive subgroup of R and $A \Gamma R \subseteq A(R \Gamma A \subseteq A)$, where $A \Gamma R=\{a \alpha r: a \in A, \alpha \in \Gamma, r \in R\}$. If A is both right and left ideal, we say that A is an ideal of R [1]. An element 1 in Γ-ring R is unity if there exists element $\gamma_{0} \in \Gamma$ such that $r=1 \gamma_{0} r=r \gamma_{0} 1$ for every $r \in R$, in this paper we denote $\gamma_{\circ} \in \Gamma$ to the element such that $1 \gamma_{\circ}$ is the unity [2]. A Γ-ring can have more than one unity. A $\Gamma-$ ring R is called commutative, if $a \gamma b=b \gamma a$ for any $a, b \in R$ and $\gamma \in \Gamma$ [2].

Let R be a Γ-ring and M be an additive abelian group. Then M together with a mapping $: R \times \Gamma \times M \rightarrow M, \cdot(r, \gamma, m) \mapsto r \gamma m$ such that $r \gamma\left(m_{1}+m_{2}\right)=r \gamma m_{1}+r \gamma m_{2}, \quad\left(r_{1}+r_{2}\right) \gamma m=$ $r_{1} \gamma m+r_{2} \gamma m, r(\gamma+\beta) m=r \gamma m+r \beta m,\left(r_{1} \gamma r_{2}\right) \beta m=r_{1} \gamma\left(r_{2} \beta m\right)$ where $r, r_{1}, r_{2} \in R, \gamma, \beta \in \Gamma$ and $m, m_{1}, m_{2} \in M$ is called a left R_{Γ}-module, similarly one can defined right R_{Γ}-module [1]. A

[^0]left R_{Γ}-module M is unitary if there exist elements, say 1 in R and $\gamma_{0} \in \Gamma$ such that $1 \gamma_{0} m=m$ for every $m \in M$ [1].

Let M be an R_{Γ}-module. A nonempty subset N of M is said to be an R_{Γ}-submodule of M (denoted by $N \leq M$) if N is a subgroup of M and $R \Gamma N \subseteq N$, where $R \Gamma N=\{r \alpha n: r \in R, \alpha \in \Gamma$, $n \in N\}[1]$. An R_{Γ}-module M is called simple if $R \Gamma M \neq 0$ and the only R_{Γ}-submodules of M are M and 0 [3]. A Γ-ring R is called simple if R is simple R_{Γ}-module. An R_{Γ}-submodule N of R_{Γ} - module M is called essential (denote by $N \leq_{e} M$) if every nonzero R_{Γ}-submodule of M has nonzero intersection with N, equivalent to, for each nonzero element m in M there is $r_{1}, r_{2}, \ldots, r_{n} \in R$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$ such that $\sum_{i=1}^{n} r_{i} \gamma_{i} m(\neq 0) \in N$ [4]. If X is a nonempty subset of M, then the R_{Γ}-submodule of M generated by X denoted by $\langle X\rangle$ and $\langle X\rangle=\cap\{N \leq M: X \subseteq N\}, X$ is called the generator of $\langle X\rangle$ and $\langle X\rangle$ is finitely generated if $|X|<\infty$, then $\langle X\rangle=\left\{\sum_{i=1}^{m} n_{i} x_{i}+\sum_{j=1}^{k} r_{j} \gamma_{j} x_{j}: k, m \in\right.$ $\left.N, n_{i} \in Z, \gamma_{j} \in \Gamma, r_{j} \in R, x_{i}, x_{j} \in X\right\}$, In particular, if $X=\{x\}$, then $\langle X\rangle$ is called the cyclic R_{Γ}-submodule of M generated by x. If M is unitary, then $\langle x\rangle=\left\{\sum_{i=1}^{n} r_{i} \gamma_{i} x: n \in N, \gamma_{i} \in\right.$ $\left.\Gamma, r_{i} \in R\right\}$ [1]. An $R_{\Gamma}-$ submodule N of M is a direct summand if there is an R_{Γ}-submodule K of M such that $M=N+K$ and $N \cap K=0$, in this case M is written as $M=N \oplus K$ [5]. An R_{Γ} submodule N of M is closed in M if the only solution of the relation $N \leq_{e} K \leq M$ is $N=K$ [5].

Let M and N be two R_{Γ}-modules. A mapping $f: M \rightarrow N$ is called homomorphism of R_{Γ}-modules (simply R_{Γ}-homomorphism) if $f(x+y)=f(x)+f(y)$ and $f(r \gamma x)=r \gamma f(x)$ for each $x, y \in M, r \in R$ and $\gamma \in \Gamma$. An R_{Γ}-homomorphism is R_{Γ}-monomorphism if it is one-to-one and R_{Γ}-epimorphism if it is onto, the set of all R_{Γ}-homomorphisms from M into N denote by $\operatorname{Hom}_{R_{\Gamma}}(M, N)$ in particular if $M=N, \operatorname{Hom}_{R_{\Gamma}}(M, N)$ denote by $E n d_{R_{\Gamma}}(M)$. If M is R_{Γ}-module, then $\operatorname{End}_{R_{\Gamma}}(M)$ is a Γ-ring with the mapping $\because \operatorname{End}_{R_{\Gamma}}(M) \times \Gamma \times \operatorname{End}_{R_{\Gamma}}(M) \rightarrow \operatorname{End}_{R_{\Gamma}}(M)$ denoted by $\cdot(f, \gamma, g) \mapsto f \gamma g$ where $f \gamma g(x)=g(f(1 \gamma x))$, for $f, g \in \operatorname{End}_{R_{\Gamma}}(M), \gamma \in \Gamma$ and $x \in M$. If M is a left R_{Γ}-module, then M is a right $\operatorname{End}_{R_{\Gamma}}(M)$-module with the mapping $:: M \times \Gamma \times \operatorname{End}_{R_{\Gamma}}(M) \rightarrow$ M by $\cdot(x, \gamma, f) \mapsto x \gamma f$ where $x \gamma f=f(1 \gamma x)$, for $f \in \operatorname{End}_{R_{\Gamma}}(M), \gamma \in \Gamma$ and $x \in M$ [1]. The set of rational numbers and the set of integers will be denoted by Q and Z. All modules in this paper are unitary left R_{Γ}-modules

2. Fully Idempotent Gamma Modules

In this section we introduce the concept of fully idempotent gamma modules and give some basic properties and characterizations of this concept.

Let N be an R_{Γ}-submodule of an R_{Γ}-module M. Then the residual of N in M denoted by $\left(N:_{R_{\Gamma}} M\right)=\{r \in R: r \Gamma M \subseteq N\}$, which is a left ideal of R [1]. An element r of a Γ-ring R is called idempotent if $r=r \gamma r$ for some $\gamma \in \Gamma$ [3]. The ideal I of a Γ-ring R is called idempotent if $I=I \Gamma I$ and R is called semisimple if every ideal of R is idempotent [6]. An element x of an R-module M is called idempotent if there exists $t \in\left(R x:_{R} M\right)$ such that $x=t x$ [7]. A submodule N of an R-module M is called idempotent if $N=\left(N:_{R} M\right) N$ and M is called fully idempotent if every submodule of M is idempotent [8].
Remarks (2.1): Let N, K and L are R_{Γ}-submodules of an $R_{\Gamma}-\operatorname{module} M$ and $f \in \operatorname{End}_{R_{\Gamma}}(M)$. Then

1. If $K \leq N$, then $\left(K:_{R_{\Gamma}} L\right) \subseteq\left(N:_{R_{\Gamma}} L\right)$.
2. If $K \leq N$, then $\left(L:_{R_{\Gamma}} N\right) \subseteq\left(L:_{R_{\Gamma}} K\right)$.
3. $\left(N:_{R_{\Gamma}} M\right) \cap\left(K:_{R_{\Gamma}} M\right)=\left(N \cap K:_{R_{\Gamma}} M\right)$.
4. $\left(N:_{R_{\Gamma}} M\right) \subseteq\left(N:_{R_{\Gamma}} f(M)\right) \cap\left(f(N):_{R_{\Gamma}} f(M)\right)$.
5. $\left(L:_{R_{\Gamma}} N+K\right)=\left(L:_{R_{\Gamma}} N\right) \cap\left(L:_{R_{\Gamma}} K\right)$.

