

ISSN: 0067-2904

Negative Coefficients Subclass of Multivalent Functions

Lieth A. Majed *, Asmaa KH. Abdul-Rahman,

Department of Mathematics, College of Science, University of Diyala, Diyala, Iraq
Received: 17/11/2021 Accepted: 28/1/2022 Published: 30/9/2022

Abstract

In this paper, we define a new subclass $\mathrm{L} \wp$ of multivalent functions defined by the generalized integral operator with negative coefficients in the open unit disk U. We also give and study some interesting properties such as coefficient estimates, subordination theorems and integral means inequalities by using the famous Littlewood's subordination theorem. Finally, we conclude a type of inequalities that is upper bound and lower bound for topology multivalent functions of all analytic functions.

Keywords: Multivalent function, Generalized integral operator, Integral means.

$$
\begin{gathered}
\text { المعاملات السالبة كصنف جزئي من الدوال متعددة التكافؤ }
\end{gathered}
$$


```
مع المعاملات السالبة في قرص الوحدة U. سوف نتدم بعض المبرهنات للتبعية الثتاضلية بالإضافة الى \
الخواص التكاملية مثل تتديرات المعاملات والمتراجحات وكنلك تم استخام المبرهنة الثهيرة لتل وود للتبعية
    التفاضلية وكذلك استتخبنا أنواع من المتراجحات ذات القيد الأعلى والاسفل. 
```


1- Introduction:

Let L_{1} be the class of functions of the form:

$$
\begin{equation*}
f(\omega)=\omega^{\wp+\hbar}+\sum_{k=2}^{\infty} a_{k} \omega^{k+\wp+\hbar},(0 \leq \hbar<1, \wp \in \mathbb{N}=\{1,2, \ldots) \tag{1}
\end{equation*}
$$

which are analytic and multivalent in the open unit disk $U=\{\omega \in \mathbb{C}:|\omega|<1\}[1]$. Let L_{2} be the subclass of L_{1} of functions of the form:

$$
\begin{equation*}
f(\omega)=\omega^{\wp+\hbar}-\sum_{k=2}^{\infty} a_{k} \omega^{k+\wp+\hbar}, \quad\left(a_{k} \geq 0, \omega \in U\right) \tag{2}
\end{equation*}
$$

[^0]Observe that the authors introduced and studied some classes of analytic topology functions such as the form (1) in [1]. See also ([2], [3])

$$
\begin{equation*}
\left|\frac{(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}-(f(\omega))^{\prime \prime}}{\frac{-\mu}{\wp+\hbar}(f(\omega))^{\prime \prime}+2 \mu(\wp+\hbar-1) z^{\wp+\hbar-2}}\right|<\gamma \tag{3}
\end{equation*}
$$

where $\delta>0, c>-(\wp+\hbar), 0<\mu<1,0<\gamma \leq \wp+\hbar, 0 \leq \hbar<1$.

2- Coefficient Estimates:

Theorem 1: Let $f \in L_{2}$ be a function that is defined by (2), then
$f \in L \wp$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} \leq 1 \tag{4}
\end{equation*}
$$

where $\delta>0, c>-(\wp+\hbar), 0 \leq \hbar<1$ and $0<\gamma \leq \wp+\hbar$.
Proof: Suppose that the inequality (4) is verified and let $|\omega|=1$, we obtain

$$
\begin{aligned}
& \left|(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}-(f(\omega))^{\prime \prime}\right|-\gamma\left|\frac{-\mu}{\wp+\hbar}(f(\omega))^{\prime \prime}+2 \mu(\wp+\hbar-1) \omega^{\wp+\hbar-2}\right| \\
& =\left|\sum_{k=2}^{\infty}(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}\right| \quad-\gamma \mid \mu(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}+
\end{aligned}
$$

$$
\begin{equation*}
\sum_{k=2}^{\infty} \mu(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2} \tag{5}
\end{equation*}
$$

$$
\leq \sum_{k=2}^{\infty}(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k}-\gamma \mu(\wp+\hbar)(\wp+\hbar-1)
$$

$$
+\sum_{k=2}^{\infty} \mu(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k}
$$

By the hypothesis, we obtain.
$\leq \sum_{k=2}^{\infty}((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1) a_{k} \leq \gamma \mu(\wp+\hbar)(\wp+\hbar-1)$.
Therefore, by maximum modulus principle, we have $f \in L_{2}$.
Conversely, let $f \in L \wp$,then

$$
\left|\frac{(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}-(f(\omega))^{\prime \prime}}{\frac{-\mu}{\wp+\hbar}(f(\omega))^{\prime \prime}+2 \mu(\wp+\hbar-1) \omega^{\wp+\hbar-2}}\right|<\gamma,(\omega \in U)
$$

that is

$$
\frac{\left|\sum_{k=2}^{\infty}(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}\right|}{\left|\mu(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}+\sum_{k=2}^{\infty} \mu(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}\right|}
$$

