Abbas et al.

Journal of Science, 2017, Vol. 58, No.3C, pp: 1720-1728 DOI: 10.24996/ijs.2017.58.3C.15

ISSN: 0067-2904

Some Generalizations of Semisimple Gamma Rings

Mehdi S. Abbas, Saad Abdul kadhim Al-Saadi, Emad Allawi Shallal *

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple Γ -ring. An R_{Γ} -module M is called fully R_{Γ} -idempotent (semisimple, regular) if $N = (N_{:R_{\Gamma}}M)\Gamma N$ for all R_{Γ} -submodule N of M (every R_{Γ} -submodule is a direct summand, for each $m \in M$, there exists $f \in Hom_{R_{\Gamma}}(M,R)$ and $\gamma \in \Gamma$ such that $m = f(m)\gamma m$. We study some properties and relationships between them.

Keywords: Semisimple Gamma Module, Multiplication Gamma Module, Duo Gamma Module, Fully Idempotent Gamma Module, Regular Gamma Module.

بعض التعميمات للمقاسات شبه البسيطة من نمط كاما

مهدي صادق عباس، سعد عبدالكاظم الساعدي، عماد علاوي شلال*

قسم الرياضيات، كلية العلوم ، الجامعة المستنصرية، بغداد، العراق.

الخلاصة

في هذا البحث قدمنا تعريف مفاهيم المقاسات شبه البسيطة من نمط كاما ، المقاسات المنتظمة من نمط كاما و المقاسات تامة اللانمو من نمط كاما كاعمام الى حلقة كاما شبه البسيطة . المقاس من نمط كاما كاما و المقاسات تامة اللانمو من نمط كاما كاعمام الى حلقة كاما شبه البسيطة . المقاس من نمط كاما يسمى تام اللانمو (شبه بسيط ، منتظم) اذا كان $N = (N:_R M) \Gamma N$ كل مقاس شبه جزئي منه (كل مقاس جزئي منه مجموع مباشر ، لكل عنصر m ينتمي له يوجد تشاكل من نمط كاما من M الى R و γ في مقاس جزئي منه مجموع مباشر ، لكل عنصر m ينتمي اله يوجد المفاهيم والعلاقة فيما بينها. Γ بحيث $\gamma m = f(m)\gamma m$

1. Introduction

Let *R* and Γ be two additive abelian groups, *R* is called a Γ -ring (in the sense of Barnes), if there exists a mapping $\cdot : R \times \Gamma \times R \to R$, written $\cdot (r, \gamma, s) \mapsto r\gamma s$ such that $(a + b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha + \beta)c = a\alpha c + a\beta c$, $a\alpha(b + c) = a\alpha b + b\alpha c$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$ [1]. A subset *A* of Γ -ring *R* is said to be a right(left) ideal of *R* if *A* is an additive subgroup of *R* and $A\Gamma R \subseteq A(R\Gamma A \subseteq A)$, where $A\Gamma R = \{a\alpha r : a \in A, \alpha \in \Gamma, r \in R\}$. If *A* is both right and left ideal, we say that *A* is an ideal of *R* [1]. An element 1 in Γ -ring *R* is unity if there exists element $\gamma_{\circ} \in \Gamma$ such that $r = 1\gamma_{\circ}r = r\gamma_{\circ}1$ for every $r \in R$, in this paper we denote $\gamma_{\circ} \in \Gamma$ to the element such that $1\gamma_{\circ}$ is the unity [2]. A Γ -ring can have more than one unity. A Γ -ring *R* is called commutative, if $a\gamma b = b\gamma a$ for any $a, b \in R$ and $\gamma \in \Gamma$ [2].

Let *R* be a Γ -ring and *M* be an additive abelian group. Then *M* together with a mapping $: R \times \Gamma \times M \to M$, $(r, \gamma, m) \mapsto r\gamma m$ such that $r\gamma(m_1 + m_2) = r\gamma m_1 + r\gamma m_2$, $(r_1 + r_2)\gamma m = r_1\gamma m + r_2\gamma m$, $r(\gamma + \beta)m = r\gamma m + r\beta m$, $(r_1\gamma r_2)\beta m = r_1\gamma(r_2\beta m)$ where $r, r_1, r_2 \in R$, $\gamma, \beta \in \Gamma$ and $m, m_1, m_2 \in M$ is called a left R_{Γ} -module, similarly one can defined right R_{Γ} -module [1]. A

^{*}Email: emad.a.shallal@qu.edu.iq

left R_{Γ} -module *M* is unitary if there exist elements, say 1 in *R* and $\gamma_{\circ} \in \Gamma$ such that $1\gamma_{\circ}m = m$ for every $m \in M$ [1].

Let *M* be an R_{Γ} -module. A nonempty subset *N* of *M* is said to be an R_{Γ} -submodule of *M* (denoted by $N \leq M$) if *N* is a subgroup of *M* and $R\Gamma N \subseteq N$, where $R\Gamma N = \{r\alpha n : r \in R, \alpha \in \Gamma, n \in N\}$ [1]. An R_{Γ} -module *M* is called simple if $R\Gamma M \neq 0$ and the only R_{Γ} -submodules of *M* are *M* and 0 [3]. A Γ -ring *R* is called simple if *R* is simple R_{Γ} -module. An R_{Γ} -submodule *N* of R_{Γ} - module *M* is called essential (denote by $N \leq_{e} M$) if every nonzero R_{Γ} -submodule of *M* has nonzero intersection with *N*, equivalent to, for each nonzero element *m* in *M* there is $r_{1}, r_{2}, ..., r_{n} \in R$ and $\gamma_{1}, \gamma_{2}, ..., \gamma_{n} \in \Gamma$ such that $\sum_{i=1}^{n} r_{i} \gamma_{i} m (\neq 0) \in N$ [4]. If *X* is a nonempty subset of *M*, then the R_{Γ} -submodule of *M* generated by *X* denoted by $\langle X \rangle$ and $\langle X \rangle = \cap \{N \leq M: X \subseteq N\}$, *X* is called the generator of $\langle X \rangle$ and $\langle X \rangle$ is finitely generated if $|X| < \infty$, then $\langle X \rangle = \{\sum_{i=1}^{m} n_{i}x_{i} + \sum_{j=1}^{k} r_{j}\gamma_{j}x_{j} : k, m \in N, n_{i} \in Z, \gamma_{j} \in \Gamma, r_{j} \in R, x_{i}, x_{j} \in X\}$, In particular , if $X = \{x\}$, then $\langle X \rangle$ is called the cyclic R_{Γ} -submodule of *M* generated by *x*. If *M* is unitary, then $\langle x \rangle = \{\sum_{i=1}^{n} r_{i}\gamma_{i}x : n \in N, \gamma_{i} \in \Gamma, r_{i} \in R\}$ [1]. An R_{Γ} - submodule *N* of *M* is a direct summand if there is an R_{Γ} -submodule *K* of *M* such that M = N + K and $N \cap K = 0$, in this case *M* is written as $M = N \oplus K$ [5]. An R_{Γ} - submodule *N* of *M* is closed in *M* if the only solution of the relation $N \leq_{e} K \leq M$ is N = K [5].