Definition (2.2):

An R_{Γ}-submodule N of $R_{\Gamma}-$ module M is called R_{Γ}-idempotent if $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$ and M is called fully R_{Γ}-idempotent if every R_{Γ}-submodule of M is R_{Γ}-idempotent. A Γ-ring R is called fully R_{Γ}-idempotent if it is fully R_{Γ}-idempotent R_{Γ}-module, that is R is semisimle Γ-ring.
Proposition(2.3): Let M be an R_{Γ}-module. Then M is fully R_{Γ}-idempotent if and only if every cyclic R_{Γ}-submodule is R_{Γ}-idempotent.

Proof:

Assume that $N \leq M$, if $x \in N$, then $\langle x\rangle=\left(\langle x\rangle:_{R_{\Gamma}} M\right) \Gamma\langle x\rangle$, so $x \in\left(\langle x\rangle:_{R_{\Gamma}} M\right) \Gamma\langle x\rangle \subseteq$ $\left(N:_{R_{\Gamma}} M\right) \Gamma\langle x\rangle \subseteq\left(N:_{R_{\Gamma}} M\right) \Gamma N$, hence $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$.
Proposition (2.4): Let M be an R_{Γ}-module. Then M is fully R_{Γ}-idempotent if and only if for any element $\mathrm{x} \in \mathrm{M}$, there exist $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \in\left(\langle\mathrm{x}\rangle:_{R_{\Gamma}} \mathrm{M}\right)$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\mathrm{n}} \in \Gamma$ such that $\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \gamma_{\mathrm{i}} \mathrm{x}$.

Proof:

Assume that $\langle\mathrm{x}\rangle=\left(\langle\mathrm{x}\rangle:_{\mathrm{R}_{\Gamma}} \mathrm{M}\right) \Gamma\langle\mathrm{x}\rangle$, so $\mathrm{x}=\mathrm{t} \gamma \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \gamma_{\mathrm{i}} \mathrm{x}$ where $\mathrm{t} \in\left(\langle\mathrm{x}\rangle:_{\mathrm{R}_{\Gamma}} \mathrm{M}\right), \gamma, \gamma_{\mathrm{i}} \in \Gamma$ and $\mathrm{r}_{\mathrm{i}} \in \mathrm{R}$, then $x=\sum_{i=1}^{n}\left(\operatorname{trr}_{i}\right) \gamma_{i} x$. For each $i=1, \ldots, n, \beta \in \Gamma, m \in M,\left(\operatorname{tqr}_{i}\right) \beta m=\operatorname{t\gamma }\left(r_{i} \beta m\right) \in t \Gamma M \subseteq\langle x\rangle$, so $\operatorname{trr}_{r_{i}} \in\left(\langle x\rangle:_{R_{\Gamma}} M\right)$ for each $i=1, \ldots, n$. Conversely, for each $x \in M, x=\sum_{i=1}^{n} t_{i} \gamma_{i} x$ where $t_{i} \in$ $\left(\langle x\rangle:_{R_{\Gamma}} M\right)$ and $\gamma_{i} \in \Gamma$, so $x \in\left(\langle x\rangle:_{R_{\Gamma}} M\right) \Gamma\langle x\rangle$, so $\langle x\rangle=\left(\langle x\rangle:_{R_{\Gamma}} M\right) \Gamma\langle x\rangle$, hence M is fully R_{Γ}-idempotent by proposition(2.3).

An R_{Γ}-module M is called multiplication if for each R_{Γ}-submodule N of M, then $N=I \Gamma M$ for some left ideal I of R. This is equivalent to saying that $N=\left(N:_{R_{\Gamma}} M\right) \Gamma M$ for every R_{Γ}-submodule N of M [2].
Proposition(2.5): Every cyclic R_{Γ}-module over commutative Γ-ring is multiplication.
Proof: Let N be an R_{Γ}-submodule of cyclic R_{Γ}-module M, then there is $x \in M$ such that $=\langle x\rangle$, if $n \in N$, then $n=\sum_{i=1}^{n} r_{i} \gamma_{i} x$ where $r_{i} \in R$ and $\gamma_{i} \in \Gamma$. Now for each $\beta \in \Gamma$ and $m \in M$, then $\left(\sum_{i=1}^{n} r_{i} \gamma_{i} 1\right) \beta m=\quad\left(\sum_{i=1}^{n} r_{i} \gamma_{i} 1\right) \beta\left(\sum_{j=1}^{t} s_{j} \lambda_{j} x\right)=\quad \sum_{i=1}^{n} \sum_{j=1}^{t} r_{i} \gamma_{i} 1 \beta s_{j} \lambda_{j} x=$ $\sum_{j=1}^{t} \sum_{i=1}^{n}\left(r_{i} \gamma_{i} 1\right) \beta\left(s_{j} \lambda_{j} 1\right) \gamma_{0} x=\sum_{j=1}^{t} \sum_{i=1}^{n}\left(s_{j} \lambda_{j} 1\right) \beta\left(r_{i} \gamma_{i} 1\right) \quad \gamma_{0} x=\sum_{j=1}^{t} s_{j} \lambda_{j} 1 \beta \sum_{i=1}^{n}\left(r_{i} \gamma_{i} 1\right) \gamma_{0} x=$ $\sum_{j=1}^{t} s_{j} \lambda_{j} 1 \beta n \in N$, so $\sum_{i=1}^{n}\left(r_{i} \gamma_{i} 1\right) \in\left(N:_{R_{\Gamma}} M\right)$, hence $N \subseteq\left(N:_{R_{\Gamma}} M\right) \gamma_{0} x \subseteq\left(N:_{R_{\Gamma}} M\right) \Gamma M$, thus $N=\left(N:_{R_{\Gamma}} M\right) \Gamma M$.
Proposition (2.6): Let M be an R_{Γ}-module, K and N be R_{Γ}-submodules of M. Then
1- If N is R_{Γ}-idempotent submodule of M, then N is multiplication, and hence every fully R_{Γ}-idempotent is multiplication.
2- If K and N are R_{Γ}-idempotent R_{Γ}-submodules of M, then so is $K+N$.
3- Let R be commutative Γ-ring. Then
(i) If I is idempotent ideal of R and N is R_{Γ}-idempotent M, then $I \Gamma N$ is R_{Γ}-idempotent submodule in M.
(ii) If K is R_{Γ}-idempotent in N and N is R_{Γ}-idempotent in M, then K is R_{Γ}-idempotent in M.

