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Abstract

The Multiplicative Cyclic Group has been used to construct a New Digital
Algebraic Generator System (NDAGS). This cryptosystem can be classified as a
stream cipher cryptosystem. In this paper we will estimate the efficiency and
security of the (NDAGS) by using the Basic Efficiency Criteria (BEC). A
comparison has made between the some known generators and (NDAGS). The
results of applying the BEC and the comparison results proof the high efficiency of
the (NDAGS).
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1. Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual characters
(usually binary digits) of a plaintext message one at a time, using an encryption transformation which
varies with time. The main properties of stream ciphers separating them from block ciphers are that the
encryption function works on individual symbols (letters) of the underlying alphabet and that the
encryption function is time-varying [1].

Stream ciphers have extensive applications; many of them are in the area of wireless
communication. As an example, they are part of the security framework in GSM networks, Bluetooth
or WLAN:S [2].

*Email: methag90alheety@gmail.com
2310



Abdulwahed and Al-Shammari Iragi Journal of Science, 2018, Vol. 59, No.4C, pp: 2310-2316

2. Basics of New Digital Algebraic Generator [3]

The New Digital Algebraic Generator Unit (NDAGU)[4] considered a new basic unit can be acts as
a digital key generator for stream cipher cryptosystems. Let S be the digital sequence generated from
NDAGU s.t. S=NDAGU(q,a.1,00,k,m), where:

o q is prime number.

e oy and o, any two generators (primitive elements) of the group MCG to generate numbers of the
group from 0 to g-1.

e kany starting point of elements 1<k<g-1.

e mis the digit number of the sequence S, if s;eS, 0<s;<m.

according to the steps:

Let x=Ff(auy,k,q) and y= f(a,x,q), 1<k, x<g-1, where x=k** (mod q), y= x*? (mod q) and s;=y div m;

We can use NDAGU as a construction unit for NDAG cryptosystem (NDAGS) with Combining
Function (CF). If S is the sequence which is generate from NDAGS has a F, as a combining function
with n_NDAGU's then:

S=Fn(S1,S,,...,Sy) s.t. S=ENDAGU;(qi,0u ,0ui,Ki;,m), where 1<i<n.

S; represents the sequence i generate from the NDAGU i.

Its important to define the addition and multiplication operations s.t.:

Sj = Sjj + S, (Mmod m) kS, j=1,2,...

Sj = Sjj * Skj (mod m) f}eSi and syje S, 1<i,k<n.

3. Estimation of Basic Criteria for NDAGS Efficiency

In order to use NDAGU or NDAGS as a key generator in cryptography with trust, we must first
estimate the theoretical efficiency criterion of them. If these criterions pass the logical calculations of
the cryptanalyst, then we can judge that the proposed generator is efficient to be used in cryptography
field. Now we are going to deal with these criterions in details.

3.1 Periodicity Criterion [3]

We show before that the Periodicity (P) of single NDAGU is g-1when using MCG (G,*) of order g-

1.

P(MCGU) =g-1

but, P(NDAGS)=Il.c.m (q;-1,0>-1,...,qs-1)

Where q; is the prime number of NDAGU number i in the NDAGS, since all the numbers g;-1 are even
number then the gcd between (g;-1)>1, so we try to choose ¢; grantees that gcd between at most (g;-
1)=2.

3.2 Linear Complexity Criterion [5]

Another definition of Linear Complexity (LC) is the minimum number of known sequence digits to
deduce the rest unknown digits of the sequence. This definition is developed by Massey in 1969 [6],
when he found an algorithm called BerliCamp-Massey, which was first applied on the output of
LFSR, so he defined the linear complexity to be “the length of the equivalent minimum LFSR can
generate the given sequence”. If the length of the result LFSR>%L, where L is the length of the given
sequence, then the sequence has high linear complexity. Table-1 shows P(S) and LC(S) of various
NDAGU and NDAGS.