Let M and N be two R_{Γ} -modules. A mapping $f: M \to N$ is called homomorphism of R_{Γ} -modules (simply R_{Γ} -homomorphism) if f(x + y) = f(x) + f(y) and $f(r\gamma x) = r\gamma f(x)$ for each $x, y \in M, r \in R$ and $\gamma \in \Gamma$. An R_{Γ} -homomorphism is R_{Γ} -monomorphism if it is one-to-one and R_{Γ} -epimorphism if it is onto, the set of all R_{Γ} -homomorphisms from M into N denote by $Hom_{R_{\Gamma}}(M, N)$ in particular if M = N, $Hom_{R_{\Gamma}}(M, N)$ denote by $End_{R_{\Gamma}}(M)$. If M is R_{Γ} -module, then $End_{R_{\Gamma}}(M)$ is a Γ -ring with the mapping $\because End_{R_{\Gamma}}(M) \times \Gamma \times End_{R_{\Gamma}}(M) \to End_{R_{\Gamma}}(M)$ denoted by $\cdot (f, \gamma, g) \mapsto f\gamma g$ where $f \gamma g(x) = g(f(1\gamma x))$, for $f, g \in End_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$. If M is a left R_{Γ} -module, then M is a right $End_{R_{\Gamma}}(M)$ -module with the mapping $\because M \times \Gamma \times End_{R_{\Gamma}}(M) \to$ M by $\cdot (x, \gamma, f) \mapsto x\gamma f$ where $x\gamma f = f(1\gamma x)$, for $f \in End_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$ [1]. The set of rational numbers and the set of integers will be denoted by Q and Z. All modules in this paper are unitary left R_{Γ} -modules

2. Fully Idempotent Gamma Modules

In this section we introduce the concept of fully idempotent gamma modules and give some basic properties and characterizations of this concept.

Let *N* be an R_{Γ} -submodule of an R_{Γ} -module *M*. Then the residual of *N* in *M* denoted by $(N_{:R_{\Gamma}}M) = \{r \in R: r\Gamma M \subseteq N\}$, which is a left ideal of *R* [1]. An element *r* of a Γ -ring *R* is called idempotent if $r = r\gamma r$ for some $\gamma \in \Gamma$ [3]. The ideal *I* of a Γ -ring *R* is called idempotent if $I = I\Gamma I$ and *R* is called semisimple if every ideal of *R* is idempotent [6]. An element *x* of an *R*-module *M* is called idempotent if there exists $t \in (Rx_{:R}M)$ such that x = tx [7]. A submodule *N* of an *R*-module *M* is called idempotent if $N = (N_{:R}M)N$ and *M* is called fully idempotent if every submodule of *M* is idempotent [8].

Remarks (2.1): Let N, K and L are R_{Γ} –submodules of an R_{Γ} –module M and $f \in End_{R_{\Gamma}}(M)$. Then

- 1. If $K \leq N$, then $(K_{:R_{\Gamma}}L) \subseteq (N_{:R_{\Gamma}}L)$.
- 2. If $K \leq N$, then $(L:_{R_r} N) \subseteq (L:_{R_r} K)$.
- 3. $(N:_{R_{\Gamma}}M)\cap (K:_{R_{\Gamma}}M) = (N\cap K:_{R_{\Gamma}}M).$
- 4. $(N:_{R_{\Gamma}} M) \subseteq (N:_{R_{\Gamma}} f(M)) \cap (f(N):_{R_{\Gamma}} f(M)).$
- 5. $(L:_{R_{\Gamma}}N+K) = (L:_{R_{\Gamma}}N) \cap (L:_{R_{\Gamma}}K).$

Definition (2.2):

An R_{Γ} -submodule N of R_{Γ} -module M is called R_{Γ} -idempotent if $N = (N_{R_{\Gamma}}M)\Gamma N$ and M is called fully R_{Γ} -idempotent if every R_{Γ} -submodule of M is R_{Γ} -idempotent. A Γ -ring R is called fully R_{Γ} -idempotent if it is fully R_{Γ} -idempotent R_{Γ} -module, that is R is semisimle Γ -ring. **Proposition(2.3):** Let M be an R_{Γ} -module. Then M is fully R_{Γ} -idempotent if and only if every cyclic R_{Γ} -submodule is R_{Γ} -idempotent. **Proof:**

Assume that $N \leq M$, if $x \in N$, then $\langle x \rangle = (\langle x \rangle_{:R_{\Gamma}} M) \Gamma \langle x \rangle$, so $x \in (\langle x \rangle_{:R_{\Gamma}} M) \Gamma \langle x \rangle \subseteq (N_{:R_{\Gamma}} M) \Gamma \langle x \rangle \subseteq (N_{:R_{\Gamma}} M) \Gamma N$, hence $N = (N_{:R_{\Gamma}} M) \Gamma N$.

Proposition (2.4): Let M be an R_{Γ} -module. Then M is fully R_{Γ} -idempotent if and only if for any element $x \in M$, there exist $t_1, t_2, ..., t_n \in (\langle x \rangle_{:R_{\Gamma}} M)$ and $\gamma_1, \gamma_2, ..., \gamma_n \in \Gamma$ such that $x = \sum_{i=1}^n t_i \gamma_i x$. **Proof:**

Assume that $\langle x \rangle = (\langle x \rangle_{:R_{\Gamma}} M) \Gamma \langle x \rangle$, so $x = t\gamma \sum_{i=1}^{n} r_i \gamma_i x$ where $t \in (\langle x \rangle_{:R_{\Gamma}} M)$, $\gamma, \gamma_i \in \Gamma$ and $r_i \in R$, then $x = \sum_{i=1}^{n} (t\gamma r_i) \gamma_i x$. For each i = 1, ..., n, $\beta \in \Gamma$, $m \in M$, $(t\gamma r_i) \beta m = t\gamma (r_i \beta m) \in t\Gamma M \subseteq \langle x \rangle$, so $t\gamma r_i \in (\langle x \rangle_{:R_{\Gamma}} M)$ for each i = 1, ..., n. Conversely, for each $x \in M$, $x = \sum_{i=1}^{n} t_i \gamma_i x$ where $t_i \in (\langle x \rangle_{:R_{\Gamma}} M)$ and $\gamma_i \in \Gamma$, so $x \in (\langle x \rangle_{:R_{\Gamma}} M) \Gamma \langle x \rangle$, so $\langle x \rangle = (\langle x \rangle_{:R_{\Gamma}} M) \Gamma \langle x \rangle$, hence M is fully R_{Γ} –idempotent by proposition(2.3).

An R_{Γ} -module *M* is called multiplication if for each R_{Γ} -submodule *N* of *M*, then $N = I\Gamma M$ for some left ideal *I* of *R*. This is equivalent to saying that $N = (N:_{R_{\Gamma}} M)\Gamma M$ for every R_{Γ} -submodule *N* of *M* [2].

Proposition(2.5): Every cyclic R_{Γ} –module over commutative Γ –ring is multiplication.

