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Abstract  

     In this paper we introduce and study the concepts of semisimple gamma modules 

, regular gamma modules and fully idempotent gamma modules as a generalization 

of semisimple   ring. An    module   is called fully    idempotent 

(semisimple , regular) if        
     for all    submodule   of   (every 

    submodule is a direct summand, for each    , there exists   
     

       and      such that          . We study some properties and 

relationships between them. 
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 بعض التعميمات لممقاسات شبه البسيطة من نمط كاما
 

 *، عماد علاوي شلالعبدالكاظم الساعديسعد  ،مهدي صادق عباس
 ، بغداد، العراق.الجامعة المستنصرية ،كمية العموم  ،قسم الرياضيات

 

 الخلاصة
في ىذا البحث قدمنا تعريف مفاىيم المقاسات شبو البسيطة من نمط كاما ، المقاسات المنتظمة من نمط      

كاما و المقاسات تامة اللانمو من نمط كاما كاعمام الى حمقة كاما شبو البسيطة . المقاس من نمط كاما 
       يسمى تام اللانمو ) شبو بسيط ، منتظم( اذا كان 

قاس شبو جزئي منو ) كل لكل م     
في    و   الى   ينتمي لو يوجد تشاكل من نمط كاما من   مقاس جزئي منو مجموع مباشر، لكل عنصر 

 . كما درسنا بعض الخواص ليذه المفاىيم والعلاقة فيما بينيا.         بحيث     
1. Introduction 

     Let   and   be two additive abelian groups,   is called a    ring (in the sense of Barnes), if there 

exists a mapping              , written              such that                  , 
                 ,                   and                  for all          

and        [1]. A subset    of    ring    is said to be a right(left) ideal of    if    is an additive 

subgroup of    and       (       , where      {               }. If   is both 

right and left ideal, we say that    is an ideal of    [1]. An element 1 in    ring    is unity if there 

exists element       such that              for every    , in this paper we denote       to 

the element such that      is the unity [2]. A   ring can have more than one unity. A   ring    is 

called commutative, if          for any       and     [2]. 

     Let    be a   ring and    be an additive abelian group. Then    together with a mapping 

             ,               such that                     ,            
           ,                  ,                     where                 

and           is called a left    module, similarly one can defined right    module [1]. A 
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left    module   is unitary if there exist elements, say 1 in    and       such that         for 

every      [1]. 

     Let    be an    module. A nonempty subset    of    is said to be an    submodule of    

(denoted by     ) if    is a subgroup of    and      , where      {             
    }[1]. An     module   is called simple if       and the only    submodules of    are 

  and   [3]. A   ring    is called simple if   is simple    module. An     submodule   of 

    module   is called essential (denote by      ) if  every nonzero    submodule of    has 

nonzero intersection with   , equivalent to, for each nonzero element   in   there is              

and              such that ∑              
    [4]. If    is a nonempty subset of   , then the 

   submodule of    generated by   denoted by 〈 〉 and 〈 〉   {       },   is called the 

generator of 〈 〉 and 〈 〉 is finitely generated if | |   , then 〈 〉  {∑     
 
    ∑       

 
        

                        } , In particular , if    { }, then 〈 〉 is called the 

cyclic    submodule of   generated by  . If   is unitary, then 〈 〉  {∑            
      

      } [1]. An     submodule     of     is a direct summand if there is an    submodule     of 

  such that        and      , in this case   is written as       [5]. An    
 submodule   of   is closed in   if the only solution of the relation        is     [5]. 

     Let   and   be two    modules. A mapping       is called homomorphism 

of    modules (simply    homomorphism) if                  and               for 

each           and    . An    homomorphism is    monomorphism if it is one-to-one 

and    epimorphism if it is onto, the set of all    homomorphisms from   into   denote by 

     
      in particular if    ,      

      denote by      
   . If   is    module, then 

     
    is a   ring with the mapping          

           
         

    denoted by 

              where                  , for          
    ,     and    . If   is a 

left    module, then   is a right       
    –module with the mapping             

    

  by               where           , for        
    ,     and     [1]. The set of 

rational numbers and the set of integers will be denoted by   and  . All modules in this paper are 

unitary left    modules 

2. Fully Idempotent Gamma Modules 

     In this section we introduce the concept of fully idempotent gamma modules and give some basic 

properties and characterizations of this concept. 

