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Abstract  

     This article reviews a decade of research in transforming smartphones into smart 

measurement tools for science and engineering laboratories. High-precision sensors 

have been effectively utilized with specific mobile applications to measure physical 

parameters. Linear, rotational, and vibrational motions can be tracked and studied 

using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or 

ambient light sensors, depending on each experiment design. Water and sound 

waves were respectively captured for analysis by smartphone cameras and 

microphones. Various optics experiments were successfully demonstrated by 

replacing traditional lux meters with built-in ambient light sensors. These 

smartphone-based measurements have increasingly been incorporated into high 

school and university laboratories. Such modernized science and engineering 

experimentations also provide a ubiquitous learning environment during the 

pandemic period. 
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1. Introduction 

     Smartphones have become indispensable tools for communication, multimedia usage, data 

collection and personal organization. In addition to rapidly developed dual cameras and 

microphones, several high-accuracy sensors are included in smartphones for various utilities. 

It follows that smartphones have been explored as portable measurement tools. Numerous 

demonstrations of inventive measurements using smartphones as integral parts were reviewed 

[1]. A lot of publications have been focused on healthcare [2]. Pongnumkul et al. reviewed the 

measurement systems designed for smart farming [3]. 

 

     The uses of smartphones in Science, Technology, Engineering, and Mathematics (STEM) 

education have been investigated. The concept is in line with the microcomputer-based 

laboratory, but the experimental setup is much more compact without a complicated interface 

of external sensors. Current smartphones are commonly equipped with ambient light sensors, 

proximity sensors, gyroscopes, accelerometers, magnetometers, microphones, and cameras [4-

5]. The working principle itself can be used for teaching electrical engineering. The example 

by Countryman deployed accelerometers as a case study for the axis orientation and 

microelectromechanical system (MEMS) [6]. Errors of smartphone-based measurements can 
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be analyzed and demonstrated in the case of accelerometers, magnetometers, and ambient 

light sensors [9]. Hochberg et al. reported the positive effects on students learning physics 

using smartphones [7-8]. Mobile iOS and Android applications are increasingly developed for 

specific measurements and are widely available for download. Furthermore, measurement 

suites such as ‘Physics Toolbox’ [10], ‘Phyphox’ [11], ‘iMecaProf’ [12], and ‘Sensors 

Fusion’ [13] incorporate several measurements and process the acquired data. A gamified 

suite offers an innovative route to learning, as exemplified by ‘Physics Toolbox Play’ [14]. 

Reflecting the advances in technology, chemistry and biology laboratories have also exploited 

these hardware and software developments to characterize chemical and biological specimens.  

It is encouraging that these developments lead to engaging science and engineering lessons in 

higher education. Several research works have been published in academic journals in the past 

decade. Articles compiling progress in smartphone-based experimentations are beneficial for 

both students and lecturers because these best practices could be implemented in modern 

education. The versatility of smartphones as laboratory instruments in studies of motions, 

waves, and optics is detailed in this review. In addition, prospects of implementations in 

distance learning are also discussed. 

 

2. Literature search 

     Literature on applications of smartphone sensors in the laboratory for science and 

engineering students was collected by searching the Scopus and Web of Science databases. 

The searches in both databases cover articles from 2011 to 2021, and keywords are 

“smartphone sensor” AND “laboratory” OR “physics” OR “engineering”. The returned 

articles are then selected according to the following 3 criteria: (1) it applies the smartphone 

sensors for educational purposes; (2) it focuses on using smartphone sensors in the science 

and engineering laboratory; (3) it includes detailed experiments on mechanics, waves, optics 

using smartphone sensors. By applying these criteria, 83 articles published from 2011 to 2021 

and indexed in Scopus and Web of Science databases are included in this review. The 

published articles are categorized according to the topical lessons and utilizations. 