Proof: Let N be an R_{Γ} -submodule of cyclic R_{Γ} -module M, then there is $x \in M$ such that $= \langle x \rangle$, if $n \in N$, then $n = \sum_{i=1}^{n} r_i \gamma_i x$ where $r_i \in R$ and $\gamma_i \in \Gamma$. Now for each $\beta \in \Gamma$ and $m \in M$, then $(\sum_{i=1}^{n} r_i \gamma_i 1) \beta m = (\sum_{i=1}^{n} r_i \gamma_i 1) \beta(\sum_{j=1}^{t} s_j \lambda_j x) = \sum_{i=1}^{n} \sum_{j=1}^{t} r_i \gamma_i 1 \beta s_j \lambda_j x = \sum_{j=1}^{t} \sum_{i=1}^{n} (r_i \gamma_i 1) \beta(s_j \lambda_j 1) \gamma_{\circ} x = \sum_{j=1}^{t} \sum_{i=1}^{n} (s_j \lambda_j 1) \beta(r_i \gamma_i 1) \gamma_{\circ} x = \sum_{j=1}^{t} s_j \lambda_j 1 \beta n \in N$, so $\sum_{i=1}^{n} (r_i \gamma_i 1) \in (N:_{R_{\Gamma}} M)$, hence $N \subseteq (N:_{R_{\Gamma}} M) \gamma_{\circ} x \subseteq (N:_{R_{\Gamma}} M) \Gamma M$, thus $N = (N:_{R_{\Gamma}} M) \Gamma M$.

Proposition (2.6): Let M be an R_{Γ} -module, K and N be R_{Γ} -submodules of M. Then

1- If N is R_{Γ} -idempotent submodule of M, then N is multiplication, and hence every fully R_{Γ} -idempotent is multiplication.

2- If K and N are R_{Γ} –idempotent R_{Γ} –submodules of M, then so is K + N.

3- Let *R* be commutative Γ -ring. Then

(i) If I is idempotent ideal of R and N is R_{Γ} -idempotent M, then $I\Gamma N$ is R_{Γ} -idempotent submodule in M.

(ii) If K is R_{Γ} -idempotent in N and N is R_{Γ} -idempotent in M, then K is R_{Γ} -idempotent in M. *Proof:*

1. $N = (N:_{R_{\Gamma}} M) \Gamma N \subseteq (N:_{R_{\Gamma}} M) \Gamma M \subseteq N$, so $N = (N:_{R_{\Gamma}} M) \Gamma M$.

2. $K + N = (K_{:R_{\Gamma}}M)\Gamma K + (N_{:R_{\Gamma}}M)\Gamma N \subseteq (K + N_{:R_{\Gamma}}M)\Gamma K + (K + N_{:R_{\Gamma}}M) \Gamma N = (K + N_{:R_{\Gamma}}M)\Gamma (K + N).$

3. (i)

$$(I\Gamma N:_{R_{\Gamma}} M)\Gamma(I\Gamma N) \subseteq I\Gamma N = (I\Gamma I)\Gamma(N:_{R_{\Gamma}} M)\Gamma N = I\Gamma(N:_{R_{\Gamma}} M)\Gamma I\Gamma N \subseteq (I\Gamma N:_{R_{\Gamma}} M)\Gamma(I\Gamma N), \text{ so } I\Gamma N = (I\Gamma N:_{R_{\Gamma}} M)\Gamma(I\Gamma N).$$

(ii) $(K:_{R_{\Gamma}}N)\Gamma N = (K:_{R_{\Gamma}}N)\Gamma(N:_{R_{\Gamma}}M)\Gamma N \subseteq (K:_{R_{\Gamma}}M)\Gamma N \subseteq (K:_{R_{\Gamma}}N)\Gamma N$, then $(K:_{R_{\Gamma}}N)\Gamma N = (K:_{R_{\Gamma}}M)\Gamma N$, also $K = (K:_{R_{\Gamma}}N)\Gamma K \subseteq (K:_{R_{\Gamma}}N)\Gamma N = (K:_{R_{\Gamma}}M)\Gamma N \subseteq (K:_{R_{\Gamma}}M)\Gamma M \subseteq K$, so $K = (K:_{R_{\Gamma}}M)\Gamma N$, thus $K = (K:_{R_{\Gamma}}N)\Gamma K = (K:_{R_{\Gamma}}M)\Gamma (K:_{R_{\Gamma}}M)\Gamma N = (K:_{R_{\Gamma}}M)\Gamma (K:_{R_{\Gamma}}M)\Gamma N = (K:_{R_{\Gamma}}M)\Gamma N$.

The following proposition shows that the concept of fully R_{Γ} –idempotent generalizes that of semisimple Γ –ring.

Proposition (2.7): If R is fully R_{Γ} –idempotent Γ –ring, then R is semisimple. The converse holds when R is commutative.

Proof:

Assume R is a fully R_{Γ} –idempotent Γ –ring and I is an ideal of R, then $I = (I_{:R_{\Gamma}} R)\Gamma I$. For each $t \in (I_{:R_{\Gamma}} R)$, then $t = t\gamma_{\circ} 1 \in t\Gamma R \subseteq I$, so $(I_{:R_{\Gamma}} R) \subseteq I$, thus $I = (I_{:R_{\Gamma}} R)\Gamma I \subseteq I\Gamma I \subseteq R\Gamma I \subseteq I$ and hence $I = I\Gamma I$. Conversely, let I be an ideal of R, it's enough to show that $I \subseteq (I_{:R_{\Gamma}} R)$, since $I\Gamma R \subseteq R\Gamma I \subseteq I$, then $I \subseteq (I_{:R_{\Gamma}} R)$, hence $I = I\Gamma I \subseteq (I_{:R_{\Gamma}} R)\Gamma I \subseteq I$, thus $I = (I_{:R_{\Gamma}} R)\Gamma I$.

Examples and Remarks (2.8):

- 1- Every idempotent element in R-module M is R_R -idempotent and every idempotent submodule N of M is idempotent R_{Γ} -submodule.
- 2- Every R_{Γ} -submodule of fully R_{Γ} -idempotent also fully R_{Γ} -idempotent. Let *B* is an R_{Γ} -submodule of *M*, for any R_{Γ} -submodule *N* of *B*, then $N = (N:_{R_{\Gamma}} M)\Gamma N$, by Remarks(2.1) $(N:_{R_{\Gamma}} M) \subseteq (N:_{R_{\Gamma}} B)$, so $N = (N:_{R_{\Gamma}} M)\Gamma N \subseteq (N:_{R_{\Gamma}} B)\Gamma N \subseteq R\Gamma N \subseteq N$, thus $N = (N:_{R_{\Gamma}} B)\Gamma N$.
- 3- Every simple R_{Γ} -module is fully R_{Γ} -idempotent.
- 4- Let $R = Z_2$, $\Gamma = Z$ and $M = Z_2 \oplus Z_2$. Then M is not fully R_{Γ} -idempotent, since $Z_2 \oplus (0)$ is not R_{Γ} -idempotent submodule. Note that M is not multiplication.
- 5- Let $R = \{(n \ n), n \in Q\}$ and $\Gamma = \{\begin{pmatrix} x \\ y \end{pmatrix}, x, y \in Q\}$, then R is Γ -ring with $: R \times \Gamma \times R \to R$ by

 $(n \ n) {x \choose y} (m \ m) = ((nx + ny)m \ (nx + ny)m)$, since for any nonzero ideal *I* of *R*, take $0 \neq (m \ m) \in I$ we can choose $x = y = \frac{1}{2m}$, then $(m \ m) = (m \ m) {x \choose y} (m \ m) \in I\Gamma I$, so

 $I = I\Gamma I$, hence R is semisimple and by proposition(2.7) R is fully R_{Γ} –idempotent.

1- Fully R_{Γ} -idempotent R_{Γ} -module over simple Γ -ring is simple. For each nonzero R_{Γ} - submodule N of M, then $N = (N:_R M)\Gamma N$, so $(N:_R M) = R$, hence $M = R\Gamma M = (N:_R M)\Gamma M \subseteq N$, thus M = N.