Proof:

1. $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(N:_{R_{\Gamma}} M\right) \Gamma M \subseteq N$, so $N=\left(N:_{R_{\Gamma}} M\right) \Gamma M$.
2. $K+N=\left(K:_{R_{\Gamma}} M\right) \Gamma K+\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(K+N:_{R_{\Gamma}} M\right) \Gamma K+\left(K+N:_{R_{\Gamma}} M\right) \quad \Gamma N=(K+$ $\left.N:_{R_{T}} M\right) \Gamma(K+N)$.
3. (i)
$\left(I \Gamma N:_{R_{\Gamma}} M\right) \Gamma(I \Gamma N) \subseteq I \Gamma N=(I \Gamma I) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma N=I \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma I \Gamma N \subseteq$

$$
\left(I \Gamma N:_{R_{\Gamma}} M\right) \Gamma(I \Gamma N), \text { so } I \Gamma N=\left(I \Gamma N:_{R_{\Gamma}} M\right) \Gamma(I \Gamma N) .
$$

(ii) $\quad\left(K:_{R_{\Gamma}} N\right) \Gamma N=\left(K:_{R_{\Gamma}} N\right) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(K:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(K:_{R_{\Gamma}} N\right) \Gamma N$, then $\left(K:_{R_{\Gamma}} N\right) \Gamma N=$ $\left(K:_{R_{\Gamma}} M\right) \Gamma N, \quad$ also $\quad K=\left(K:_{R_{\Gamma}} N\right) \Gamma K \subseteq\left(K:_{R_{\Gamma}} N\right) \Gamma N=\left(K:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(K:_{R_{\Gamma}} M\right) \Gamma M \subseteq K$, so $K=\left(K:_{R_{\Gamma}} M\right) \Gamma N$, thus $K=\left(K:_{R_{\Gamma}} N\right) \Gamma K=\left(K:_{R_{\Gamma}} N\right) \Gamma\left(K:_{R_{\Gamma}} M\right) \Gamma N=\left(K:_{R_{\Gamma}} M\right) \Gamma\left(K:_{R_{\Gamma}} N\right) \Gamma N=$ $\left(K:_{R_{\Gamma}} M\right) \Gamma K$.

The following proposition shows that the concept of fully R_{Γ}-idempotent generalizes that of semisimple Γ-ring.
Proposition (2.7): If R is fully R_{Γ}-idempotent Γ-ring, then R is semisimple. The converse holds when R is commutative.

Proof:

Assume R is a fully $R_{\Gamma}-$ idempotent Γ-ring and I is an ideal of R, then $I=\left(I:_{R_{\Gamma}} R\right) \Gamma$. For each $t \in\left(I_{R_{\Gamma}} R\right)$, then $t=t \gamma_{0} 1 \in t \Gamma R \subseteq I$, so $\left(I:_{R_{\Gamma}} R\right) \subseteq I$, thus $I=\left(I:_{R_{\Gamma}} R\right) \Gamma I \subseteq I \Gamma I \subseteq R \Gamma \subseteq I$ and hence $I=I \Gamma I$. Conversely, let I be an ideal of R, it's enough to show that $I \subseteq\left(I_{R_{\Gamma}} R\right)$, since $I \Gamma R \subseteq R \Gamma I \subseteq I$,then $\mathrm{I} \subseteq\left(\mathrm{I}_{\mathrm{R}_{\Gamma}} \mathrm{R}\right)$, hence $\mathrm{I}=I \Gamma I \subseteq\left(\mathrm{I}_{\mathrm{R}_{\Gamma}} \mathrm{R}\right) \Gamma I \subseteq \mathrm{I}$, thus $\mathrm{I}=\left(\mathrm{I}_{\mathrm{R}_{\Gamma}} \mathrm{R}\right) \Gamma \mathrm{I}$.

Examples and Remarks (2.8):

1- Every idempotent element in R-module M is R_{R}-idempotent and every idempotent submodule N of M is idempotent R_{Γ}-submodule.
2- Every R_{Γ}-submodule of fully R_{Γ}-idempotent also fully R_{Γ}-idempotent. Let B is an R_{Γ}-submodule of M, for any R_{Γ}-submodule N of B, then $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$, by Remarks(2.1) $\left(N:_{R_{\Gamma}} M\right) \subseteq\left(N:_{R_{\Gamma}} B\right), \quad$ so $\quad N=\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq\left(N:_{R_{\Gamma}} B\right) \Gamma N \subseteq R \Gamma N \subseteq N, \quad$ thus $\quad N=$ $\left(N:_{R_{\Gamma}} B\right) \Gamma N$.
3- Every simple R_{Γ}-module is fully R_{Γ}-idempotent.
4- Let $R=Z_{2}, \Gamma=Z$ and $M=Z_{2} \oplus Z_{2}$. Then M is not fully R_{Γ}-idempotent, since $Z_{2} \oplus(0)$ is not R_{Γ}-idempotent submodule. Note that M is not multiplication .
 $\left(\begin{array}{ll}n & n\end{array}\right)\binom{x}{y}\left(\begin{array}{ll}m & m\end{array}\right)=((n x+n y) m \quad(n x+n y) m)$, since for any nonzero ideal I of R, take $0 \neq\left(\begin{array}{ll}m & m\end{array}\right) \in I$ we can choose $x=y=\frac{1}{2 m}$, then $\left(\begin{array}{ll}m & m\end{array}\right)=\left(\begin{array}{ll}m & m\end{array}\right)\binom{x}{y}\left(\begin{array}{ll}m & m\end{array}\right) \in I \Gamma I$, so $I=I \Gamma I$, hence R is semisimple and by proposition(2.7) R is fully R_{Γ}-idempotent.
1- Fully R_{Γ}-idempotent R_{Γ}-module over simple Γ-ring is simple. For each nonzero R_{Γ} submodule N of M, then $N=\left(N:_{R} M\right) \Gamma N$, so $\left(N:_{R} M\right)=R$, hence $M=R \Gamma M=\left(N:_{R} M\right) \Gamma M \subseteq N$, thus $M=N$.

The product of two R-submodules N and K of an R-module M define as $N K=\left(N:_{R} M\right)\left(K:_{R} M\right) M$ [9].

Definition (2.9):

Let N and K are R_{Γ}-submodules of an R_{Γ}-module M. The product of N and K define by $=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(K:_{R_{\Gamma}} M\right) \Gamma M$.

The following proposition gives a characterizations of fully R_{Γ}-idempotent R_{Γ}-modules.

Proposition (2.10):

Let M be R_{Γ}-module, then the following are equivalent:
1- $\quad M$ is fully R_{Γ}-idempotent.
2- $\quad N=N^{2}$ for all R_{Γ}-submodule N of M.
3- $\quad N \cap K=N K$ for all $R_{\Gamma}-$ submodules N and K.

Proof:

(1) $\Rightarrow(2)$ For each R_{Γ}-submodule N of $M, N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$, then $N=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq$ $\left(N:_{R_{\Gamma}} M\right) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma M \subseteq\left(N:_{R_{\Gamma}} M\right) \Gamma N \subseteq N$, so $N=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma M=N^{2}$. (2) \Rightarrow (3) For each R_{Γ}-submodules N and K, then $N \cap K=(N \cap K)^{2}=\left(N \cap K:_{R_{\Gamma}} M\right) \Gamma\left(N \cap K:_{R_{\Gamma}} M\right) \Gamma M \subseteq$ $\left(N:_{R_{\Gamma}} M\right) \Gamma\left(K:_{R_{\Gamma}} M\right) \Gamma M \quad=N K, \quad$ so $\quad N \cap K \subseteq N K$, since $\quad N K=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(K:_{R_{\Gamma}} M\right) \Gamma M \subseteq$ $\left(N:_{R_{\Gamma}} M\right) \Gamma K \subseteq K$ also $N K=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(K:_{R_{\Gamma}} M\right) \Gamma M \subseteq\left(N:_{R_{\Gamma}} M\right) \Gamma K \subseteq N$, then $N K \subseteq N \cap K$, thus $N K=N \cap K$. (3) $\Rightarrow(1) N=N \cap N=N N=N^{2}$ 。

We have proved that every fully R_{Γ}-idempotent R_{Γ}-module is multiplication, in the following corollary we discuss the converse.
Corollary(2.11): Every multiplication R_{Γ}-module over semisimple Γ - ring is fully $R_{\Gamma}-$ idempotent.