     Let   be an    submodule of an     module  . Then the residual of   in   denoted by 

(    
 )  {         }, which is a left ideal of    [1]. An element   of a   ring   is called 

idempotent if       for some     [3]. The ideal   of a   ring   is called idempotent if       
and    is called semisimple if every ideal of    is idempotent [6]. An element    of an   module   

is called idempotent if there exists           such that      [7]. A submodule   of 

an   module   is called idempotent if           and   is called fully idempotent if every 

submodule of   is idempotent [8]. 

Remarks (2.1): Let      and    are     submodules of an     module   and         
   . 

Then 

1. If     , then (    
 )  (    

 ). 

2. If     , then (    
 )  (    

 ). 

3. (    
 ) (    

 )         
  . 

4. (    
 )       

              
     . 

5. (    
   )  (    

 ) (    
 ). 

Definition (2.2):  

     An    submodule   of    module   is called    idempotent if        
     and   is 

called fully    idempotent if every    submodule of   is    idempotent. A   ring   is called 

fully    idempotent if it is fully    idempotent    module, that is   is semisimle   ring. 

Proposition(2.3): Let   be an    module. Then   is fully    idempotent if and only if every 

cyclic    submodule is    idempotent. 
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Proof:  

     Assume that    , if    , then 〈 〉  (〈 〉   
 ) 〈 〉, so   (〈 〉   

 ) 〈 〉  

(    
 ) 〈 〉  (    

 )  , hence   (    
 )  . 

Proposition (2.4): Let   be an    module. Then   is fully    idempotent if and only if for any 

element    , there exist             〈 〉   
   and              such that   ∑      

 
   .  

Proof:  

     Assume that 〈 〉  (〈 〉   
 ) 〈 〉, so     ∑      

 
    where   (〈 〉   

 ),        and     , 

then   ∑          
 
   . For each         ,        ,                        〈 〉, so 

     (〈 〉   
 ) for each        . Conversely, for each    ,   ∑      

 
    where    

(〈 〉   
 ) and     , so    (〈 〉   

 ) 〈 〉, so 〈 〉  (〈 〉   
 ) 〈 〉, hence   is fully 

   idempotent by proposition(2.3). 

      An    module   is called multiplication if for each    submodule   of  , then       for 

some left ideal   of  . This is equivalent to saying that   (    
 )   for every 

   submodule    of   [2]. 

Proposition(2.5): Every cyclic    module over commutative   ring is multiplication. 

Proof: Let   be an    submodule of cyclic    module   , then there is     such that  〈 〉 , if 
   , then   ∑      

 
    where      and      . Now for each     and    , then 

 ∑         
 
      ∑         ∑      

 
     

     ∑ ∑            
 
   

 
     

∑ ∑                   
 
   

 
     ∑ ∑        

 
   

 
                 ∑        ∑           

 
   

 
     

∑          
     , so ∑        

 
         

  , hence        
           

    , thus 

       
    . 

Proposition (2.6): Let   be an    module,   and    be     submodules of  . Then  

1- If   is    idempotent submodule of  , then   is multiplication , and hence every fully 

   idempotent is multiplication. 

2- If   and   are    idempotent    submodules of  , then so is    . 

3- Let   be commutative   ring. Then  

(i) If   is idempotent ideal of   and   is    idempotent  , then     is    idempotent 

submodule in  . 

(ii) If   is    idempotent in   and   is    idempotent in  , then   is    idempotent in  . 

Proof: 

1.   (    
 )   (    

 )    , so   (    
 )  . 

2.     (    
 )   (    

 )    (      
 )    (      

 )     (  

    
 )      . 

3. (i) 

(      
 )                 (    

 )     (    
 )     

         (      
 )      , so     (      

 )      . 

(ii) (    
 )   (    

 ) (    
 )   (    

 )   (    
 )  , then (    

 )   

(    
 )  , also   (    

 )   (    
 )   (    

 )   (    
 )    , so 

  (    
 )  , thus   (    

 )   (    
 ) (    

 )   (    
 ) (    

 )   

(    
 )  . 