The product of two *R*-submodules *N* and *K* of an *R*-module *M* define as $NK = (N_{R}M)(K_{R}M)M$ [9].

Definition (2.9):

Let N and K are R_{Γ} –submodules of an R_{Γ} –module M. The product of N and K define by $= (N_{:R_{\Gamma}} M)\Gamma(K_{:R_{\Gamma}} M)\Gamma M$.

The following proposition gives a characterizations of fully R_{Γ} –idempotent R_{Γ} –modules. **Proposition (2.10):**

Let *M* be R_{Γ} –module, then the following are equivalent:

- 1- *M* is fully R_{Γ} –idempotent.
- 2- $N = N^2$ for all R_{Γ} –submodule N of M.
- 3- $N \cap K = NK$ for all R_{Γ} –submodules N and K.

Proof:

 $(1) \Rightarrow (2) \text{ For each } R_{\Gamma} - \text{submodule } N \text{ of } M, N = (N:_{R_{\Gamma}} M)\Gamma N, \text{ then } N = (N:_{R_{\Gamma}} M)\Gamma(N:_{R_{\Gamma}} M)\Gamma N \subseteq (N:_{R_{\Gamma}} M)\Gamma M \subseteq (N:_{R_{\Gamma}} M)\Gamma (N \cap K:_{R_{\Gamma}} M)\Gamma M \subseteq (N:_{R_{\Gamma}} M)\Gamma(K:_{R_{\Gamma}} M)\Gamma M = NK, \text{ so } N \cap K \subseteq NK, \text{ since } NK = (N:_{R_{\Gamma}} M)\Gamma(K:_{R_{\Gamma}} M)\Gamma M \subseteq (N:_{R_{\Gamma}} M)\Gamma K \subseteq K \text{ also } NK = (N:_{R_{\Gamma}} M)\Gamma (K:_{R_{\Gamma}} M)\Gamma M \subseteq (N:_{R_{\Gamma}} M)\Gamma K \subseteq N \cap K, \text{ thus } NK = N \cap K. (3) \Rightarrow (1) N = N \cap N = NN = N^{2}.$

We have proved that every fully R_{Γ} –idempotent R_{Γ} –module is multiplication, in the following corollary we discuss the converse.

Corollary(2.11): Every multiplication R_{Γ} -module over semisimple Γ - ring is fully R_{Γ} - idempotent.

Proof:

Let M be a multiplication R_{Γ} - module and $N \le M$, then $N = (N_{:R_{\Gamma}} M)\Gamma M = (N_{:R_{\Gamma}} M)\Gamma (N_{:R_{\Gamma}} M)\Gamma M = N^2$, hence M is fully R_{Γ} -idempotent.

Let *M* and *N* be two R_{Γ} -modules. Then *M* is called *N*-injective if for any R_{Γ} -submodule *A* of *N* and R_{Γ} -homomorphism $f: A \to M$, there exists an R_{Γ} -homomorphism $g: N \to M$ such that gi = f where *i* is the inclusion mapping. An R_{Γ} -module *M* is injective if it is *N*-injective for any R_{Γ} -module *N*. Every R_{Γ} -module *M* can be embedding in injective R_{Γ} -module which is called injective hull E(M) [4]. An R_{Γ} -module *M* is called quasi-injective if and only if *M* is *M*-injective [5].

Proposition(2.12): Let M be an R_{Γ} -module with injective hull E(M). If M is R_{Γ} -idempotent of E(M), then M is quasi-injective.

Proof:

Assume that M is R_{Γ} -idempotent of E(M), then $M = (M_{R_{\Gamma}} E(M))\Gamma M$, then for each $f \in$ $End_{R_{\Gamma}}(E(M)), \quad f(M) = f\left(\left(M_{:R_{\Gamma}}E(M)\right)\Gamma M\right) = \left(M_{:R_{\Gamma}}E(M)\right)\Gamma f(M) \subseteq \left(M_{:R_{\Gamma}}E(M)\right)\Gamma E(M) \subseteq \left(M_{:R_{\Gamma}}E(M)\right)\Gamma E(M)$ *M*, thus *M* is quasi-injective [5].

An R_{Γ} -module M is called duo if $f(N) \subseteq N$ for each R_{Γ} - submodule N of M and $f \in$ $End_{R_{r}}(M)$. It is easy to see that every multiplication is duo.

Proposition(2.13): Let M be fully R_{Γ} – idempotent. Then M is duo.

Proof:

For each R_{Γ} – submodule N of M and $f \in End_{R_{\Gamma}}(M)$, then $N = (N_{:R_{\Gamma}}M)\Gamma N$. So f(N) = $f\left(\left(N_{:R_{\Gamma}}M\right)\Gamma N\right) = \left(N_{:R_{\Gamma}}M\right)\Gamma f(N) \subseteq N.$

The converse of Proposition(2.13) is not true in general for example Z_4 as Z_2 -module is multiplication and hence duo but not fully R_{Γ} –idempotent.

An R_{Γ} –submodule of quasi-injective need not be quasi-injective for example see Example(2.3) [4]. **Corollary**(2.14): Let M be fully R_{Γ} –idempotent. Then M is quasi-injective R_{Γ} –module if and only if every R_{Γ} –submodule of M is quasi-injective R_{Γ} –module. **Proof:**

Assume that N is R_{Γ} –submodule of a quasi-injective R_{Γ} –module M, let K be R_{Γ} –submodule of N and let $f: K \to N$ be R_{Γ} -homomorphism, since M is quasi-injective, then there exists an R_{Γ} homomorphism $g: M \to M$ such that $gi_N i_K = i_N f$ where i_N and i_K are inclusion maps, clear that g is extended of f and by Proposition(2.13) $g(N) \subseteq N$. The converse is obvious.

Semisimple Gamma Modules 3.

In this section we extended the concept of semisimplicity from category of modules to the category of gamma modules.

Definition(3.1):

An R_{Γ} –module *M* is called semisimple if every R_{Γ} –submodule is a direct summand. Examples(3.2):

1- $R = Z_6$ is $Z_Z - \text{ring with} :: Z_6 \cdot_6 Z \cdot_6 Z_6 \to Z_6$ by $(n, k, m) \mapsto nkm$, the only ideals of Z_6 are 0, Z_6 , $\langle 2 \rangle$ and $\langle 3 \rangle$, then Z_6 is semisimple.

2- Let $R = \{(a \ b), a, b \in Q\}$ (where Q is the ring of rational numbers) and $\Gamma = \{\begin{pmatrix} x \\ v \end{pmatrix}, x, y \in Q\}$. Then R is Γ -ring with $: R \times \Gamma \times R \to R$ by $(a \ b) {\binom{x}{y}} (c \ d) = ((ax + by)c \ (ax + by)d)$. Take $J = \{(2n \ 2m), n, m \in Q\}, \text{ then } (a \ b) \binom{k}{t} (2n \ 2m) = (ax + by)(2n \ 2m) = (2(ax + by)n \ 2(ax + by)n)$ $by(m) = (2n_1 \ 2m_1) \in J$, so $R\Gamma J \subseteq J$, hence J is a left ideal of R, for any anther left ideal N of R, let $0 \neq (k \ t) \in N$, then $(2k \ 2t) \in J$ and since $R\Gamma N \subseteq N$, for $(1 \ 1) \in R$, $\binom{1}{1} \in \Gamma$ we have $(1 \ 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} (k \ t) = (2k \ 2t) \in N$, hence $N \cap J \neq 0$, so J can not be direct summand of R, thus R is not semisimple R_{Γ} -module. It is noted that R is semisimple Γ - ring, since if I is an ideal of R, then for

each $(a \ b) \in I$ we can choose $\gamma = \binom{k}{t} \in \Gamma$ such that if :

- (i)- a = 0 and b = 0 then k = 0 and t = 0.
- (ii)- $a \neq 0$ and b = 0 then $k = \frac{1}{a}$ and t = 0.
- (iii)- a = 0 and $b \neq 0$ then k = 0 and $t = \frac{1}{b}$.