Proof:

Let M be a multiplication R_{Γ}-module and $N \leq M$, then $N=\left(N:_{R_{\Gamma}} M\right) \Gamma M=\left(N:_{R_{\Gamma}} M\right) \Gamma\left(N:_{R_{\Gamma}} M\right) \Gamma M=N^{2}$, hence M is fully R_{Γ}-idempotent.

Let M and N be two R_{Γ}-modules. Then M is called N-injective if for any R_{Γ}-submodule A of N and R_{Γ}-homomorphism $f: A \rightarrow M$, there exists an R_{Γ}-homomorphism $g: N \rightarrow M$ such that $g i=f$ where i is the inclusion mapping. An R_{Γ}-module M is injective if it is N-injective for any R_{Γ}-module N. Every R_{Γ}-module M can be embedding in injective R_{Γ}-module which is called injective hull $E(M)$ [4]. An R_{Γ}-module M is called quasi-injective if and only if M is M-injective [5].
Proposition(2.12): Let M be an R_{Γ}-module with injective hull $E(M)$. If M is R_{Γ}-idempotent of $E(M)$, then M is quasi-injective.

Proof:

Assume that M is R_{Γ}-idempotent of $E(M)$, then $M=\left(M:_{R_{\Gamma}} E(M)\right) \Gamma M$, then for each $f \in$ $\operatorname{End}_{R_{\Gamma}}(E(M)), \quad f(M)=f\left(\left(M:_{R_{\Gamma}} E(M)\right) \Gamma M\right)=\left(M:_{R_{\Gamma}} E(M)\right) \Gamma f(M) \subseteq\left(M:_{R_{\Gamma}} E(M)\right) \Gamma E(M) \subseteq$ M, thus M is quasi-injective [5].

An R_{Γ}-module M is called duo if $f(N) \subseteq N$ for each R_{Γ} - submodule N of M and $f \in$ $\operatorname{End}_{R_{\Gamma}}(M)$. It is easy to see that every multiplication is duo.
Proposition(2.13): Let M be fully R_{Γ} - idempotent. Then M is duo.

Proof:

For each R_{Γ} - submodule N of M and $f \in \operatorname{End}_{R_{\Gamma}}(M)$, then $N=\left(N:_{R_{\Gamma}} M\right) \Gamma N$. So $f(N)=$ $f\left(\left(N:_{R_{\Gamma}} M\right) \Gamma N\right)=\left(N:_{R_{\Gamma}} M\right) \Gamma f(N) \subseteq N$.

The converse of Proposition(2.13) is not true in general for example Z_{4} as Z_{Z}-module is multiplication and hence duo but not fully R_{Γ}-idempotent.

An R_{Γ}-submodule of quasi-injective need not be quasi-injective for example see Example(2.3) [4].
Corollary(2.14): Let M be fully R_{Γ}-idempotent. Then M is quasi-injective R_{Γ}-module if and only if every R_{Γ}-submodule of M is quasi-injective R_{Γ}-module.
Proof:
Assume that N is R_{Γ}-submodule of a quasi-injective R_{Γ}-module M, let K be R_{Γ}-submodule of N and let $f: K \rightarrow N$ be R_{Γ}-homomorphism, since M is quasi-injective, then there exists an R_{Γ} homomorphism $g: M \rightarrow M$ such that $g i_{N} i_{K}=i_{N} f$ where i_{N} and i_{K} are inclusion maps, clear that g is extended of f and by Proposition (2.13) $g(N) \subseteq N$. The converse is obvious.

3. Semisimple Gamma Modules

In this section we extended the concept of semisimplicity from category of modules to the category of gamma modules.

Definition(3.1):

An R_{Γ}-module M is called semisimple if every R_{Γ}-submodule is a direct summand.

Examples(3.2):

1- $\quad R=Z_{6}$ is Z_{Z} - ring with $: Z_{6}{ }_{6} Z{ }_{6} Z_{6} \rightarrow Z_{6}$ by $(n, k, m) \mapsto n k m$, the only ideals of Z_{6} are 0 , $Z_{6},\langle 2\rangle$ and $\langle 3\rangle$, then Z_{6} is semisimple.
2- Let $R=\{(a b), a, b \in Q\}$ (where Q is the ring of rational numbers) and $\Gamma=\left\{\binom{x}{y}, x, y \in Q\right\}$. Then R is Γ-ring with $: R \times \Gamma \times R \rightarrow R$ by $\left(\begin{array}{ll}a & b\end{array}\right)\binom{x}{y}\left(\begin{array}{ll}c & d\end{array}\right)=((a x+b y) c \quad(a x+b y) d)$. Take $J=\{(2 n 2 m), n, m \in Q\}$, then $(a b)\binom{k}{t}(2 n 2 m)=(a x+b y)(2 n 2 m)=(2(a x+b y) n 2(a x+$ by)m $)=\left(\begin{array}{ll}2 n_{1} & 2 m_{1}\end{array}\right) \in J$, so $R \Gamma J \subseteq J$, hence J is a left ideal of R, for any anther left ideal N of R, let $0 \neq\left(\begin{array}{ll}k & t\end{array}\right) \in N$, then $\left(\begin{array}{ll}2 k & 2 t\end{array}\right) \in J$ and since $R \Gamma N \subseteq N$, for $(11) \in R,\binom{1}{1} \in \Gamma$ we have
 semisimple R_{Γ}-module. It is noted that R is semisimple Γ - ring, since if I is an ideal of R, then for each $\left(\begin{array}{ll}a & b\end{array}\right) \in I$ we can choose $\gamma=\binom{k}{t} \in \Gamma$ such that if :
(i)- $a=0$ and $b=0$ then $k=0$ and $t=0$.
(ii)- $\quad a \neq 0$ and $b=0$ then $k=\frac{1}{a}$ and $t=0$.
(iii)- $\quad a=0$ and $b \neq 0$ then $k=0$ and $t=\frac{1}{b}$.
(iv)- $a \neq 0$ and $b \neq 0$ then $k=\frac{1}{2 a}$ and $t=\frac{1}{2 b}$. Then $\left(\begin{array}{ll}a & b\end{array}\right)=(a k+b t)\left(\begin{array}{ll}a & b\end{array}\right)=\left(\begin{array}{ll}a & b\end{array}\right)\binom{k}{t}\left(\begin{array}{ll}a & b\end{array}\right) \in$
$I \Gamma I$, so $I \subseteq I \Gamma I$, hence $I=I \Gamma I$, therefore R is semisimple Γ-ring.
3- Every simple R_{Γ}-module is semisimple.
4- Let $R^{\prime}=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right), a, b, c \in R\right.$ ring of real numbers $\}, \Gamma=R$, then R^{\prime} is Γ-ring with $:: R^{\prime} \times \Gamma \times$ $R^{\prime} \rightarrow R^{\prime}$ by $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) n\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)=\left(\begin{array}{cc}a x n & a y n+b z n \\ 0 & c z n\end{array}\right)$. Take $L_{1}=\left\{\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right), b \in R\right\}, \quad L_{1}$ is a left ideal of R^{\prime} and R^{\prime} is not semisimple Γ-ring since $L_{1} \Gamma L_{1}=0 \neq L_{1}$.

In the category of module it is known that a submodule is a direct summand if an only if there exists $f \in \operatorname{End}(M)$ such that $N=f(M)$ and $f=f^{2}$.
Proposition(3.3): Let M be R_{Γ}-module, then $M=M \gamma f \oplus M \gamma_{\circ}(I-I \gamma f)$ for any $f \in \operatorname{End}_{R_{\Gamma}}(M)$ such that $\mathrm{f}=\mathrm{f} \gamma \mathrm{f}$ for some $\gamma \in \Gamma$.