Since $|\operatorname{Re}(\omega)| \leq|f(\omega)|$ for all ω, we have

$$
\left|\operatorname{Re}\left\{\frac{\sum_{k=2}^{\infty}(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}}{\mu(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}+\sum_{k=2}^{\infty} \mu(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}}\right\}\right|
$$

$$
\begin{equation*}
<\gamma \tag{7}
\end{equation*}
$$

$\frac{\sum_{k=2}^{\infty}(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k}}{\mu(\wp+\hbar)(\wp+\hbar-1) \omega^{\wp+\hbar-2}+\sum_{k=2}^{\infty} \mu(k+\wp+\hbar)(k+\wp+\hbar-1) a_{k} \omega^{k+\wp+\hbar-2}} \leq \gamma$ which gives (4).

Finally, the result is directly obtained with external function f which is given by:

$$
\begin{equation*}
f(\omega)=\omega^{\wp+\hbar}-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} \omega^{k+\wp+\hbar}, k \geq 2 \tag{8}
\end{equation*}
$$

Corollary 1: let $f \in L(\wp, \hbar, \delta, \gamma)$, then

$$
\begin{equation*}
a_{k} \leq \frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}, \quad k \geq 2 \tag{9}
\end{equation*}
$$

The equality (9) is satisfied for the function f that is given by (8).
3. Integral means inequality for the class $L \wp$

In 1925, Littlewood [4] proved the following subordination theorem, see also [5]and [6].
Definition 1 [6], [7] : Let f and g be analytic which are in the unit disk U. Then we say that f is subordinate to g , denoted by $f<g$ or $f(\omega) \prec g(\omega)$, if there exists a Schwarz function w with $w(0)=0,|w(\omega)|<1(\omega \in U)$ which is analytic in U, such that
$f(\omega)=g(w(\omega))(\omega \in U)$. In particular, if the function f is univalent in U, we have the following equivalence relationship holds [10]
$f(\omega)<g(\omega)(\omega \in U)$ if and only if $f(0)=g(0)$ and $f(\mathrm{U}) \subset g(\mathrm{U})$.
Theorem 2: (Littlewood [4], [8]) If f and g are two analytic functions in U such that $f<\mathfrak{g}$, then for $\alpha>0$ and $\omega=r e^{i \vartheta}$ and $0<r<1$.

$$
\int_{0}^{2 \pi}|f(\omega)|^{\alpha} d \vartheta \leq \int_{0}^{2 \pi}|(g(\omega))|^{\alpha} d \vartheta
$$

This theorem is needed to prove the following theorem.
Theorem 3: Let $\mathrm{F} \in \mathrm{L} \wp$ and suppose that f_{k} is defined by

$$
f_{k}(z)=\omega^{\wp+\hbar}-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} \omega^{k+\wp+\hbar}, \quad k \geq 2
$$

If we have the following analytic function w which is given by

$$
\{w(\omega)\}^{k-\wp-\hbar}=\frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} \sum_{k=2}^{\infty} a_{k} \omega^{k} .
$$

This implies that for $\omega=r \mathrm{e}^{\mathrm{i} 9}$ and $0<r<1$.

$$
\int_{0}^{2 \pi}\left|f\left(\mathrm{r} e^{i \vartheta}\right)\right|^{\alpha} d \vartheta \leq \int_{0}^{2 \pi}\left|f_{k+p+\hbar}\left(\mathrm{r} e^{i \vartheta}\right)\right|^{\alpha} d \vartheta, \quad \alpha>0
$$

Proof: We have to show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{k=2}^{\infty} a_{k} \omega^{k}\right|^{\alpha} d \vartheta \leq \int_{0}^{2 \pi}\left|1-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} \omega^{k}\right|^{\alpha} d \vartheta
$$

It would be enough to show that by using Littlewood's subordination theorem,

$$
1-\sum_{k=2}^{\infty} a_{k} \omega^{k}<1-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} \omega^{k} .
$$

by
setting

$$
1-\sum_{k=2}^{\infty} a_{k} \omega^{k}=1-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}\{w(\omega)\}^{k}
$$

We have

$$
\{w(\omega)\}^{k-\wp-\hbar}=\frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} \sum_{k=2}^{\infty} a_{k} \omega^{k}
$$

Which easily yields that $w(0)=0$. Moreover, by using (4), we obtain

$$
\begin{aligned}
& |\{w(\omega)\}|^{k-\wp-\hbar}=\left|\frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} \sum_{k=2}^{\infty} a_{k} \omega^{k}\right| \\
& \leq \frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} \sum_{k=2}^{\infty} a_{k}|\omega|^{k-\wp-\hbar} \leq|\omega|<1 .
\end{aligned}
$$