 

3. Smartphones in studies of motions 

     Smartphones can be turned into intelligent measurement tools in mechanics laboratories of 

high schools as well as physics and engineering students. Different motions ranging from 

free-falling to gliding on an air track and rolling on an inclined plane could be monitored by 

smartphone accelerometers. The gravitational acceleration can be deduced to compare the 

accuracy of each free-fall experiment [15-16]. Oprea & Miron analyzed linear motions using 

either ‘Smart Measure’ or ‘Accelerometer Monitor’ applications with an accelerometer [17]. 

The translation motion down an inclined plane was studied, and the coefficient of friction 

between the surfaces was determined [17-18]. Coban & Erol compared an accelerometer and 

an angle meter in the experiments between different surfaces [19]. A similar motion on an 

inclined plane was analyzed using ‘Physphox’ [20]. Traditional experiments on the air track 

were modified by González et al. to compare a frictionless motion and that with friction [21]. 

The acceleration due to the elastic collision was measured using ‘Sensor-Mobile’ and 

‘Physics Toolbox’ suites on Android smartphones [21]. Interestingly, the experiments can be 

extended from the classroom to the outside environment. Pendrill proposed demonstrations of 

motions in an escalator and a roller coaster [22].  Vieyra et al. measured the acceleration of an 

elevator Using a smartphone accelerometer [10]. Kuhn & Vogt demonstrated the accelerated 

motion with a vertical drop ride in an amusement park [23].  Martinez & Garaizar developed 

‘Serious Physics’ for kinematics studies both inside and outside the classroom [24]. This 

Android-based mobile application differently utilizes four sensors: accelerometer, gyroscope, 

magnetometer, and touchscreen. Apart from lessons in the basic mechanics, Countryman 
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suggested that a built-in accelerometer could also be used to introduce the general theory of 

relativity [6]. According to the principle of equivalence, a smartphone and a user can not 

distinguish the effect of an accelerated frame from gravity. 

 

     In addition to the accelerometer, other smartphone sensors and methods could be 

implemented in studies of motions. Ayop recorded a video of collision and analyzed the effect 

of impulse on objects  using the ‘Tracker’ software [25]. The motions were successfully 

analyzed by recording the sound of the impact by smartphones [26-27]. Oprea & Miron 

demonstrated that the GPS unit with the ‘Android Speedometer’ application could trace the 

distance and velocity as a function of time in motion [17]. The velocity measurements were 

also demonstrated by using ambient light sensors in smartphones. The accuracy of such 

experiments could be confirmed by determining the gravitational acceleration [28]. Kapucu 

detected the light emitted from a toy car, giving rise to its variation in position with time [29]. 

The acceleration and velocity of translation motion down an inclined plane could also be 

analyzed [29-30]. Pierratos & Polatoglou used a smartphone light sensor with the ‘Phyphox’ 

suite to study kinematics in the combined Atwood machine and Galileo’s inclined plane [31]. 

Alternatively, Nuryantini et al. employed a magnetometer with the ‘Physics Toolbox’ suite to 

determine an average velocity of a smartphone-attached object [32]. The velocity was 

indirectly obtained from a variation in a magnetic field with the distance of the moving 

smartphone away from the magnet on the track. Based on the dependence of pressure on 

altitude, the vertical motions of elevators and drones were analyzed by the pressure sensors 

installed in a smartphone [33]. 

  

     Studies of the rotational and circular motions also differ in terms of the sensors used. 

Radial accelerations by the centripetal force were analyzed using smartphone accelerometers 

[10, 34-36]. Besides, a gyroscope was exploited to study the rotation motion[37-40]. The 

gyroscope and accelerometer were combined to verify the dependence of Coriolis acceleration 

on the angular velocity of a rotating track [41]. Aided by ‘Phyphox’, the frequency and 

acceleration of a turntable were successfully analyzed [42]. Kapucu utilized an ambient light 

sensor to track the motion of a light-emitting toy train [43], and a proximity sensor to study 

the circular motions of a propeller [44]. Besides, the sound recording determines the angular 

velocities of a clock’s second hand and a metronome [45]. Sriyanti et al. determined the 

moment of inertia of rotating sphere, disk, cone, and cylinder using smartphone 

magnetometers [46]. Using a magnetometer of a smartphone attached to a hollow cylinder, 

the rolling motions along an inclined plane [47-49] and a curved track were analyzed [50]. 