Proof:

For each $x \in M$, then $x=x+f(1 \gamma x)-f(1 \gamma x)=f(1 \gamma x)+I(x)-f(1 \gamma x)=f(1 \gamma x)+(I-$ $I \gamma f)\left(1 \gamma_{0} x\right)=x \gamma f+x \gamma_{\circ}(I-I \gamma f) \in M \gamma f+M \gamma_{\circ}(I-I \gamma f)$, so $M=M \gamma f+M \gamma_{\circ}(I-I \gamma f)$. Now if $y \in M \gamma f \cap M \gamma_{\circ}(I-I \gamma f)$, then $y=x \gamma f=t \gamma_{\circ}(I-I \gamma f)$ where $x, t \in M$, hence $y=f(1 \gamma x)=(I-$ $I \gamma f)\left(1 \gamma_{0} t\right)=t-I \gamma f(t)=t-f(1 \gamma t), \quad$ so $\quad 1 \gamma f(y)=1 \gamma f(t)-1 \gamma f(f(1 \gamma t)=1 \gamma f(t)-$ $f(1 \gamma f(1 \gamma t))=1 \gamma f(t)-(f \gamma f)(1 \gamma t)=1 \gamma f(t)-1 \gamma f(t)=0$, hence $0=f(1 \gamma f(y))=f(y)$, but $f(y)=f(f(1 \gamma x))=(f \gamma f)(x)$, therefore $y=1 \gamma f(x)=0$, thus $M=M \gamma f \oplus M \gamma_{\circ}(I-I \gamma f)$.
Corollary(3.4): Let M be R_{Γ}-module, then $M=M \Gamma f \oplus M \Gamma(I-I \gamma f)$ for any $f \in \operatorname{End}_{R_{\Gamma}}(M)$ such that $f=f \gamma f$ for some $\gamma \in \Gamma$.
Proof:
For any $y \in M \Gamma f \oplus M \Gamma(I-I \gamma f), y=x \lambda f+t \beta(I-I \gamma f)$ where $x, t \in M$ and $\lambda, \beta \in \Gamma$, so $y=f(1 \lambda x)+(I-I \gamma f)(1 \beta t)=f \gamma f(1 \lambda x)+(I-I \gamma f)\left(1 \gamma_{\circ}(1 \beta t)\right)=f(1 \gamma f(1 \lambda x))+(1 \beta t) \gamma_{\circ}(I-$ $I \gamma f)=f(1 \lambda x) \gamma f+(1 \beta t) \gamma_{\circ}(I-I \gamma f) \quad \in M \gamma f \oplus M \gamma_{\circ}(I-I \gamma f)$, hence $\quad M \Gamma f \oplus M \Gamma(I-I \gamma f) \subseteq$ $M \gamma f \oplus M \gamma_{\mathrm{o}}(I-I \gamma f)$, thus $M \Gamma f \oplus M \Gamma(I-I \gamma f)=M \gamma f \oplus M \gamma_{\circ}(I-I \gamma f)$.
Corollary(3.5): Let N be an R_{Γ}-submodule of R_{Γ} - module M . Then N is a direct summand of M if and only if $N=M \gamma f$ where $f \in \operatorname{End}_{R_{\Gamma}}(M)$ and $f=f \gamma f$ for some $\gamma \in \Gamma$.

Proof:

Assume N is a direct summand of M, then $M=N \oplus K$ for some R_{Γ}-submodule K of M, take $f: M \rightarrow M$ by $f(n+k)=n$ for any $n \in N$ and $k \in K$, then $f \gamma_{\circ} f(x)=f\left(1 \gamma_{\circ} f(x)\right)=f(x)$ for any $x \in M$ and $N=f(M)=f\left(1 \gamma_{\circ} M\right)=M \gamma_{\circ} f$.
Proposition(3.6): Every R_{Γ}-submodule of a semisimple R_{Γ}-module M is semisimple R_{Γ}-module.
Proof: For any R_{Γ}-submodule N of M, if $K \leq N$, then there exists an R_{Γ}-submodule K_{1} such that $M=K \oplus K_{1}$, hence $N=N \cap M=N \cap\left(K \oplus K_{1}\right)=\left(N \cap K_{1}\right) \oplus K$.
Proposition(3.7): If R is semisimple R_{Γ}-module, then R is semisimple Γ-ring.
Proof: Let I be an ideal of R, then $R=I \oplus L$ for some ideal L of R, so $1=e_{1}+e_{2}$ for $e_{1} \in I, e_{2} \in L$, then for each $n \in I, n=n \gamma_{\circ} 1=n \gamma_{\circ}\left(e_{1}+e_{2}\right)$, thus $n \gamma_{\circ} e_{2}=n-n \gamma_{\circ} e_{1} \in I \cap L=0$, hence $n=$ $n \gamma_{\mathrm{o}} e_{1} \in I \gamma_{\mathrm{o}} e_{1} \subseteq I \gamma_{\mathrm{o}} I$, so $I \subseteq I \Gamma I \subseteq I$, hence $I=I \Gamma I$, therefore R is semisimple Γ-ring.

The converse of Proposition(3.7) is not true in general, see Example(3.2)(2).
Proposition(3.8): Let M be a nonzero R_{Γ}-module. Then the following are equivalent:
1- $\quad M$ is semisimple R_{Γ}-module.
2- $\quad M$ is sum of simple R_{Γ}-submodules.
3- $\quad M$ has no proper essential R_{Γ}-submodules.

Proof:

(1) \Rightarrow (2) To show M has simple R_{Γ}-submodule, if $0 \neq N \leq M$, then for each $K \leq N$ we have K is a direct summand of N, so $M=K \oplus K_{1}$, hence $N=N \cap M=N \cap\left(K \oplus K_{1}\right)=\left(N \cap K_{1}\right) \oplus K$. Let $a(\neq 0) \in M$, take $\Omega=\{B \leq M: a \notin B\}$, then $\Omega \neq \phi$ since $0 \in \Omega$ by using Zorn's lemma there is maximal element B of $\Omega, a \notin B$, hence B is a direct summand of M, then $M=B \oplus C$ for some R_{Γ}-submodule C of M. We claim C is simple, if not C has a proper R_{Γ}-submodule $D \neq 0$, so $C=D \oplus E$ for some R_{Γ}-submodule $E \neq 0$ since D is proper, hence $M=B \oplus D \oplus E$, by maximality of $B, a \in B \oplus D$ and $a \in B \oplus E$, so $a=b+d=b^{\prime}+e$ for $b, b^{\prime} \in B, d \in D$ and $e \in E$, then $d=e+$ $\left(b^{\prime}-b\right) \in D \cap(B \oplus E)$ and $e=d+\left(b-b^{\prime}\right) \in E \cap(D \oplus B)$, hence $d=e=0$ and $b=b^{\prime}$, so $a=b \in B$ which is a contradiction, thus C is simple R_{Γ}-submodule. Let N_{\circ} is the sum of all simple R_{Γ}-submodule of M, then there is $L \leq M$ such that $M=N_{\circ} \oplus L$. If $L \neq 0$, then by proof L has a nonzero simple R_{Γ}-submodule T, then $T \subset L \cap N_{\circ}=0$ which is a contradiction, hence $L=0$ and $M=N_{\circ}$. (2) $\Rightarrow(3)$ Assume that M has a proper R_{Γ}-submodule A, then there is $x \in M-A$ and by (2) M has simple R_{Γ}-submodule B^{\prime} such that $x \in B^{\prime}$, then $A \cap B^{\prime} \leq B^{\prime}$, so either $A \cap B^{\prime}=B^{\prime}$ a contradiction or $A \cap B^{\prime}=0$, thus A is not essential R_{Γ}-submodule of M. (3) \Rightarrow (1) Let $A \leq M$ and B complement of A, then $A \oplus B \leq_{e} M$ [5], so $M=A \oplus B$.

