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Abstract 

      In this paper, we define a new subclass    of multivalent functions defined by 

the generalized integral operator with negative coefficients in the open unit disk U. 

We also give and study some interesting properties such as coefficient estimates, 

subordination theorems and integral means inequalities by using the famous 

Littlewood's subordination theorem. Finally, we conclude a type of inequalities that 

is upper bound and lower bound for topology multivalent functions of all analytic 

functions.    
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 المعاملات السالبة كصنف جزئي من الدوال متعددة التكافؤ
  

  سماء خوام عبد الرحمنا *,ليث عبد اللطيف مجيد 

 قدم الرياضيات , كلية العلهم , جامعة ديالى , ديالى , العراق
 

 الخلاصة
بهاسطة مؤثر التكامل العام    صفهف جزئية جديدة للدوال متعددة التكافؤ   في هذا البحث تم تعريف      

التفاضلية بالإضافة الى  . سهف نقدم بعض المبرهنات للتبعيةUمع المعاملات الدالبة في قرص الهحدة 
الخهاص التكاملية مثل تقديرات المعاملات والمتراجحات وكذلك تم استخدام المبرهنة الذهيرة لتل وود للتبعية 

 .التفاضلية وكذلك استنتجنا أنهاع من المتراجحات ذات القيد الأعلى والاسفل

 

1- Introduction: 

Let    be the class of functions of the form: 

 ( )       ∑   

 

   

         (          *      )                               ( ) 

which are analytic and multivalent in the open unit disk U = {         + [1]. 

Let    be the subclass of   of functions of the form: 

 ( )       ∑   

 

   

                 (        )                                                  ( ) 
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Observe that the authors introduced and studied some classes of analytic topology functions 

such as the form (1) in [1]. See also ( [2], [3]) 

|
(   )(     )       ( ( ))  
  

   
( ( ))     (     )      

|                                                         ( ) 

 
where        (   )                       
2- Coefficient Estimates: 

Theorem 1: Let          be a function that is defined by (2), then 

       if and only if  

 ∑   

((     )(       ))(   )

  (   )(     )

 

   

                               ( ) 

where        (   )                      
Proof: Suppose that the inequality (4) is verified and let        we obtain  

 |(   )(     )       ( ( ))  |   |
  

   
( ( ))     (     )      | 

 |∑ (     )(       )           
   |    | (   )(     )       

∑  (     )(       )           
   |                                           ( ) 

 ∑(     )(       )   

 

   

  (   )(     )

 ∑  (     )(       )

 

   

    

By the hypothesis, we obtain. 

 ∑((     )(       ))(   )  

 

   

   (   )(     )  

Therefore, by maximum modulus principle, we have        . 

Conversely, let       ,then 

|
(   )(     )       ( ( ))  
  

   
( ( ))     (     )      

|    (   )  

that is  

|∑ (     )(       )           
   |

  (   )(     )       ∑  (     )(       )            
    

       ( ) 

     Since     ( )   │ ( )│ for all     we have 

|  {
∑ (     )(       )           

   

 (   )(     )       ∑  (     )(       )           
   

}|

                                                                                                 ( ) 

          
∑ (     )(       )  

 
   

 (   )(     )       ∑  (     )(       )           
   

   

which gives (4).  
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Finally, the result is directly obtained with external function   which is given by: 

 ( )       
  (   )(     )

((     )(       ))(   )
                  ( ) 

 

Corollary 1: let     (       )  then  

   
  (   )(     )

((     )(       ))(   )
                    ( ) 

The equality (9) is satisfied for the function f that is given by (8). 

3. Integral means inequality for the class    

In 1925, Littlewood [4]  proved the following subordination theorem, see also [5]and [6]. 

Definition 1 [6], [7] : Let   and   be analytic which are in the unit disk  . Then we say that   is 

subordinate to  , denoted by      or  ( )   ( )  if there exists a Schwarz function   

with  ( )    , │ ( )│˂ 1 (     )  which is analytic in  , such that 

  ( ) =  ( ( )) (    ). In particular, if the function   is univalent in  , we have the 

following equivalence relationship holds  [10] 

 ( )   ( ) (     ) if and only if   (0) =  (0) and  (U)    (U). 