Theorem 4: Let $\alpha>0$. if $f \in L(\wp, \hbar, \delta, \gamma)$ and

$$
f_{k}(\omega)=\omega^{\wp+\hbar}-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} \omega^{k+\wp+\hbar}, k \geq 2
$$

Then for $\omega=r e^{i \vartheta}$ and $0<r<1$,

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(\mathrm{r} e^{i \vartheta}\right)\right|^{\alpha} d \vartheta \leq \int_{0}^{2 \pi}\left|f_{k+p+\eta}^{\prime}\left(\mathrm{r} e^{i \vartheta}\right)\right|^{\alpha} d \vartheta
$$

Proof: It is enough to show that

$$
\begin{aligned}
& 1-\sum_{k=2}^{\infty}\left(\frac{k+\wp+\hbar}{\wp+\hbar}\right) a_{k} \omega^{k} \\
& \quad<1-\frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}\left(\frac{k+\wp+\hbar}{\wp+\hbar}\right) \omega^{k} .
\end{aligned}
$$

This follows because

$$
\begin{aligned}
&|\{w(\omega)\}|^{k-\wp-\hbar}=\left|\sum_{k=2}^{\infty} \frac{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)}{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)} a_{k} \omega^{k}\right| \\
& \leq|\omega|^{k-\wp-\hbar} \sum_{k=2}^{\infty} \frac{((k+\wp+\hbar)(k+\wp+\hbar-1))(\mu+1)}{\mu \gamma(\wp+\hbar)(\wp+\hbar-1)} a_{k} \leq|\omega|^{k-\wp-\hbar} \leq|\omega| .
\end{aligned}
$$

Now, we discuss for the integral means inequalities for $f \in L \wp$ and g that are defined by

$$
\begin{equation*}
g(\omega)=\omega^{\wp+\hbar}-\mathrm{b}_{\mathrm{i}+\wp+\hbar} \omega^{\mathrm{i}+\wp+\hbar}-\mathrm{b}_{2 \mathrm{i}} \omega^{2 \mathrm{i}}, b_{i} \geq 0, i \geq 2 \tag{10}
\end{equation*}
$$

Theorem 5: Let $f \in L \wp$ and g is given by (10). If f satisfies

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq b_{2 i-\wp-\hbar}+b_{i}, \quad\left(b_{i}<b_{2 i-\wp-\hbar}\right) \tag{11}
\end{equation*}
$$

and there exists a function w which is an analytic such that

$$
\mathrm{b}_{2 \mathrm{i}}(\mathrm{w}(\omega))^{2 \mathrm{i}-\wp-\hbar}+b_{i}(w(\omega))^{i}-\sum_{k=2}^{\infty} a_{k} \omega^{k}=0
$$

Then for $\alpha>0$ and $\omega=\mathrm{r} e^{i \vartheta}$ with $0<r<1$

$$
\int_{0}^{2 \pi}|f(\omega)|^{\alpha} d \vartheta \leq \int_{0}^{2 \pi}|(\mathrm{~g}(\omega))|^{\alpha} d \vartheta
$$

Proof: By putting $\omega=\mathrm{re}^{\mathrm{i} \vartheta}$ and $0<r<1$, we see that

$$
\begin{gathered}
\int_{0}^{2 \pi}|f(\omega)|^{\alpha} d \vartheta=\int_{0}^{2 \pi}\left|\omega^{\wp+\hbar}-\sum_{k=2}^{\infty} a_{k} \omega^{k+\wp+\hbar}\right|^{\alpha} d \vartheta \\
=r^{(\wp+\hbar) \alpha} \int_{0}^{2 \pi}\left|1-\sum_{k=2}^{\infty} a_{k} \omega^{k}\right|^{\alpha} d \vartheta
\end{gathered}
$$

And

$$
\begin{gathered}
\left.\int_{0}^{2 \pi} \lg (\omega)\right|^{\alpha} \mathrm{d} \vartheta=\int_{0}^{2 \pi}\left|\omega^{\wp+\hbar}-\mathrm{b}_{\mathrm{i}+\wp \uparrow+\hbar} \omega^{\mathrm{i}+\wp+\hbar}-\mathrm{b}_{2 \mathrm{i}+\wp+\hbar-\wp-\hbar} \omega^{2 \mathrm{i}+\wp+\hbar-\wp-\hbar}\right|^{\alpha} \mathrm{d} \vartheta \\
=r^{(\wp+\hbar) \alpha} \int_{0}^{2 \pi}\left|1-\mathrm{b}_{\mathrm{i}+\wp+\hbar} \omega^{\mathrm{i}}-\mathrm{b}_{2 \mathrm{i}+\wp+\hbar-p-\eta} \omega^{2 \mathrm{i}-\wp-\hbar}\right|^{\alpha} d \vartheta
\end{gathered}
$$