Table 1-P(S) and LC(S) of various NDAGU and NDAGS
primes P(S)
509 508
101
997
199

1103 65567878
3607

3.3 Correlation Immunity Criterion [7]

The Correlation Immunity (CI) criteria applied on NDAGS only, since we have to compare the
sequence S; which is generated from the NDAGU number i in the NDAGS, with final output sequence
S (using m=2 only). Table-2 shows the correlation immunity of various NDAGS
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Table 2-the correlation immunity of various NDAGS

Pr(x;)

101
997

49.5%
49.9%

199
1103

3607

50.53%
51.02%
49.76%

149
509
1051
1301
2003

51.03%
50.01%
49.59%
48.89%
49.85%

3.4 Randomness Criterion [3]

In this subsection we will estimate the Randomness (R) criteria for, binary sequence (m=2) only,
generated from NDAG. We hope to discuss the estimation of this criterion for digital sequences (m=>2)
generated from NDAG in section 5. In order to test the randomness of NDAGS sequences we plane to
apply two kinds of randomness packages, these packages are described as follows:

1. We programmed the first package, using three main tests found by Golomb [8], these tests are
Frequency, Run and Auto Correlation test with 10 shifts. These tests are applied on binary sequences
only, in this subsection we will develop and generalize these tests to suitable of implementation on
digital sequence. Table-3 shows the randomness results of NDAGU and NDAGS on binary sequences
using XOR function as a CF.

Table 3-Randomness results of NDAGU and NDAGS on binary sequences.

Primes Randomness (P=Pass,F=Fail)
Frq Run AC

10771 P PP FPPPPPPPPF
101

997 P PP PPPPFFPPPF
199
1103 P PP
3607

PPPPFPFPPP

2. The second package, is Crypt-X'98 package [9] which is designed by Information Security Research
Centre at Queensland University of Technology to test the stream and block cipher. Applying this package
can be considered as a supporting to our work in part (1) of this subsection. The tests of this package are:
Periodicity, Linear Complicity, Frequency (F), Binary Derivative (BD), Change Point (CP), Subblock
(SB), Run (R) and Sequence Complicity (SC) tests. Table -4 shows the randomness results of NDAGU and
NDAGS on binary sequences using XOR function as a CF.

Table 4-Crypt-X'98 randomness results of FDAGU and FDAGS on binary sequences.
Crypt-X'98 randomness Tests

Primes

BDT

CPT

SBT

RT

10771
101
997

P
P

P
P

P
P

P
P

199
1103
3607

4. Theoretical Comparison between NDAGU and LFSR
First, we have to answer why we chose this comparison? As known before that, the LFSR is
considered the basic unit of LFSR systems construction, because it has high periodicity and good
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randomness. There are many known generators which depend basically on LFSR unit, like Geffe,
Bruer, Stop-and-Go,...,etc [5]. The LFSR unit has three basic elements, these elements are: length, tap
and initial values (key). The initial key values must be changed periodically (every message, every
day, every week,...,etc), so its considered to be secret, but the length and the tap still fixed until the
encryption algorithm changed, so they may be public. The NDAGU has the variables q , o, , a2 , k and
m which are the components of the initial key. We have to take this concept in consideration when we
deal with the following differences:

1. For known algorithm, all the elements of every basic unit are known accept the initial key, so the
length and tap of LFSR unit are public, but all the variables of the NDAGU still unknown.

2. The periodicity of the sequence generated from LFSR unit with length g (not necessary prime) is
29-1, but the period of the sequence generated from FDAGU is g-1 for each choice of two primitive
elements, this period can be increased by

3. changing the choice every (g-1) length from the generated sequence, so the new period will be (g-
1)*¢(a-1)*(¢(9-1)-1).

4. The common generated sequence from LFSR is binary, but in NDAGU, the sequence is digital
(1<m<(g-1)/2).

5. The length, tap and initial values of LFSR unit can be detected from some available length of the
generated sequence by using, for example Massey algorithm [6], but it is not easy to find the initial value of
the NDAGU because of the high non-linearity of the function g.

5. Testing the DS Generated from NDAGS

In this section we will test the digital sequences generated by NDAGS by using the Digital Randomness

Tests (DRT) introduced by [10].

Now we will test three different digital sequences for m=3, 5 and 7, with different length L=2000,

5000 and 8000 digits respectively. All these sequences are generated from different linear NDAGS's
(CF is XOR function) have the initial keys described in Table-5.

Table 5-he Three NDAGS's initial key

2

NNNON O1OTWw NN
PR RFRPRPPFPPPP PRI

(6]

The three following tables (Tables -6, 7, 8)) show the randomness test results of the three DS mentioned
above by using DRT.

Table 6-DRT results of NDAGS output with L=2000 for m=3.

Test T  Value Pass Value T,

Frequency 2.428 6.01

6.971 12.31

Run 7.229 12.31

6.63 10.97

No# of fail values 0.0<T (t)<14.238 381
0.05% for 500 shift '

Auto Correlation
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Table 7-DRT results of NDAGS output with L=5000 for m=5.