(iv)- $a \neq 0$ and $b \neq 0$ then $k = \frac{1}{2a}$ and $t = \frac{1}{2b}$. Then $(a \ b) = (ak + bt)(a \ b) = (a \ b) \binom{k}{t}(a \ b) \in (a \ b)$ $I\Gamma I$, so $I \subseteq I\Gamma I$, hence $I = I\Gamma I$, therefore R is semisimple Γ -ring.

3- Every simple R_{Γ} -module is semisimple.

4- Let $R' = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, a, b, c \in R \text{ ring of real numbers} \}, \Gamma = R$, then R' is Γ -ring with $:: R' \times \Gamma \times R' \to R'$ by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} n \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} = \begin{pmatrix} axn & ayn + bzn \\ 0 & czn \end{pmatrix}$. Take $L_1 = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, b \in R \}, L_1$ is a left ideal of R' and R' is not semisimple Γ -ring since $L_1 \Gamma L_1 = 0 \neq L_1$.

In the category of module it is known that a submodule is a direct summand if an only if there exists $f \in End(M)$ such that N = f(M) and $f = f^2$.

Proposition(3.3): Let M be R_{Γ} -module, then $M = M\gamma f \bigoplus M\gamma_{\circ}(I - I\gamma f)$ for any $f \in End_{R_{\Gamma}}(M)$ such that $f = f\gamma f$ for some $\gamma \in \Gamma$.

Proof:

For each $x \in M$, then $x = x + f(1\gamma x) - f(1\gamma x) = f(1\gamma x) + I(x) - f(1\gamma x) = f(1\gamma x) + (I - I\gamma f)(1\gamma_{\circ}x) = x\gamma f + x\gamma_{\circ}(I - I\gamma f) \in M\gamma f + M\gamma_{\circ}(I - I\gamma f)$, so $M = M\gamma f + M\gamma_{\circ}(I - I\gamma f)$. Now if $y \in M\gamma f \cap M\gamma_{\circ}(I - I\gamma f)$, then $y = x\gamma f = t\gamma_{\circ}(I - I\gamma f)$ where $x, t \in M$, hence $y = f(1\gamma x) = (I - I\gamma f)(1\gamma_{\circ}t) = t - I\gamma f(t) = t - f(1\gamma t)$, so $1\gamma f(y) = 1\gamma f(t) - 1\gamma f(f(1\gamma t)) = 1\gamma f(t) - f(1\gamma f)(1\gamma t) = 1\gamma f(t) - 1\gamma f(t) = 0$, hence $0 = f(1\gamma f(y)) = f(y)$, but $f(y) = f(f(1\gamma x)) = (f\gamma f)(x)$, therefore $y = 1\gamma f(x) = 0$, thus $M = M\gamma f \oplus M\gamma_{\circ}(I - I\gamma f)$.

Corollary(3.4): Let *M* be R_{Γ} -module, then $M = M\Gamma f \oplus M\Gamma (I - I\gamma f)$ for any $f \in End_{R_{\Gamma}}(M)$ such that $f = f\gamma f$ for some $\gamma \in \Gamma$.

Proof:

For any $y \in M\Gamma f \oplus M\Gamma (I - I\gamma f)$, $y = x\lambda f + t\beta (I - I\gamma f)$ where $x, t \in M$ and $\lambda, \beta \in \Gamma$, so $y = f(1\lambda x) + (I - I\gamma f)(1\beta t) = f\gamma f(1\lambda x) + (I - I\gamma f)(1\gamma_{\circ}(1\beta t)) = f(1\gamma f(1\lambda x)) + (1\beta t)\gamma_{\circ}(I - I\gamma f)$ $I\gamma f) = f(1\lambda x)\gamma f + (1\beta t)\gamma_{\circ}(I - I\gamma f) \in M\gamma f \oplus M\gamma_{\circ}(I - I\gamma f)$, hence $M\Gamma f \oplus M\Gamma (I - I\gamma f) \subseteq M\gamma f \oplus M\gamma_{\circ}(I - I\gamma f)$, thus $M\Gamma f \oplus M\Gamma (I - I\gamma f) = M\gamma f \oplus M\gamma_{\circ}(I - I\gamma f)$.

Corollary(3.5): Let N be an R_{Γ} –submodule of R_{Γ} –module M. Then N is a direct summand of M if and only if $N = M\gamma f$ where $f \in End_{R_{\Gamma}}(M)$ and $f = f\gamma f$ for some $\gamma \in \Gamma$. **Proof:**

Assume N is a direct summand of M, then $M = N \oplus K$ for some R_{Γ} -submodule K of M, take $f: M \to M$ by f(n+k) = n for any $n \in N$ and $k \in K$, then $f\gamma_{\circ}f(x) = f(1\gamma_{\circ}f(x)) = f(x)$ for any $x \in M$ and $N = f(M) = f(1\gamma_{\circ}M) = M\gamma_{\circ}f$.

Proposition(3.6): Every R_{Γ} -submodule of a semisimple R_{Γ} -module M is semisimple R_{Γ} -module. **Proof:** For any R_{Γ} -submodule N of M, if $K \leq N$, then there exists an R_{Γ} -submodule K_1 such that $M = K \oplus K_1$, hence $N = N \cap M = N \cap (K \oplus K_1) = (N \cap K_1) \oplus K$.

Proposition(3.7): If R is semisimple R_{Γ} -module, then R is semisimple Γ -ring.

Proof: Let I be an ideal of R, then $R = I \oplus L$ for some ideal L of R, so $1 = e_1 + e_2$ for $e_1 \in I$, $e_2 \in L$, then for each $n \in I, n = n\gamma_\circ 1 = n\gamma_\circ (e_1 + e_2)$, thus $n\gamma_\circ e_2 = n - n\gamma_\circ e_1 \in I \cap L = 0$, hence $n = n\gamma_\circ e_1 \in I\gamma_\circ e_1 \subseteq I\gamma_\circ I$, so $I \subseteq I\Gamma I \subseteq I$, hence $I = I\Gamma I$, therefore R is semisimple Γ -ring.

The converse of Proposition (3.7) is not true in general, see Example (3.2)(2).

Proposition(3.8): Let M be a nonzero R_{Γ} –module. Then the following are equivalent:

- 1- *M* is semisimple R_{Γ} -module.
- 2- *M* is sum of simple R_{Γ} –submodules.

3- *M* has no proper essential R_{Γ} –submodules.