By applying Theorem (2), we have to show that

$$
1-\sum_{k=2}^{\infty} a_{k} a^{k}<1-\mathrm{b}_{\mathrm{i}+\wp \wp+\hbar} \omega^{\mathrm{i}}-\mathrm{b}_{2 \mathrm{i}} \omega^{2 \mathrm{i}-\wp-\hbar}
$$

Now we define the function w in this way

$$
1-\sum_{k=2}^{\infty} a_{k} a^{k}=1-\mathrm{b}_{\mathrm{i}+\wp+\hbar}(\mathrm{w}(\omega))^{\mathrm{i}}-\mathrm{b}_{2 \mathrm{i}}(\mathrm{w}(\omega))^{2 \mathrm{i}-\wp-\hbar}
$$

or by

$$
\begin{equation*}
\mathrm{b}_{2 \mathrm{i}}(\mathrm{w}(\omega))^{2 \mathrm{i}-\wp-\hbar}+b_{i}(w(\omega))^{i}-\sum_{k=2}^{\infty} a_{k} \omega^{k}=0 \tag{12}
\end{equation*}
$$

Since for $\omega=0$

$$
\mathrm{b}_{2 \mathrm{i}}(\mathrm{w}(\omega))^{2 \mathrm{i}-\wp-\hbar}+b_{i}(w(\omega))^{i}=0
$$

Then there exists a function w which is analytic in U such that $w(0)=0$.
After, we show that the analytic function w satisfies $|w(\omega)|<1(\omega \in U)$ for the condition (11). From (11), we know that
$\left|\mathrm{b}_{2 \mathrm{i}}(\mathrm{w}(\omega))^{2 \mathrm{i}-\wp-\hbar}+b_{i}(w(\omega))^{i}\right|=\left|\sum_{k=2}^{\infty} a_{k} \omega^{k}\right|<\sum_{k=2}^{\infty} a_{k}$ for $\omega \in U$.
Therefore, $b_{2 i}|w(\omega)|^{2 i-\wp-\hbar}+b_{i}|w(\omega)|^{i}-\sum_{k=2}^{\infty} a_{k}<0$.
Letting $t=|w(\omega)|^{i}(t \geq 0)$ in (14) and $\mathrm{G}(\mathrm{t})$ be a function can be defined as follows

$$
\begin{equation*}
G(t)=b_{2 i-p-\hbar} t^{i-\wp-\hbar}+b_{i} t-\sum_{k=2}^{\infty} a_{k} \tag{13}
\end{equation*}
$$

If $\mathrm{G}(1) \geq 0$, we obtain that $t<1$ for $G(t)<0$. Indeed, we have

$$
G(1)=b_{2 i-\wp-\hbar}+b_{i}-\sum_{k=2}^{\infty} a_{k} \geq 0
$$

that is $\sum_{k=2}^{\infty} a_{k} \leq b_{2 i-\wp-\hbar}+b_{i}$.

References

[1] K. A. Jassim, "Some Geometric Properties of Analytic Functions Associated with," Iraqi Journal of Science, vol. 57, no. 0067-2904, pp. 705-712, 2016.
[2] M. Darus and R. W. Ibrehim, "Coefficient inequalitions for a new class of univalent functions," Lobachvskii J. Math., pp. 221-229, 2008.
[3] S. Ahmed, "Differential subordinations for new subclass of multivalent functions defined by generalized derivative operator," Math., vol. 9, pp. 56-68, 2012.
[4] M. Darus and R. w. Ibrahim, "On certain classes of multivalent analytic function," Math., vol. 6, pp. 271-275, 2010.
[5] J. E. Littlewood, "On inequalities in the theory of functions," Proc. London Math.Soc., vol. 23, pp. 481-19, 1925.
[6] P. T. Duren, "Univalent Functions," Springer-Verlag,New York,Heidelberg,Tokoy, vol. 259, 1983.
[7] W. G. Atshan and A. A. Redha Ali, "On Sandwich Theorems Results for Certain Univalent Functions Defined," Iraqi Journal of Science, vol. 62, no. 0067-2904, pp. 2376-2383, 2021.
[8] T. Bullboaca, Differetial subordinations and subordinations, Cluj-Napoca: House of scientific Book Publ, 2005 .
[9] L. Majed, "New Subclass of multivalent functions with negative coefficients in analytic topology," Australian Journal of Basic and Applied Sciences, vol. 11, pp. 20-24, 2017 .
[10]S. K. Hussein and K. A. Jassim, "On a Class of Meromorphic Multiivalent Functiions Convoluted withi," Iraqi Journal of Science, vol. 60, no. 0067-2904, pp. 2237-2245, 2019 .
[11]A. Skii and M. Tkachenko, Topological Group And Related Structure, Atlantic press/word scientific, 2008.

[^0]: *Email: liethen84@yahoo.com