Smartphone-based experiments have successfully been designed to analyze different forms of 

oscillations. Simple pendulum and spring oscillation were studied using accelerometers [51-

53]. Interestingly, Listiaji et al. reported that the measurement precision of spring constant 

using a smartphone accelerometer was higher than that using a video tracker [54]. Nuryantini 

et al. reported a positive response from students to the smartphone incorporation in a simple 

harmonic oscillation (SHM) lesson [55]. The measurement accuracy was confirmed by 

determining the gravitational acceleration value from the pendulum oscillation [56]. 

Alternatively, a magnetic pendulum was used in the measurement with a smartphone 

magnetometer [55]. Pili studied the oscillation of an object attached to the spring [57], and the 

spring constants were determined from the experiments using either magnetic field sensors or 

ambient light sensors [58-59]. Similarly, Sans et al. deployed an ambient light sensor of a 

smartphone attached to a spring to measure the variation in illuminance with its oscillation 

[60]. Gallitto et al. analyzed errors of such smartphone-based oscillations [61]. A proximity 

sensor was also proposed to precisely measure the oscillation period of a simple pendulum 

[62]. Using a smartphone, the oscillation of a physical pendulum was analyzed in the case of 
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large angles [63], and the moment of inertia of a physical pendulum could also be obtained 

[64]. A smartphone accelerometer was also used to verify the energy conservation in the 

pendulum oscillation [65]. Besides, accelerometers could monitor amplitudes and periods of 

the damped oscillations [66-67] and the coupled oscillations [68]. Kaps et al. used smartphone 

accelerometers and ‘Phyphox’ to study the motion of a torsion pendulum [69], and an 

oscillating cylinder in water [70]. Furthermore, Momox & Ortega De Maio incorporated 

MatLab into the measurement system [71]. For the outdoor experimentations, an 

accelerometer and a gyroscope were successfully combined to analyze the movement of a 

pendulum ride in an amusement park [72]. 

 

4. Smartphones in studies of mechanical waves 

     For sound waves, built-in microphones need tailor-made applications to display acoustic 

spectra. ‘Audacity’ is one of the applications available to analyze sound characteristics [73-

74]. Lessons in acoustic resonance and beats were successfully arranged based on smartphone 

measurements [75]. The Doppler effect and measurement of sound velocity were also 

performed [76]. The sound velocities in different gaseous media can be compared [77]. 

Furthermore, sound waves in daily life can be quantitatively analyzed by using a smartphone-

based system. From sound recordings, several physical quantities could be derived [78]. 

Florea collected spectra from various sources, and characteristic frequencies of household 

objects were estimated [79]. From the sound detection by smartphone, Hawley & McClain 

created the map of sound directivity around the speaker [80]. The smartphone-based lesson on 

acoustic power measurement for engineering students was also proposed [81]. 

 

     To study the frequency of water waves, a smartphone was incorporated into a ripple tank, 

and the wave generation was controlled via the ‘Phyphox’ suite [82]. An experiment using 

salt solutions was also performed and compared to the water to study the effect of viscosity. 

Wave images captured on the smartphone were further analyzed. The smartphone imaging of 

liquid was also employed to measure surface tension [83]. The surface tension was deduced 

from the geometry of a liquid droplet hung at the tip of a pipette or a tube. 