Proof:

 $(1) \Rightarrow (2)$ To show *M* has simple R_{Γ} -submodule, if $0 \neq N \leq M$, then for each $K \leq N$ we have *K* is a direct summand of *N*, so $M = K \oplus K_1$, hence $N = N \cap M = N \cap (K \oplus K_1) = (N \cap K_1) \oplus K$. Let $a(\neq 0) \in M$, take $\Omega = \{B \leq M : a \notin B\}$, then $\Omega \neq \phi$ since $0 \in \Omega$ by using Zorn's lemma there is maximal element *B* of Ω , $a \notin B$, hence *B* is a direct summand of *M*, then $M = B \oplus C$ for some R_{Γ} -submodule *C* of *M*. We claim *C* is simple, if not *C* has a proper R_{Γ} -submodule $D \neq 0$, so $C = D \oplus E$ for some R_{Γ} -submodule $E \neq 0$ since *D* is proper, hence $M = B \oplus D \oplus E$, by maximality of *B*, $a \in B \oplus D$ and $a \in B \oplus E$, so a = b + d = b' + e for $b, b' \in B$, $d \in D$ and $e \in E$, then d = e + $(b' - b) \in D \cap (B \oplus E)$ and $e = d + (b - b') \in E \cap (D \oplus B)$, hence d = e = 0 and b = b', so $a = b \in B$ which is a contradiction, thus *C* is simple R_{Γ} -submodule. Let N_{\circ} is the sum of all simple R_{Γ} -submodule of *M*, then there is $L \leq M$ such that $M = N_{\circ} \oplus L$. If $L \neq 0$, then by proof *L* has a nonzero simple R_{Γ} -submodule *T*, then $T \subset L \cap N_{\circ} = 0$ which is a contradiction, hence L = 0 and $M = N_{\circ}$. (2) \Rightarrow (3) Assume that *M* has a proper R_{Γ} -submodule *A*, then there is $x \in M - A$ and by (2) *M* has simple R_{Γ} -submodule *B'* such that $x \in B'$, then $A \cap B' \leq B'$, so either $A \cap B' = B'$ a contradiction or $A \cap B' = 0$, thus *A* is not essential R_{Γ} -submodule of *M*. (3) \Rightarrow (1) Let $A \leq M$ and *B* complement of *A*, then $A \oplus B \leq_e M$ [5], so $M = A \oplus B$. **Proposition**(3.9): Let R be a Γ – ring. Then the following are equivalent:

- 1- R is semisimple R_{Γ} -module.
- 2- Every ideal of R is generated by an idempotent element.
- 3- *R* is sum of simple R_{Γ} –submodules.
- 4- Every R_{Γ} -module *M* has no proper essential R_{Γ} -submodules.
- 5- Every R_{Γ} -module is injective.
- 6- Every R_{Γ} -module is semisimple.

Proof:

(1) \Rightarrow (2) Let *I* be an ideal of *R*, By proof of Proposition(3.7), there exists $e_1 \in I$ such that $n = n\gamma_e e_1$ for each $n \in I$. In particular $e_1 = e_1\gamma_e e_1$ therefore e_1 is an idempotent and $n \in \langle e_1 \rangle$, thus $I \subseteq \langle e_1 \rangle$. (2) \Rightarrow (1) Let *I* be an ideal of *R*. Then there exists an idempotent element $e \in R$ such that $e = e\gamma e$ for some $\gamma \in \Gamma$ and $I = \langle e \rangle$. For each $r \in R$, $r = r\gamma e + r - r\gamma e = r\gamma e + r\gamma_e 1 - r\gamma e = r\gamma e + r\gamma_e 1 - (r\gamma_e 1)\gamma e$, hence $r = r\gamma e + r\gamma_e (1 - 1\gamma e)$, so $R \subseteq R\Gamma e + R\Gamma (1 - 1\gamma e)$. For each $x \in R\Gamma e$, $x = \sum_{i=1}^{n} r_i \gamma_i (e = \sum_{i=1}^{n} r_i \gamma_i (e \gamma e) = (\sum_{i=1}^{n} r_i \gamma_i e)\gamma e = x\gamma e$. Now if $x \in R\Gamma (1 - 1\gamma e)$, then $x = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - \sum_{i=1}^{n} r_i \gamma_i e) \gamma e = x\gamma e$. Now if $x \in R\Gamma (1 - 1\gamma e)$, then $x = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - \sum_{i=1}^{n} r_i \gamma_i e) \gamma e = x\gamma e$. Now if $x \in R\Gamma (1 - 1\gamma e)$, then $x = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - \sum_{i=1}^{n} r_i \gamma_i e) \gamma e = x\gamma e$. Now if $x \in R\Gamma (1 - 1\gamma e)$, then $x = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - \sum_{i=1}^{n} r_i \gamma_i e) \gamma e = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - \sum_{i=1}^{n} r_i \gamma_i e) \gamma e = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = \sum_{i=1}^{n} r_i \gamma_i (1 - 1\gamma e) = 0$, thus $R = R\Gamma e \oplus R\Gamma (1 - 1\gamma e)$. (1) \Leftrightarrow (3) \Leftrightarrow (4) by proposition(3.8). (5) \Rightarrow (6) By proposition(1.9) [4]. (6) \Rightarrow (1) Clear. (1) \Rightarrow (5) Let *M* be an R_{Γ} -module, for each ideal *I* of *R* and R_{Γ} -homomorphism $f: I \to M$, since *R* is semisimple R_{Γ} -module, then there exists an ideal *J* of *R* such that $R = I \oplus J$, define $g: R \to M$ by g(r) = f(r) if $r \in I$ otherwise g(r) = 0 for each $r \in R$, then *g* is extension of *f*, so *M* is injective [4].

Semisimple R_{Γ} -modules and multiplications are different for example any semisimple R_{Γ} -module over simple Γ -ring is not multiplication. Since for any nonzero R_{Γ} -submodule N of M, if there exists an ideal I of R such that $N = I\Gamma M = I\Gamma(N \oplus K) = R\Gamma N + R\Gamma K = N + K \neq N$ for some R_{Γ} -submodule K of M which is a contradiction. In Particular $Z_2 \oplus Z_2$ as Z_2 - module is semisimple R_{Γ} -module but not multiplication. The Z_2 - module Z_4 is multiplication but not semisimple. Also semisimple R_{Γ} -module and fully R_{Γ} -idempotent are different for example $M = Z_2 \oplus Z_2$ as Z_2 -module is not fully R_{Γ} -idempotent since every fully R_{Γ} -idempotent is multiplication. For fully R_{Γ} -idempotent which is not semisimple see examples and remarks(2.8)(5) R is not semisimple by proposition(3.7).

Proposition (3.10): Let M be multiplication R_{Γ} -module. If M is semisimple R_{Γ} -module. Then M is fully R_{Γ} -idempotent.

Proof:

For each R_{Γ} –submodule N of M, $M = N \bigoplus K$ for some R_{Γ} –submodule K of M, since M is multiplication, then $N = (N:_{R_{\Gamma}} M)\Gamma M = (N:_{R_{\Gamma}} M)\Gamma (N + K) = (N:_{R_{\Gamma}} M)\Gamma N + (N:_{R_{\Gamma}} M)\Gamma K$ but $(N:_{R_{\Gamma}} M)\Gamma K \subseteq N \cap K = 0$, so N is R_{Γ} –idempotent submodule.

Proposition (3.11): If M is semisimple R_{Γ} –module, then M is quasi-injective.

Proof:

For each R_{Γ} -submodule N of M and R_{Γ} -homomorphism $f: N \to M$, since M is semisimple R_{Γ} -module, then $M = N \bigoplus K$ for some $K \le M$. So for each $x \in M$, then x = n + k where $n \in N$ and $k \in K$, define $g: M \to M$ by g(x) = f(n) for each $x \in M$, clear that g is R_{Γ} -homomorphism and g is extended of f, so M is quasi-injective [5].