     The following proposition shows that the concept of fully    idempotent generalizes that of 

semisimple   ring. 

Proposition (2.7): If   is fully    idempotent   ring, then   is semisimple. The converse holds 

when    is commutative.  

Proof:  

     Assume   is a fully    idempotent   ring and   is an ideal of  , then        
    . For each 

       
  , then             , so      

    , thus        
               and hence 

     . Conversely, let    be an ideal of  , it's enough to show that        
  ,  since           

,then        
  , hence             

       , thus        
    . 
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Examples and Remarks (2.8): 

1- Every idempotent element in   module   is    idempotent and every idempotent 

submodule   of   is idempotent    submodule. 

2- Every    submodule of fully    idempotent also fully    idempotent. Let   is an 

   submodule of  , for any    submodule   of  , then   (    
 )   , by Remarks(2.1) 

(    
 )  (    

 ), so   (    
 )    (    

 )        , thus    

(    
 )  . 

3- Every simple    module is fully    idempotent. 

4- Let       ,     and        . Then   is not fully    idempotent, since        is not 

   idempotent submodule. Note that   is not multiplication . 

5- Let   {           } and   {(
 
 )       } , then   is   ring with           by 

      (
 
 )        (                    ), since for any nonzero ideal   of  , take 

            we can choose     
 

  
 , then                (

 
 )            , so 

     , hence   is semisimple and by proposition(2.7)   is fully    idempotent. 

1- Fully    idempotent     module over simple   ring is simple. For each nonzero     

submodule   of  , then           , so         , hence                 , 

thus    . 

     The product of two   submodules   and   of an   module   define as 

                 [9]. 

Definition (2.9): 

      Let   and    are    submodules of an    module  . The product of   and   define by 

 (    
 ) (    

 )   . 

     The following proposition gives a characterizations of fully    idempotent    modules. 

Proposition (2.10):  

     Let   be     module, then the following are equivalent: 

1-   is fully    idempotent. 

2-      for all     submodule   of   . 

3-         for all    submodules   and  . 

Proof:  

(1) (2) For each    submodule   of  ,   (    
 )  , then   (    

 ) (    
 )   

(    
 ) (    

 )   (    
 )    , so    (    

 )  (    
 )     .         

For each    submodules   and  , then            (      
 ) (      

 )   

(    
 ) (    

 )      , so       , since    (    
 ) (    

 )   

(    
 )     also    (    

 ) (    
 )   (    

 )     , then       , thus 

      . (3) (1)            . 

     We have proved that every fully    idempotent     module is multiplication, in the following 

corollary we discuss the converse. 

Corollary(2.11): Every multiplication    module over semisimple    ring is fully    
 idempotent.  

Proof:  

     Let   be a multiplication     module and    , then 

  (    
 )   (    

 ) (    
 )     , hence   is fully    idempotent. 

     Let   and   be two    modules. Then   is called   injective if for any    submodule   of 

  and    homomorphism      , there exists an    homomorphism        such that 

     where   is the inclusion mapping. An    module   is injective if it is   injective for any 

   module  . Every    module   can be embedding in injective    module which is called 

injective hull      [4]. An    module   is called quasi-injective if and only if   is   injective 

[5]. 

Proposition(2.12): Let   be an    module with injective hull     . If   is    idempotent of 

    , then   is quasi-injective. 
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Proof:  

     Assume that   is    idempotent of     , then   (    
    )  , then for each   

     
      ,       ((    

    )  )   (    
    )      (    

    )       

 , thus   is quasi-injective [5]. 

      An    module   is called duo if         for each     submodule   of   and    
     

   . It is easy to see that every  multiplication is duo. 

Proposition(2.13): Let     be fully     idempotent. Then     is duo. 

Proof:  

     For each      submodule   of   and        
   , then   (    

 )  . So      

 ((    
 )  )  (    

 )       . 

     The converse of Proposition(2.13) is not true in general for example     as    module is 

multiplication and hence duo but not fully    idempotent. 

    An    submodule of quasi-injective need not be quasi-injective for example see Example(2.3) [4]. 