Proposition(3.9): Let R be a Γ - ring. Then the following are equivalent:
1- $\quad R$ is semisimple R_{Γ}-module.
2- Every ideal of R is generated by an idempotent element.
3- $\quad R$ is sum of simple R_{Γ}-submodules.
4- Every R_{Γ}-module M has no proper essential R_{Γ}-submodules.
5- Every R_{Γ}-module is injective.
6- Every R_{Γ}-module is semisimple.

Proof:

$(1) \Rightarrow(2)$ Let I be an ideal of R, By proof of Proposition(3.7), there exists $e_{1} \in I$ such that $n=n \gamma_{\circ} e_{1}$ for each $n \in I$. In particular $e_{1}=e_{1} \gamma_{0} e_{1}$ therefore e_{1} is an idempotent and $n \in\left\langle e_{1}\right\rangle$, thus $I \subseteq\left\langle e_{1}\right\rangle$. $(2) \Rightarrow(1)$ Let I be an ideal of R. Then there exists an idempotent element $e \in R$ such that $e=e \gamma e$ for some $\gamma \in \Gamma$ and $I=\langle e\rangle$. For each $r \in R, r=r \gamma e+r-r \gamma e=r \gamma e+r \gamma_{0} 1-r \gamma e=r \gamma e+r \gamma_{0} 1-$ ($r \gamma_{0} 1$) γe, hence $r=r \gamma e+r \gamma_{0}(1-1 \gamma e)$, so $R \subseteq R \Gamma e+R \Gamma(1-1 \gamma e)$. For each $x \in R \Gamma e$, $x=\sum_{i=1}^{n} r_{i} \gamma_{i} e=\sum_{i=1}^{n} r_{i} \gamma_{i}(e \gamma e)=\left(\sum_{i=1}^{n} r_{i} \gamma_{i} e\right) \gamma e=x \gamma e$. Now if $x \in R \Gamma(1-1 \gamma e)$, then $x=$ $\sum_{i=1}^{n} r_{i} \gamma_{i}(1-1 \gamma e)=\sum_{i=1}^{n} r_{i} \gamma_{i} 1-\sum_{i=1}^{n} r_{i} \gamma_{i} 1 \gamma e$, hence $\quad x \gamma e=\sum_{i=1}^{n} r_{i} \gamma_{i} 1 \gamma e-\sum_{i=1}^{n} r_{i} \gamma_{i} 1 \gamma e \gamma e=$ $\sum_{i=1}^{n} r_{i} \gamma_{i} 1 \gamma e-\sum_{i=1}^{n} r_{i} \gamma_{i} 1 \gamma e=0 \quad, \quad$ thus $\quad R=R \Gamma e \oplus R \Gamma(1-1 \gamma e) . \quad(1) \Leftrightarrow(3) \Leftrightarrow(4) \quad$ by proposition(3.8). (5) \Rightarrow (6) By proposition(1.9) [4]. (6) \Rightarrow (1) Clear. (1) \Rightarrow (5) Let M be an R_{Γ}-module, for each ideal I of R and R_{Γ}-homomorphism $f: I \rightarrow M$, since R is semisimple R_{Γ}-module, then there exists an ideal J of R such that $R=I \bigoplus J$, define $g: R \rightarrow M$ by $g(r)=f(r)$ if $r \in I$ otherwise $g(r)=0$ for each $r \in R$, then g is extension of f, so M is injective [4].

Semisimple R_{Γ}-modules and multiplications are different for example any semisimple R_{Γ}-module over simple Γ-ring is not multiplication. Since for any nonzero R_{Γ}-submodule N of M, if there exists an ideal I of R such that $N=I \Gamma M=I \Gamma(N \oplus K)=R \Gamma N+R \Gamma K=N+K \neq N$ for some R_{Γ}-submodule K of M which is a contradiction. In Particular , $Z_{2} \oplus Z_{2}$ as $Z_{Z}-$ module is semisimple R_{Γ}-module but not multiplication. The Z_{Z} - module Z_{4} is multiplication but not semisimple. Also semisimple R_{Γ}-module and fully R_{Γ}-idempotent are different for example $M=Z_{2} \oplus Z_{2}$ as Z_{Z}-module is not fully R_{Γ}-idempotent since every fully R_{Γ}-idempotent is multiplication. For fully R_{Γ}-idempotent which is not semisimple see examples and remarks(2.8)(5) R is not semisimple by proposition(3.7).
Proposition (3.10): Let M be multiplication R_{Γ}-module. If M is semisimple R_{Γ}-module. Then M is fully R_{Γ}-idempotent.

Proof:

For each R_{Γ}-submodule N of $M, M=N \bigoplus K$ for some R_{Γ}-submodule K of M, since M is multiplication, then $N=\left(N:_{R_{\Gamma}} M\right) \Gamma M=\left(N:_{R_{\Gamma}} M\right) \Gamma(N+K)=\left(N:_{R_{\Gamma}} M\right) \Gamma N+\left(N:_{R_{\Gamma}} M\right) \Gamma K$ but $\left(N:_{R_{\Gamma}} M\right) \Gamma K \subseteq N \cap K=0$, so N is R_{Γ}-idempotent submodule.
Proposition (3.11): If M is semisimple R_{Γ}-module, then M is quasi-injective.

Proof:

For each R_{Γ}-submodule N of M and R_{Γ}-homomorphism $f: N \rightarrow M$, since M is semisimple R_{Γ}-module, then $M=N \bigoplus K$ for some $K \leq M$. So for each $x \in M$, then $x=n+k$ where $n \in N$ and $k \in K$, define $g: M \rightarrow M$ by $g(x)=f(n)$ for each $x \in M$, clear that g is R_{Γ}-homomorphism and g is extended of f, so M is quasi-injective [5].
Lemma(3.12): Every Γ-ring R is R_{Γ}-isomorphic to $\operatorname{End}_{R_{\Gamma}}(R)$.

Proof:

Let R be a Γ-ring. For a fixed element r in R we can define $\lambda_{r}: R \rightarrow R$, by $\lambda_{r}(x)=x \gamma_{0} r$ for each $x \in R$, then λ_{r} is R_{Γ}-homomorphism, that is $\lambda_{r} \in \operatorname{End}_{R_{\Gamma}}(R)$. Let $R^{\ell}=\left\{\lambda_{r}: r \in R\right\}$, then R^{ℓ} is abelian group with $\left(\lambda_{r}+\lambda_{s}\right)=\lambda_{r}(x)+\lambda_{r}(x)$ and R^{ℓ} is a Γ-ring with $\cdot: R^{\ell} \times \Gamma \times R^{\ell} \rightarrow R^{\ell}$, by $\cdot\left(\lambda_{r}, \gamma, \lambda_{s}\right) \mapsto \lambda_{r} \gamma \lambda_{s}$ where $\lambda_{r} \gamma \lambda_{s}(x)=\lambda_{s}\left(1 \gamma \lambda_{r}(x)\right)$. For each $f \in \operatorname{End}_{R_{\Gamma}}(R), f(x)=f\left(x \gamma_{0} 1\right)=$ $x \gamma_{\circ} f(1)=\lambda_{f(1)}(x)$, so $f=\lambda_{f(1)}$, hence $R^{\ell}=\operatorname{End}_{R_{\Gamma}}(R)$. Define $\varphi: R \rightarrow R^{\ell}$ by $(r)=\lambda_{r}$, it is easy to show that φ is a R_{Γ} - isomorphism see[4,example(2.12)], hence $R \cong R^{\ell}=\operatorname{End}_{R_{\Gamma}}(R)$.