Theorem 2: (Littlewood [4], [8]) If   and    are two analytic functions in U such that      , 

then for     and   = r     and 0       

                                                                 ∫   ( )    

 
   ∫  ( ( ))    

 
  . 

This theorem is needed to prove the following theorem.  

Theorem 3: Let       and suppose that      is defined by  

  ( )       
  (   )(     )

((     )(       ))(   )
            

If we have the following analytic function   which is given by  

* ( )+      
((     )(       ))(   )

  (   )(     )
∑   

 

   

     

This implies that for   = r     and 0       

∫ | (     )|
 

  

 

   ∫ |      (     )|
 

  

 

        

Proof: We have to show that  

∫ |  ∑   

 

   

    |

 
  

 

   ∫ |  
  (   )(     )

((     )(       ))(   )
  |

   

 

    

It would be enough to show that by using Littlewood   s subordination theorem,  

  ∑   

 

   

       
  (   )(     )

((     )(       ))(   )
    

by setting  

  ∑   

 

   

       
  (   )(     )

((     )(       ))(   )
* ( )+   

We have  

* ( )+      
((     )(       ))(   )

  (   )(     )
∑   
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Which easily yields that  w (0) = 0.  Moreover, by using (4), we obtain 

   

 * ( )+       |
((     )(       ))(   )

  (   )(     )
∑   

 

   

   | 

 
((     )(       ))(   )

  (   )(     )
∑   

 

   

                 

 

Theorem 4: Let             (       ) and 

  ( )       
  (   )(     )

((     )(       ))(   )
            

Then for   = r     and 0       

∫ |  (     )|
 

  

 

   ∫ |  
     

(     )|
   

 

      

Proof: It is enough to show that  

  ∑ (
     

   
)   

 

   

    

   
  (   )(     )

((     )(       ))(   )
(
     

   
)     

This follows because 

 * ( )+       |∑
  (   )(     )

((     )(       ))(   )

 

   

     | 

         ∑
((     )(       ))(   )

  (   )(     )

 

   

                  

Now, we discuss for the integral means inequalities for       and    that are defined by 

 ( )                        
                                                   (  ) 

Theorem 5: Let      and   is given by (10). If   satisfies 

∑   

 

   

            (          )                                                       (  ) 

and there exists a function   which is an analytic such that  

   ( ( ))         ( ( ))
 
 ∑   

 

   

                       

Then for      and   = r     with 0       

∫   ( )  
  

 

   ∫  ( ( ))  
  

 

    

  

Proof: By putting   = r     and 0       we see that 
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∫   ( )  
  

 

   ∫ |     ∑   
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And 

 

∫   ( )  
  

 

   ∫ |                               
          |

 
  

 

   

 

  (   ) ∫ |                       
      |

 
  

 

    

By applying Theorem (2), we have to show that 

  ∑   

 

   

                   
         

Now we define the function   in this way 

  ∑   

 

   

            ( ( ))     ( ( ))       

or by 

   ( ( ))         ( ( ))
 
 ∑   

 

   

                                                        (  ) 

Since for   = 0 

   ( ( ))         ( ( ))
 

    

Then there exists a function w which is analytic in U such that   ( )       
After, we show that the analytic function w satisfies   ( )    (   ) for the condition 

(11). From (11), we know that 

|   ( ( ))         ( ( ))
 
|   ∑   

 
         ∑   

 
     for     . 

 Therefore,       ( )            ( )   ∑   
 
                                                  (  ) 

Letting t =   ( )   (t   ) in (14) and  ( ) be a function can be defined as follows 

 ( )                    ∑   

 

   

  

If    ( )      we obtain that t    for   ( )     Indeed, we have 

                 ( )             ∑   

 

   

    

      
that is   ∑   
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