Lemma(3.12): Every Γ -ring R is R_{Γ} -isomorphic to $End_{R_{\Gamma}}(R)$. **Proof:**

Let *R* be a Γ -ring. For a fixed element *r* in *R* we can define $\lambda_r: R \to R$, by $\lambda_r(x) = x\gamma_\circ r$ for each $x \in R$, then λ_r is R_{Γ} -homomorphism, that is $\lambda_r \in End_{R_{\Gamma}}(R)$. Let $R^{\ell} = \{\lambda_r: r \in R\}$, then R^{ℓ} is abelian group with $(\lambda_r + \lambda_s) = \lambda_r(x) + \lambda_r(x)$ and R^{ℓ} is a Γ -ring with $\cdot: R^{\ell} \times \Gamma \times R^{\ell} \to R^{\ell}$, by $\cdot (\lambda_r, \gamma, \lambda_s) \mapsto \lambda_r \gamma \lambda_s$ where $\lambda_r \gamma \lambda_s(x) = \lambda_s(1\gamma\lambda_r(x))$. For each $f \in End_{R_{\Gamma}}(R)$, $f(x) = f(x\gamma_\circ 1) =$ $x\gamma_\circ f(1) = \lambda_{f(1)}(x)$, so $f = \lambda_{f(1)}$, hence $R^{\ell} = End_{R_{\Gamma}}(R)$. Define $\varphi: R \to R^{\ell}$ by $(r) = \lambda_r$, it is easy to show that φ is a R_{Γ} - isomorphism see[4,example(2.12)], hence $R \cong R^{\ell} = End_{R_{\Gamma}}(R)$.

Lemma(3.12) show that if R is a commutative then $End_{R_{\Gamma}}(R)$ is commutative. But this may not be true for an arbitrary R_{Γ} -module. For example consider V is a vector space over a field F of dimension 2, then V is an F_F -module. Let $f: V \to V$ by $f(v \ u) = (u \ v)$ and $g: V \to V$ by $\begin{array}{l} g(v \ u) = (v \ 0) \text{ be two } R_{\Gamma} - \text{homomorphisms, then for each } (v \ u) \in V \text{ and } \gamma \in \Gamma \ , \\ g\gamma f(v \ u) = f(1\gamma g(v \ u)) = 1\gamma f(v \ 0) = (0 \ 1\gamma v) \quad \text{and} \quad f\gamma g(v \ u) = g(1\gamma f(v \ u)) = \\ 1\gamma g(u \ v) = (1\gamma u \ 0) \ , \text{ so } f\gamma g \neq g\gamma f. \end{array}$

Proposition(3.13): Let R be a commutative Γ -ring. If M is fully R_{Γ} -idempotent, then $End_{R_{\Gamma}}(M)$ is commutative.

Proof: For each $f, g \in End_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$, since $f(\langle x \rangle) \subseteq \langle x \rangle$ by Proposition(2.13), then $f(x) = \sum_{i=1}^{n} r_i \gamma_i x$ and $g(x) = \sum_{j=1}^{m} s_j \beta_j x$ where $r_i, s_j \in R$, $\gamma_j, \beta_j \in \Gamma$, then $(f\gamma g)(x) = g(1\gamma f(x) = 1\gamma g(\sum_{i=1}^{n} r_i \gamma_i x) = 1\gamma(\sum_{i=1}^{n} r_i \gamma_i g(x)) = 1\gamma(\sum_{i=1}^{n} r_i \gamma_i \sum_{j=1}^{m} s_j \beta_j x) =$

 $\begin{aligned} &1\gamma(\sum_{i=1}^{n}\sum_{j=1}^{m}r_{i}\gamma_{i}s_{j}\beta_{j}x) = 1\gamma(\sum_{j=1}^{m}\sum_{i=1}^{n}r_{i}\gamma_{i}s_{j}\beta_{j}x) , \quad \text{but} \quad r_{i}\gamma_{i}s_{j}\beta_{j}x = (r_{i}\gamma_{i}1)\gamma_{\circ}(s_{j}\beta_{j}1)\gamma_{\circ}x = (s_{j}\beta_{j}1)\gamma_{\circ}(r_{i}\gamma_{i}1)\gamma_{\circ}x = s_{j}\beta_{j}r_{i}\gamma_{i}x , \text{ so } (f\gamma g)(x) = 1\gamma(\sum_{j=1}^{m}\sum_{i=1}^{n}s_{j}\beta_{j}r_{i}\gamma_{i}x) = 1\gamma(\sum_{j=1}^{m}s_{j}\beta_{j}f(x)) = 1\gamma(\sum_{j=1}^{m}s_{j}\beta_{j}x) = (g\gamma f)(x). \end{aligned}$

4. Regular Gamma Modules

In this section we extended the concept of regular gamma modules as a generalization of regular modules and semisimple gamma modules.

There are deferent of definitions of the regular Γ -ring. In [3] if *R* is Γ -ring, then $x \in R$ is called regular if there exists $s \in R$ such that $x = x\gamma s\gamma x$ for some $\gamma \in \Gamma$ and *R* is called regular if every element of *R* is regular. In [6] a Γ -ring *R* is called regular if for each $x \in R$ there exists $s \in R$ and $\gamma, \beta \in \Gamma$ such that $x = x\gamma s\beta x$. In [10] a Γ -ring *R* is called regular if for each $x \in R$ there exists $\gamma \in \Gamma$ such that $x = x\gamma x$. Note that if a Γ -ring is regular in the sense of [10] and [3], then *R* is regular in the sense of [6]. In this paper we take the definition of regular in the sense of [6]. A left module *M* is called regular if for any element $m \in M$ there exists $f \in Hom_R(M, R)$ such that m = f(m)m [11].

Definition (4.1):

Let M be R_{Γ} -module. Then M is called regular if for each $m \in M$, there exists $f \in Hom_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $m = f(m)\gamma m$.

If R is a regular R_{Γ} -module, for each $x \in R$, there exists $f \in End_{R_{\Gamma}}(R)$ and $\gamma \in \Gamma$ such that $x = f(x)\gamma x = \lambda_{\Gamma}(x)\gamma x = x\gamma_{\circ}r\gamma x$ by lemma(3.12), so regular R_{Γ} -module is a generalization of regular Γ -ring.

An R_{Γ} -module *M* is called projective if for each R_{Γ} -epimorphism $\alpha: A \to B$ and $: M \to B$, there exists an R_{Γ} -homomorphism $\lambda: M \to A$ such that $\alpha \lambda = \beta$ [12].

Proposition (4.2): Let M be an R_{Γ} -module. Then M is regular if and only if every cyclic R_{Γ} - submodule of M is a projective direct summand.