Lemma(3.12) show that if R is a commutative then $\operatorname{End}_{R_{\Gamma}}(R)$ is commuatative. But this may not be true for an arbitrary R_{Γ}-module. For example consider V is a vector space over a field F of dimension 2, then V is an F_{F}-module. Let $f: V \rightarrow V$ by $f\left(\begin{array}{ll}v & u\end{array}\right)=\left(\begin{array}{ll}u & v\end{array}\right)$ and $g: V \rightarrow V$ by
$g\left(\begin{array}{ll}v & u\end{array}\right)=\left(\begin{array}{ll}v & 0\end{array}\right)$ be two R_{Γ}-homomorphisms, then for each $\left(\begin{array}{ll}v & u\end{array}\right) \in V$ and $\gamma \in \Gamma$, $g \gamma f\left(\begin{array}{ll}v & u\end{array}\right)=f\left(1 \gamma g\left(\begin{array}{ll}v & u\end{array}\right)\right)=1 \gamma f\left(\begin{array}{ll}v & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \gamma v\end{array}\right) \quad$ and $\left.\quad f \gamma g\left(\begin{array}{ll}v & u\end{array}\right)=g\left(\begin{array}{ll}1 \gamma f(v & u\end{array}\right)\right)=$ $1 \gamma g\left(\begin{array}{ll}u & v\end{array}\right)=\left(\begin{array}{ll}1 \gamma u & 0\end{array}\right)$, so $f \gamma g \neq g \gamma f$.
Proposition(3.13): Let R be a commutative Γ-ring. If M is fully R_{Γ}-idempotent , then $\operatorname{End}_{R_{\Gamma}}(M)$ is commutative.
Proof: For each $f, g \in \operatorname{End}_{R_{\Gamma}}(M), \gamma \in \Gamma$ and $x \in M$, since $f(\langle x\rangle) \subseteq\langle x\rangle$ by Proposition(2.13), then $f(x)=\sum_{i=1}^{n} r_{i} \gamma_{i} x$ and $g(x)=\sum_{j=1}^{m} s_{j} \beta_{j} x \quad$ where $\quad r_{i}, s_{j} \in R \quad, \quad \gamma_{j}, \beta_{j} \in \Gamma$, then $(f \gamma g)(x)=$ $g\left(1 \gamma f(x)=1 \gamma g\left(\sum_{i=1}^{n} r_{i} \gamma_{i} x\right)=1 \gamma\left(\sum_{i=1}^{n} r_{i} \gamma_{i} g(x)\right)=1 \gamma\left(\sum_{i=1}^{n} r_{i} \gamma_{i} \sum_{j=1}^{m} s_{j} \beta_{j} x\right)=\right.$ $1 \gamma\left(\sum_{i=1}^{n} \sum_{j=1}^{m} r_{i} \gamma_{i} s_{j} \beta_{j} x\right)=1 \gamma\left(\sum_{j=1}^{m} \sum_{i=1}^{n} r_{i} \gamma_{i} s_{j} \beta_{j} x\right) \quad$, but $\quad r_{i} \gamma_{i} s_{j} \beta_{j} x=\left(r_{i} \gamma_{i} 1\right) \gamma_{0}\left(s_{j} \beta_{j} 1\right) \gamma_{0} x=$ $\left(s_{j} \beta_{j} 1\right) \gamma_{\circ}\left(r_{i} \gamma_{i} 1\right) \gamma_{0} x=s_{j} \beta_{j} r_{i} \gamma_{i} x$, so $(f \gamma g)(x)=1 \gamma\left(\sum_{j=1}^{m} \sum_{i=1}^{n} s_{j} \beta_{j} r_{i} \gamma_{i} x\right)=1 \gamma\left(\sum_{j=1}^{m} s_{j} \beta_{j} f(x)\right)=$ $1 \gamma f\left(\sum_{j=1}^{m} s_{j} \beta_{j} x\right)=(g \gamma f)(x)$.

4. Regular Gamma Modules

In this section we extended the concept of regular gamma modules as a generalization of regular modules and semisimple gamma modules.

There are deferent of definitions of the regular Γ-ring. In [3] if R is Γ-ring, then $x \in R$ is called regular if there exists $s \in R$ such that $x=x \gamma s \gamma x$ for some $\gamma \in \Gamma$ and R is called regular if every element of R is regular. In [6] a Γ-ring R is called regular if for each $x \in R$ there exists $s \in R$ and $\gamma, \beta \in \Gamma$ such that $x=x \gamma s \beta x$. In [10] a Γ-ring R is called regular if for each $x \in R$ there exists $\gamma \in \Gamma$ such that $x=x \gamma x$. Note that if a Γ-ring is regular in the sense of [10] and [3] ,then R is regular in the sense of [6]. In this paper we take the definition of regular in the sense of [6]. A left module M is called regular if for any element $m \in M$ there exists $f \in \operatorname{Hom}_{R}(M, R)$ such that $m=f(m) m$ [11].

Definition (4.1):

Let M be R_{Γ}-module. Then M is called regular if for each $m \in M$, there exists $f \in \operatorname{Hom}_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $\mathrm{m}=\mathrm{f}(\mathrm{m}) \gamma \mathrm{m}$.

If R is a regular R_{Γ}-module, for each $x \in R$, there exists $f \in \operatorname{End}_{R_{\Gamma}}(R)$ and $\gamma \in \Gamma$ such that $x=f(x) \gamma x=\lambda_{r}(x) \gamma x=x \gamma_{0} r \gamma x$ by lemma(3.12), so regular R_{Γ}-module is a generalization of regular Γ-ring.

An R_{Γ}-module M is called projective if for each R_{Γ}-epimorphism $\alpha: A \rightarrow B$ and :M $\rightarrow B$, there exists an R_{Γ}-homomorphism $\lambda: M \rightarrow A$ such that $\alpha \lambda=\beta$ [12].
Proposition (4.2): Let M be an R_{Γ}-module. Then M is regular if and only if every cyclic $R_{\Gamma}-$ submodule of M is a projective direct summand.

Proof:

Assume $N=\langle x\rangle$ be a cyclic R_{Γ}-submodule of a regular R_{Γ}-module M, there exists $f \in$ $\operatorname{Hom}_{R_{\Gamma}}(M, R)$ such that $x=f(x) \gamma x$ for some $\gamma \in \Gamma$, define $W=\{m \in M: f(m) \gamma x=0\}$, clear W is R_{Γ}-submodule of M and for each $t \in M, t-f(t) \gamma x \in W$ since $f[t-f(t) \gamma x] \gamma x=[f(t)-$ $f(f(t) \gamma x)] \gamma x=f(t) \gamma x-f(t) \gamma f(x) \gamma x=f(t) \gamma x-f(t) \gamma x=0, \quad$ hence $\quad t=(t-f(t) \gamma x)+$ $f(t) \gamma x \in W+\langle x\rangle$, so $M \subseteq W+\langle x\rangle$. Now if $\sum_{i=1}^{n} r_{i} \gamma_{i} x \in W \cap\langle x\rangle$, then $0=f\left(\sum_{i=1}^{n} r_{i} \gamma_{i} x\right) \gamma x=$ $\sum_{i=1}^{n} r_{i} \gamma_{i} f(x) \gamma x=\sum_{i=1}^{n} r_{i} \gamma_{i} x$, thus $M=\langle x\rangle \oplus W$. Take $e=f(x)$, then eve $=f(x) \gamma f(x)=$ $f(f(x) \gamma x)=f(x)=e$, define $\varphi: R \gamma_{0} e \rightarrow\langle x\rangle$ by $\varphi\left(r \gamma_{0} e\right)=\left(r \gamma_{0} e\right) \gamma x$, then φ is an R_{Γ}-isomorphism, hence $\langle x\rangle \cong R \gamma_{0} e$, so $\langle x\rangle$ is projective [12]. Conversely, for any $x \in M$, there exists an R_{Γ}-submodule N of M such that $M=\langle x\rangle \oplus N$. Define an R_{Γ}-homomorphism $f: R \rightarrow\langle x\rangle$ by $f(r)=r \gamma_{0} x$ for each $r \in R$. for each $\sum_{i=1}^{k} r_{i} \gamma_{i} x \in\langle x\rangle$, then $\sum_{i=1}^{k} r_{i} \gamma_{i} x=\left(\sum_{i=1}^{k} r_{i} \gamma_{i} 1\right) \gamma_{0} x=$ $f\left(\sum_{i=1}^{k} r_{i} \gamma_{i} 1\right)$, so f is an R_{Γ}-epimorphism, since $\langle x\rangle$ is projective, then there exists $g:\langle x\rangle \rightarrow R$ such that $i d_{\langle x\rangle}=f g$. Define an R_{Γ}-homomorphism $h: M \rightarrow R$ by $h\left(\sum_{i=1}^{k} r_{i} \gamma_{i} x+n\right)=g\left(\sum_{i=1}^{k} r_{i} \gamma_{i} x\right)$, then $x=i d_{\langle x\rangle}(x)=f(g(x))=g(x) \gamma_{0} x=h(x) \gamma_{0} x$, hence M is regular.