Test T Value Pass Value T,

Frequency 2.294 9.52

1.4 7.84
3.49 9.52
5.73 9.52
6.62 7.84
10.99 9.52
No# of fail value 0.0<T z(7)<9.465 381
0.07% for 500 shift '

Auto Correlation

Table 8-DRT results of NDAGS output with L=8000 for m=7.

Test T Value Pass Value T,

12.309

9.52
7.84
9.52
7.84
7.84
7.84
7.84

3.81

Frequency 6.992

2.997
3.458
7.088
5.982
6.283
1.823
3.429
No# of fail values 0.0<T A(t)<15.899
0.068% for 500 shift

P LWOwWwwwpkrwph o C

Auto Correlation

Tables-(6, 7, 8) prove the randomness properties of the digital sequences generate from various
NDAGS’s with different m (m= 3, 5 and 7).
6. Practical Comparison between NDAGS and Other Generators

In this section, we try to make a comparison study between NDAGS and other generators, for
digital sequences with L=5000 and m=10 for the compared generators. Of course, the first generator is
the NDAGS number two which is mentioned in Table-9 of the previous section. The second is the
binary LFSR and RNG.
6.1 Practical Comparison between NDAGS and LFSR

In this subsection we chose binary LFSR with length 31 and the 3" stage tapping as a connection
function, in order to get DS, we have to choose 4 bits from four different positions from the LFSR. The
four bits transformed to hex (0..15) if we take mod 10, we get a DS with m=10. Table-9 shows the DRT
results of DS generated from NDAGS and LFSR.
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Table 9-practical comparison between NDAGS and LFSR results

* *

T
402.6

39.28
39.06
27.22
7.49
29.42
18.39
51.60
34.47
48.51
58.17

T
4.05

1.30
0.93
1.88
1.99
2.86
0.99
0.42
2.78
1.04
3.30
No# of fail
values No# of fail values
0.0<T<5.4 . 4.04<T<16.64
0.06% for 500 44 5% for 500 shift
shift

NWNMNMNNNDNWNN ©OfC
NNENMNNONPADNN OfC

From Table-9 we conclude that NDAGS randomness results are more better from randomness
results of LFSR, but this not mean that the LFSR has no randomness properties.
6.2 Practical Comparison between NDAGS and RNG

In the same comparison study, we can show that the Random Number Generator (RNG) which is
found by Mitchell [11], it is a digital generator (m=10 only) with good random sequence, but it has
low complexity, with period less or equal g-1 for some primes. We expect that the choices of the
primes will drop to 35% in order to gain period equal g-1, while the choices of NDAGS still open to
all primes. Table-10 shows the period of some primes for RNG system with frequencies of the
sequence digits.

Table 10-periods of RNG primes and frequencies of sequences digits

55 54 59 45 45 52 572 39 46 48
29 14 18 15 11 11 14 18 13 23

52 36 52 60 36 53 32 39 55 49
26 29 29 22 20 26 29 26 25 31
103 102 102 102 102 102 101 101 102 101

Lets now take q=997 to generate 996-digits sequence (using a,=7, a,,=885 and k=1) to compared
with same q for RNG in Table-11 calculating the Standard Deviation (SD), of the frequency of
sequence digits, from the average.

Table 11-SD deviation of the sequences digits from the average
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We notice that the frequencies of digits of RNG have high deviation (SD=5.68) from the expected

value (16.6), but the frequencies of digits of NDAGS have low (SD=0.52) from the expected value
(99.6), so we conclude that the frequencies of digits of NDAGS are uniform distribution.
7. Conclusions

V.

From the comparison between NDAGU and LFSR, the following differences are obtained:

For unknown cryptosystem, consists of LFSR's, then the variables are the length, tap and initial
values of each LFSR are unknown, but for NDAGS variables are ou,ou,0i,ki and m are all
unknowns.

For known algorithm, the initial values of each LFSR is unknown only, but in NDAGS, oy, o,
0i, k; are unknown which are can be considered as initial values.

The local periodicity of the generated sequence of LFSR with length r is 2'-1, but the period of

the sequence generated from NDAGU is PS® *(g-1), where P is the permutation of 2 from

9(a)-
The common generated sequence from LFSR is binary, but in MMCGU, the sequence is digital

(1<m<g-1).

1. The NDAGU can be developed to increase its periodicity, complexity and randomness by using
other non-used generators of G to generate new A(Q).

2. We can construct an efficient stream cipher cryptosystem depends on combination of number of
LFSR's and NDAGU's.
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