Corollary(2.14): Let   be fully    idempotent. Then   is quasi-injective    module if and only if 

every    submodule of   is quasi-injective    module. 

Proof: 

     Assume that   is    submodule of a quasi-injective    module  , let   be    submodule of 

  and let       be    homomorphism, since   is quasi-injective, then there exists an    
 homomorphism       such that            where    and    are inclusion maps, clear that   is 

extended of     and by Proposition(2.13)        . The converse is obvious.  

3. Semisimple Gamma Modules 
     In this section we extended the concept of semisimplicity from category of modules to the category 

of gamma modules.  

Definition(3.1): 

     An    module   is called semisimple if every     submodule is a direct summand. 

Examples(3.2): 

1-      is     ring with                by            , the only ideals of    are 0 , 

   , 〈 〉 and 〈 〉 , then    is semisimple. 

2- Let   {             }(where   is the ring of rational numbers) and    {(
 
 )       }. 

Then   is   ring with           by       (
 
 )        (                     ). Take 

  {             }, then      (
 
 
)                                            

                    , so       , hence     is a left ideal of  , for any anther left ideal   of  , 

let            , then             and since      , for         (
 
 
)    we have 

     (
 
 
)                 , hence      , so   can not be direct summand of  , thus   is not 

semisimple    module. It is noted that   is semisimple    ring, since if   is an ideal of  , then for 

each           we can choose   (
 
 
)    such that if : 

         (i)-                  then             . 

        (ii)-                  then     

 
         . 

       (iii)-                  then             

 
. 

       (iv)-              then    

  
         

  
. Then                            (

 
 
)        

             , so      , hence       , therefore   is semisimple   ring. 

3- Every simple     module is semisimple. 

4- Let    {(
  
  

)           ring of real numbers},    , then    is   ring with        

      by (
  
  

)  (
  
  

)  (
          
    

). Take    {(
  
  

)     },      is a left ideal 

of    and    is not semisimple   ring since           . 
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In the category of module it is known that a submodule is a direct summand if an only if there exists 

         such that         and      . 

Proposition(3.3): Let   be    module, then                  for any        
    such 

that        for some    . 

Proof:  

     For each    , then                                                
                                         , so                 .  Now if 

                , then                  where      , hence             
                 t)         , so                                 

 (        )                                   , hence                 , but 

      (      )          , therefore           , thus                 . 

Corollary(3.4): Let   be    module, then                 for any        
    such 

that        for some    . 

Proof: 

      For any                ,                 where        and      , so 

                                                                           
                                             , hence               
              , thus                             . 
Corollary(3.5): Let   be an     submodule of    module  . Then   is a direct summand of   if 

and only if        where         
    and        for some    . 

Proof:  

     Assume   is a direct summand of  , then       for some    submodule   of  , take 

       by           for any     and     , then           (       )        for any 

    and                    . 

Proposition(3.6): Every    submodule of a semisimple    module   is semisimple    module. 

Proof:  For any    submodule   of  , if    , then there exists an    submodule    such that 

       , hence                        . 

Proposition(3.7): If   is semisimple     module, then     is semisimple    ring. 

Proof: Let     be an ideal of   , then       for some ideal   of  , so         for            

, then for each    ,                 , thus                    , hence   
                , so        , hence      , therefore     is semisimple    ring.  

     The converse of  Proposition(3.7) is not true in general, see Example(3.2)(2). 

Proposition(3.8): Let   be a nonzero    module. Then the following are equivalent: 

1-    is semisimple     module. 

2-    is sum of simple     submodules. 

3-    has no proper essential     submodules. 

Proof: 

         To show   has simple    submodule , if      , then for each     we have   is 

a direct summand of   , so        , hence                        . Let 

       , take   {       } , then     since     by using Zorn’s lemma there is 

maximal element   of  ,    , hence   is a direct summand of   , then       for some 

   submodule   of  . We claim   is simple , if not   has a proper     submodule    , so 

      for some    submodule     since   is proper,  hence         , by maximality 

of   ,       and       , so            for       ,     and    , then     
               and                    , hence       and     , so 

      which is a contradiction, thus   is simple    submodule. Let    is the sum of all simple 

   submodule of  , then there is     such that       . If    , then by proof   has a 

nonzero simple    submodule  , then          which is a contradiction, hence     and 

    .         Assume that    has a proper    submodule  , then there is        and by 

(2)   has simple    submodule    such that     , then        , so either          a 

contradiction or       , thus   is not essential    submodule of  .         Let     and 

  complement of  , then         [5], so      . 
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Proposition(3.9): Let     be a     ring. Then the following are equivalent: 

1-    is semisimple     module. 