Examples (4.3):

1- Every R_{Γ}-submodule of regular R_{Γ}-module is regular.
2- In examples and remarks(2.8)(5) R is semisimple Γ-ring and fully R_{Γ}-idempotent, let J any principle ideal of R generated by the element ($m \mathrm{~m}$), for any another ideal $L \neq 0$ of R, take $0 \neq$
$\left(\begin{array}{ll}s & s\end{array}\right) \in L$, then $\left(\begin{array}{ll}s & s\end{array}\right)\binom{1}{1}\left(\begin{array}{ll}m & m\end{array}\right)=\left(\begin{array}{ll}s m+s m & s m+s m\end{array}\right) \in J \cap L$, hence $J \cap L \neq 0$, so J can not be direct summand in R, thus R is not regular.
Proposition (4.4): If R is regular Γ-ring, then R is semisimple.

Proof:

For each ideal I of R , let $\mathrm{n} \in \mathrm{I}$, then $\mathrm{n}=\mathrm{n} \gamma \mathrm{s} \beta \mathrm{n}$ for some $\mathrm{s} \in \mathrm{R}$ and $\gamma, \beta \in \Gamma$, so $\mathrm{n} \in \mathrm{I} \gamma \mathrm{I} \subseteq \mathrm{I} \Gamma \mathrm{I}$, hence $\mathrm{I}=\mathrm{I} \Gamma$ I.
Proposition(4.5): Let M be duo regular R_{Γ}-module. Then M is fully R_{Γ}-idempotent.

Proof:

For each $x \in M$, there exists $f \in \operatorname{Hom}_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $x=f(x) \gamma x$. If $f(x) \beta m \in f(x) \Gamma M$ where $\beta \in \Gamma$ and $m \in M$, define $g: R \rightarrow M$ by $g(r)=r \beta m$, clear that g is an R_{Γ}-homomorphism, so $h=g f: M \rightarrow M$ is R_{Γ}-endomorphism and $f(x) \beta m=g(f(x))=h(x)$, but $h(x) \in\langle x\rangle$ since M is duo, hence $f(x) \in\left(\langle x\rangle:_{R_{\Gamma}} M\right)$, thus M is fully R_{Γ}-idempotent by proposition(2.4).
Corollary (4.6): Let M be multiplication regular R_{Γ}-module. Then M is fully R_{Γ}-idempotent.
Proposition (4.7): Let M be an R_{Γ}-module. Then the following statements are equivalent:
1- $\quad M$ is regular.
2- For each R_{Γ}-module $K, \quad R_{\Gamma}$-homomorphism $h: K \rightarrow M$ and $x \in h(K)$, there exists R_{Γ}-homomorphism $g: M \rightarrow K(g$ depends on $x)$ such that $x=h(g(x))$.
3- For each R_{Γ}-homomorphism $h: R \rightarrow M$ and $\in h(R)$, there is R_{Γ}-homomorphism $g: M \rightarrow R$ such that $x=h(g(x))$.

Proof:

$(1) \Rightarrow(2)$ Assume $h: K \rightarrow M$ is R_{Γ}-homomorphism and $x \in h(K)$, then there exists $q \in K$ such that $x=h(q)$, since M is regular, then there exists an R_{Γ}-homomorphism $f: M \rightarrow R$ such that $x=$ $f(x) \gamma x$ for some $\gamma \in \Gamma$, define $g: M \rightarrow Q$ by $g(m)=f(m) \gamma q$, then g is an R_{Γ}-homomorphism and $h(g(x))=h(f(x) \gamma q)=f(x) \gamma h(q)=f(x) \gamma x=x$. (2) $\Rightarrow(3)$ Clear. (3) $\Rightarrow(1)$ For each $x \in M$, define an R_{Γ}-homomorphism $h: R \rightarrow M$ by $h(r)=r \gamma_{\circ} x$, then there exists R_{Γ}-homomorphism $g: M \rightarrow R$ such that $x=h(g(x))=g(x) \gamma_{\circ} x$.

References

1. Ameri, R. and Sadeghi, R. 2010. Gamma Modules. Ratio Mathematica, 20: 127-147.
2. Estaji, A. A., Estaji, A., As., Khorasani, A. S. and Baghdari S. 2014. On Multiplication Γ-modules. Ratio Mathematica, 26: 21-38.
3. Paul A. C. and Uddin S. 2009. On Jacobson radical for Γ-rings. J. Bangladesh Math. Soc., 29: 147-160.
4. Abbas, M.S., Al-Saadi, S. A. and Shallal, E. A. 2016. Injective gamma modules. Annals of Pure and Applied Mathematics, 12(1): 85-94.
5. Abbas, M.S., Al-Saadi, S. A. and Shallal, E. A. 2016. Quasi-Injective gamma modules. Int. J. of Advanced Research, 10(4): 327-333.
6. Ma, X. and Zhan, J. 2010. Some Characterizations of Regular and Semisimple Γ-rings. Kyungpook Math. J., 50: 411-417.
7. Ali, MM. 2008. Idempotent and Nilpotent Submodules of Multiplication Modules. Communications in Algebra, 36(12): 4620-4642.
8. Ali, M. M. and Smith, D. J. 2004. Pure Submodules of Multiplication Modules. Contributions to Algebra and Geometry, 45(1): 61-74.
9. Ansari-Toroghy, H. and Farshadifar, F. 2012. Fully Idempotent and Coidempotent Modules. Bulletin of the Iranian Mathematical Society, 38(4): 987-1005.
10. Kyuno, S., Nobusawa, N. and Smith M. B. 1987. Regular gamma Rings. Tsukuba Journal Math., 11(2), 371-382.
11. Zelmanowitz, J. M. 1972. Regular Module. Trans. Amer. Math. Soc., 163: 341-355.
12. Rezaei, A. H. and Davvaz, B. 2015. Tensor Product of Gamma Modules. Afrika Mathematika, 26(7), 1601-1608.
13. Nobusawa, N. 1964. On a Generalization of the ring theory. Osaka Journal Math., 1: 81-89.
14. Barnes, W. E. 1966, On The Γ - ring of Nobusawa, Pacific Journal of Mathematics, 18(3), 411422.

[^0]: *Email: emad.a.shallal@qu.edu.iq