 

5. Smartphones in studies of optics 

     The ambient light sensor in a smartphone can replace a commercial lux meter in a variety 

of experiments in optics. Some mobile applications, available without charge, give the output 

in terms of illuminance. The inverse square distance law can be verified by placing a 

smartphone at varying distances from a light source [84-86]. Efficiencies of incandescent 

bulbs and halogen lamps as light sources were compared using a smartphone light sensor as a 

light meter [87]. Beer-Lambert’s law was demonstrated by comparing the illuminance 

transmitted through the media [88-91]. The reduction in illuminance of light passing through 

water could be calibrated to determine the liquid turbidity [86]. Furthermore, Colt et al. 

modified an experiment to verify Bouguer-Lambert’s Law [89]. Chiang & Cheng 

demonstrated the measurement of Brewster’s angle of glass and acrylic by an ambient light 

sensor [92].  

  

     The nature of optical polarization is demonstrated by measuring the changing light 

intensity according to Malus’ law. Several groups have shown that the data measured using a 

smartphone gives rise to plots of high accuracy [85, 93-94]. The ratio of illuminance passing 

the analyzer to that of the incident light is directly proportional to cos
2
θ, where θ is an angle 

between the polarizer and the analyzer. The light measurement by smartphone sensors is also 

effective in analyzing interference and diffraction patterns, as demonstrated by Diaz-Melian et 



               Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2240-2249 Sirisathitkul and  Sirisathitkul 
 

2244 

al.[85] and Shakur and Binz[95]. Malisorn et al. investigated light scattering by measuring a 

distribution of light intensity [90].  

 

6. Prospects for distance learning 

     There is still room for exploiting newly incorporated or underused sensors. The latest 

smartphones are endowed with more sensors, such as a pedometer enabling users to play 

somatic games and track their physical activities. The built-in thermometer is extended from 

monitoring heat generated in the phone to ambient temperature measurement. Moreover, 

biometric units and near-field communication (NFC) sensors are increasingly incorporated. 

These upgrades ensure the further progress of smartphones for STEM education. Luchsheva 

et al. recommended the integration of different sensors, digital filtering, and augmented reality 

technology [96]. Mobile applications for specific sensors are increasingly available for 

download and the development by engineering students is encouraged [97]. The combination 

of hardware and software allows instant measurements. It follows that the smartphone based-

laboratory can be carried out anywhere and combined with the online discussion of results as 

well as other multimedia during the COVID-19 pandemic period [98]. Mobile devices have 

been widely implemented in outdoor educational settings [99]. They become even more 

helpful when access to the on-site lecture and laboratory are limited. Tzamali et al. reported 

that high school students have positive feedback on smartphone-based experiments carried out 

at home [100]. The best practices assembled in this review can effectively complement the 

virtual laboratory [101], which improves theoretical understanding but does not provide 

students with hands-on skills. Unlike many conventional experiments, these smartphone-

based lessons do not rely solely on laboratories facilities and therefore support ubiquitous and 

personal learning environments [102]. Like other online lessons, demonstration and relevant 

information can be supplied online. Carroll & Lincoln recommended the ‘Phyphox’ 

measurement suites because of their numerous features and supporting resources on the 

internet [103]. Moreover, students can develop research projects and innovations based on 

these measurements. The challenge beyond the goal of science education is to develop 

automated systems around smartphones for practical uses because smartphone-based 

experimentations have already shown the potential for professional and point-of-care 

applications. 

 

7. Conclusions 

     In addition to other benefits of using smartphones in classrooms, many research and 

developments have transformed them into smart measurement tools in science and 

engineering laboratories. With sensors and mobile applications in a smartphone as an integral 

part, experiments were assembled into engaging lessons on motions, waves, and optics 

without increasing high-cost equipment and budget. For motion studies, accelerometers were 

predominantly used, but various experiments based on magnetometers, gyroscopes, proximity 

sensors, and ambient light sensors were also demonstrated. Ambient light sensors were vital 

to experiments in optics, whereas smartphone cameras and microphones could capture 

mechanical waves for further analysis. These hands-on lessons are viable alternatives to on-

site lectures and laboratories during the pandemic period. 
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