2- Every ideal of     is generated by an idempotent element. 

3-   is sum of simple     submodules. 

4- Every     module   has no proper essential     submodules. 

5- Every     module is injective. 

6- Every     module is semisimple. 

Proof: 

 (1) (2) Let   be an ideal of   , By proof of Proposition(3.7), there exists      such that         

for each    . In particular           therefore    is an idempotent  and    〈  〉 , thus   〈  〉.  
(2) (1)  Let   be an ideal of  . Then there exists an idempotent element       such that        for 

some      and    〈 〉. For each     ,                                    
         , hence                   , so                 . For each        , 

  ∑      
 
    ∑       

 
        ∑      

 
          . Now if             , then   

∑     
 
           ∑     

 
     ∑        

 
   , hence     ∑     

 
       ∑        

 
      

∑     
 
       ∑     

 
         , thus                 . (1) (3) (4) by 

proposition(3.8). (5) (6) By proposition(1.9) [4]. (6) (1) Clear. (1) (5) Let     be an     module, 

for each ideal   of   and    homomorphism      , since     is semisimple     module, then 

there exists an ideal     of   such that       , define        by            if      
otherwise         for each     , then     is extension of     , so   is injective [4]. 

     Semisimple     modules and  multiplications are different for example any semisimple 

    module over simple   ring is not multiplication. Since for any nonzero     submodule   of 

 , if there exists an ideal   of   such that                             for 

some    submodule   of   which is a contradiction. In Particular ,      as     module is 

semisimple    module but not multiplication. The     module     is multiplication but not 

semisimple. Also semisimple     module and fully    idempotent are different for example 

         as    module is not fully     idempotent since every fully    idempotent is 

multiplication. For fully     idempotent which is not semisimple see examples and remarks(2.8)(5) 

  is not semisimple by proposition(3.7). 

Proposition (3.10): Let     be multiplication     module. If     is semisimple     module. Then 

   is fully    idempotent. 

Proof:  

     For each    submodule    of  ,       for some    submodule   of  , since   is 

multiplication, then   (    
 )   (    

 )       (    
 )   (    

 )   but 

(    
 )        , so   is    idempotent submodule. 

Proposition (3.11): If     is semisimple     module, then   is quasi-injective. 

 Proof: 

     For each    submodule   of   and     homomorphism       , since    is semisimple 

    module, then       for some     . So for each    , then       where     

and    , define       by           for each     , clear that     is     homomorphism 

and     is extended of    , so   is quasi-injective [5]. 

Lemma(3.12): Every   ring     is     isomorphic to       
    . 

Proof: 

      Let     be a    ring. For a fixed element    in     we can define        , by            for 

each    , then    is    homomorphism, that is         
    . Let    {      } , then    is 

abelian group with                     and     is a   ring with                , by 

                  where                     . For each        
   ,              

                 , so         , hence         
   . Define         by       , it is easy 

to show that   is a      isomorphism see[4,example(2.12)], hence           
    . 

     Lemma(3.12) show that if   is a commutative then      
    is commuatative. But this may not 

be true for an arbitrary    module. For example consider   is a vector space over a field   of 

dimension 2, then   is an     module. Let       by                    and       by 
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                   be two    homomorphisms, then for each            and      , 

              (           )                         and              (           )  
                       , so         . 

Proposition(3.13): Let     be a commutative    ring. If    is fully     idempotent , then 

      
   is commutative. 