Proof:

Assume $N = \langle x \rangle$ be a cyclic R_{Γ} -submodule of a regular R_{Γ} -module M, there exists $f \in Hom_{R_{\Gamma}}(M, R)$ such that $x = f(x)\gamma x$ for some $\gamma \in \Gamma$, define $W = \{m \in M: f(m)\gamma x = 0\}$, clear W is R_{Γ} -submodule of M and for each $t \in M$, $t - f(t)\gamma x \in W$ since $f[t - f(t)\gamma x]\gamma x = [f(t) - f(f(t)\gamma x)]\gamma x = f(t)\gamma x - f(t)\gamma f(x)\gamma x = f(t)\gamma x - f(t)\gamma x = 0$, hence $t = (t - f(t)\gamma x) + f(t)\gamma x \in W + \langle x \rangle$, so $M \subseteq W + \langle x \rangle$. Now if $\sum_{i=1}^{n} r_i \gamma_i x \in W \cap \langle x \rangle$, then $0 = f(\sum_{i=1}^{n} r_i \gamma_i x)\gamma x = \sum_{i=1}^{n} r_i \gamma_i x$, thus $M = \langle x \rangle \oplus W$. Take e = f(x), then $e\gamma e = f(x)\gamma f(x) = f(f(x)\gamma x) = f(x) = e$, define $\varphi: R\gamma_\circ e \to \langle x \rangle$ by $\varphi(r\gamma_\circ e) = (r\gamma_\circ e)\gamma x$, then φ is an R_{Γ} -isomorphism, hence $\langle x \rangle \cong R\gamma_\circ e$, so $\langle x \rangle$ is projective [12]. Conversely, for any $x \in M$, there exists an R_{Γ} -submodule N of M such that $M = \langle x \rangle \oplus N$. Define an R_{Γ} -homomorphism $f: R \to \langle x \rangle$ by $f(r) = r\gamma_\circ x$ for each $r \in R$. for each $\sum_{i=1}^{k} r_i \gamma_i x \in \langle x \rangle$, then there exists $g: \langle x \rangle \to R$ such that $id_{\langle x \rangle} = fg$. Define an R_{Γ} -homomorphism $h: M \to R$ by $h(\sum_{i=1}^{k} r_i \gamma_i x + n) = g(\sum_{i=1}^{k} r_i \gamma_i x)$, then $x = id_{\langle x \rangle}(x) = f(g(x)) = g(x)\gamma_\circ x = h(x)\gamma_\circ x$, hence M is regular.

Examples (4.3):

1- Every R_{Γ} –submodule of regular R_{Γ} –module is regular.

2- In examples and remarks(2.8)(5) *R* is semisimple Γ -ring and fully R_{Γ} -idempotent, let *J* any principle ideal of *R* generated by the element (*m m*), for any another ideal $L \neq 0$ of *R*, take $0 \neq 1$

 $(s \ s) \in L$, then $(s \ s) \begin{pmatrix} 1 \\ 1 \end{pmatrix} (m \ m) = (sm + sm \ sm + sm) \in J \cap L$, hence $J \cap L \neq 0$, so J can not be direct summand in R, thus R is not regular.

Proposition (4.4): If R is regular Γ –ring, then R is semisimple.

Proof:

For each ideal I of R, let $n \in I$, then $n = n\gamma s\beta n$ for some $s \in R$ and $\gamma, \beta \in \Gamma$, so $n \in I\gamma I \subseteq I\Gamma I$, hence $I = I\Gamma I$.

Proposition(**4.5**): Let M be duo regular R_{Γ} –module. Then M is fully R_{Γ} –idempotent.

Proof:

For each $x \in M$, there exists $f \in \text{Hom}_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $x = f(x)\gamma x$. If $f(x)\beta m \in f(x)\Gamma M$ where $\beta \in \Gamma$ and $m \in M$, define $g: R \to M$ by $g(r) = r\beta m$, clear that g is an R_{Γ} -homomorphism, so $h = gf: M \to M$ is R_{Γ} -endomorphism and $f(x)\beta m = g(f(x)) = h(x)$, but $h(x) \in \langle x \rangle$ since M is duo, hence $f(x) \in (\langle x \rangle_{:R_{\Gamma}} M)$, thus M is fully R_{Γ} -idempotent by proposition(2.4).

Corollary (4.6): Let M be multiplication regular R_{Γ} –module. Then M is fully R_{Γ} –idempotent.

Proposition (4.7): Let *M* be an R_{Γ} –module. Then the following statements are equivalent:

1- *M* is regular.

2- For each R_{Γ} -module K, R_{Γ} -homomorphism $h: K \to M$ and $x \in h(K)$, there exists R_{Γ} -homomorphism $g: M \to K$ (g depends on x) such that x = h(g(x)).

3- For each R_{Γ} -homomorphism $h: R \to M$ and $\in h(R)$, there is R_{Γ} -homomorphism $g: M \to R$ such that x = h(g(x)).

Proof:

 $(1)\Rightarrow(2)$ Assume $h: K \to M$ is R_{Γ} -homomorphism and $x \in h(K)$, then there exists $q \in K$ such that x = h(q), since M is regular, then there exists an R_{Γ} -homomorphism $f: M \to R$ such that $x = f(x)\gamma x$ for some $\gamma \in \Gamma$, define $g: M \to Q$ by $g(m) = f(m)\gamma q$, then g is an R_{Γ} -homomorphism and $h(g(x)) = h(f(x)\gamma q) = f(x)\gamma h(q) = f(x)\gamma x = x$. (2) \Rightarrow (3) Clear. (3) \Rightarrow (1) For each $x \in M$, define an R_{Γ} -homomorphism $h: R \to M$ by $h(r) = r\gamma_{\circ}x$, then there exists R_{Γ} -homomorphism $g: M \to R$ such that $x = h(g(x)) = g(x)\gamma_{\circ}x$.

References

- 1. Ameri, R. and Sadeghi, R. 2010. Gamma Modules. Ratio Mathematica, 20: 127-147.
- **2.** Estaji, A. A., Estaji, A., As., Khorasani, A. S. and Baghdari S. **2014**. On Multiplication Γ –modules. *Ratio Mathematica*, **26**: 21-38.
- **3.** Paul A. C. and Uddin S. **2009**. On Jacobson radical for *Γ* –rings. *J. Bangladesh Math. Soc.*, **29**: 147-160.
- 4. Abbas, M.S., Al-Saadi, S. A. and Shallal, E. A. 2016. Injective gamma modules. *Annals of Pure and Applied Mathematics*, 12(1): 85-94.
- 5. Abbas, M.S., Al-Saadi, S. A. and Shallal, E. A. 2016. Quasi-Injective gamma modules. *Int. J. of Advanced Research*, 10(4): 327-333.
- 6. Ma, X. and Zhan, J. 2010. Some Characterizations of Regular and Semisimple Γ -rings. *Kyungpook Math. J.*, 50: 411-417.
- 7. Ali, MM. 2008. Idempotent and Nilpotent Submodules of Multiplication Modules. *Communications in Algebra*, 36(12): 4620-4642.
- 8. Ali, M. M. and Smith, D. J. 2004. Pure Submodules of Multiplication Modules. *Contributions to Algebra and Geometry*, 45(1): 61-74.
- **9.** Ansari-Toroghy, H. and Farshadifar, F. **2012**. Fully Idempotent and Coidempotent Modules. *Bulletin of the Iranian Mathematical Society*, **38**(4): 987-1005.
- 10. Kyuno, S., Nobusawa, N. and Smith M. B. 1987. Regular gamma Rings. *Tsukuba Journal Math.*, 11(2), 371-382.
- 11. Zelmanowitz, J. M. 1972. Regular Module. Trans. Amer. Math. Soc., 163: 341-355.
- 12. Rezaei, A. H. and Davvaz, B. 2015. Tensor Product of Gamma Modules. *Afrika Mathematika*, 26(7), 1601-1608.
- 13. Nobusawa, N. 1964. On a Generalization of the ring theory. Osaka Journal Math., 1: 81-89.
- 14. Barnes, W. E. 1966, On The Γ ring of Nobusawa, *Pacific Journal of Mathematics*, 18(3), 411-422.