 Proof: For each          
   ,     and    , since   〈 〉  〈 〉 by Proposition(2.13), then 

     ∑      
 
    and      ∑      

 
    where         ,        , then          

             ∑      
 
        ∑         

 
        ∑     ∑      

 
   

 
     

   ∑ ∑          
 
   

 
        ∑ ∑          

 
   

 
     , but                               

                              , so             ∑ ∑          
 
   

 
        ∑         

 
     

    ∑      
 
             . 

4. Regular Gamma Modules 

     In this section we extended the concept of regular gamma modules as a generalization of regular 

modules and semisimple gamma modules. 

     There are deferent of definitions of the regular   ring. In [3] if   is   ring , then     is called 

regular if there exists       such that          for some     and R is called regular if every 

element of R is regular. In [6] a    ring     is called regular if for each      there exists      and 

       such that         . In [10] a   ring    is called regular if for each      there exists 

    such that      . Note that if a    ring is regular in the sense of [10] and [3] ,then R is 

regular in the sense of [6]. In this paper we take the definition of regular in the sense of [6]. A left 

module   is called regular if for any element      there exists             such that 

         [11]. 

Definition (4.1): 

      Let   be    module. Then   is called regular if for each    , there exists        
       

and      such that          . 

     If   is a regular    module, for each    , there exists        
    and     such that 

                        by lemma(3.12), so regular    module is a generalization of 

regular   ring. 

     An    module   is called projective if for each    epimorphism       and      , there 

exists an    homomorphism       such that   =β [12].  

Proposition (4.2): Let   be an    module. Then    is regular if and only if every cyclic     

submodule of   is a projective direct summand. 

Proof: 

      Assume   〈 〉 be a cyclic     submodule of a regular     module   , there exists   
     

      such that          for some    , define   {            } , clear   is 

   submodule of M and for each     ,            since  [        ]   [     
         ]                                     , hence              
         〈 〉, so     〈 〉. Now if ∑      

 
      〈 〉, then     ∑      

 
       

∑           
 
    ∑      

 
   , thus   〈 〉  . Take       , then               

                , define        〈 〉 by                 , then   is an 

   isomorphism, hence 〈 〉      , so 〈 〉 is projective [12]. Conversely, for any    , there 

exists an    submodule    of   such that   〈 〉  . Define an    homomorphism     〈 〉 

by           for each    . for each ∑      
 
    〈 〉, then ∑        ∑            

   
 
   

  ∑      
 
    , so   is an     epimorphism , since 〈 〉 is projective, then there exists   〈 〉    such 

that   〈 〉    . Define an    homomorphism       by  (∑      
 
     )    ∑      

 
    , 

then     〈 〉     (    )                  , hence   is regular. 

Examples (4.3): 

1- Every    submodule of regular    module is regular. 

2- In examples and remarks(2.8)(5)   is semisimple    ring and fully    idempotent, let     any 

principle ideal of   generated by the element       , for any another ideal     of  , take   
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        , then       (
 
 
)                             , hence       , so   can not 

be direct summand in  , thus   is not regular. 

Proposition (4.4):  If R is regular   ring, then R is semisimple. 

Proof:  

     For each ideal     of    , let      , then          for some      and        , so          , 
hence      . 
Proposition( 4.5): Let   be duo regular    module. Then   is fully    idempotent. 

Proof: 

     For each    , there exists        
      and     such that         . If               

where     and    , define       by         , clear that   is an     homomorphism, so 

         is    endomorphism and         (    )      , but      〈 〉 since   is duo, 

hence      (〈 〉   
 ), thus   is fully    idempotent by proposition(2.4). 

Corollary (4.6): Let   be multiplication regular    module. Then   is fully    idempotent. 

Proposition (4.7): Let   be an    module. Then the following statements are equivalent: 

1-   is regular. 

2- For each    module  ,     homomorphism       and        , there exists 

   homomorphism        (  depends on  ) such that          . 
3- For each    homomorphism       and       , there is    homomorphism       

such that          . 
Proof: 

 (1) (2) Assume       is    homomorphism and        , then  there exists     such that 

       , since   is regular, then there exists an    homomorphism       such that   
       for some    , define       by             , then   is an    homomorphism and 

                                    . (2) (3) Clear. (3) (1) For each     , define 

an    homomorphism        by          , then there exists    homomorphism        

such that     (    )         . 
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