Mohammed and Majeed Journal of Science, 2017, Vol. 58, No. 4A, PP: 1946-1954
DOI: 10.24996/ ijs.2017.58.4A.16

Iraqi
Journal of

Science

ISSN: 0067-2904

Efficient Plain Password Cryptanalysis Techniques

Sajaa G. Mohammed*, Abdulrahman H. Majeed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq,.

Abstract

In this research work, some low complexity and efficient cryptanalysis
approaches are proposed to decrypt password (encryption keys). Passwords are still
one of the most common means of securing computer systems. Most organizations
rely on password authentication systems, and therefore, it is very important for them
to enforce their users to have strong passwords. They usually ignore the importance
of usability of the password for the users. The more complex they are the more they
frustrate users and they end up with some coping strategies such as adding “123” at
the end of their passwords or repeating a word to make their passwords longer,
which reduces the security of the password, and more importantly there is no
scientific basis for these password creation policies to make sure that passwords that
are created based on these rules are resistance against real attacks. The current
research work describes different password creation policies and password checkers
that try to help users create strong passwords and addresses their issues. Metrics for
password strength are explored in this research and efficient approaches to calculate
these metrics for password distributions are introduced. Furthermore, efficient
technique to estimate password strength based on its likelihood of being cracked by
an attacker is described. In addition, a tool called PAM has been developed and
explained in details in this paper to help users have strong passwords using these
metrics; PAM is a password analyzer and modifier.

Keywords:  Cryptanalysis, ciphering, password, cracking, Cryptology,
Cryptography.
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1. Introduction

In the past decade the large amount of Cryptanalysis applications has been developed in order to
enhance the cryptographic techniques. Whole variety of techniques was developed using various brute
force algorithms that crack password. In our work we focus to the brute force by using byte recursive
permutation algorithm. The analytical processes used by a cryptanalyst require a number of
techniques: some mathematical, some linguistic, some of an engineering character, and even some not
readily describable such as luck, flair, sixth sense, etc.

Passwords play a significant role in the life of the average user. As the primary form of gaining
access to accounts and services the function of the password faces heavy scrutiny from the IT
community. While arguably more secure systems exist, such as biometrics or one-time passwords,
user-defined passwords continue to have a nigh-universal role in IT infrastructure. It is not possible for
a person to manage, either personally or professionally, without the use of user-defined passwords [1].

Cryptography study the mathematical techniques related to information security aspects such as
confidentiality, data integrity, entity authentication, and data authentication. Ciphering is a method for
data encryption. Cryptanalysis is a method for breaking ciphers and to attack the cipher text [2].
Cryptography is not the only means of providing information security, but rather one set of techniques
[3]. Cryptology has played a role in political and military matters from medieval times through the
20th century. Perhaps most famous is the cryptologic effort of Great Britain and the United States
during World War Il [4]. Cryptology can be subdivided into cryptography (the art and science of
making secret codes) and cryptanalysis (the breaking of secret codes) [5].

Passwords, along with the associated account names, are a way to indicate who we are online. They
are used to control social media, email, banking and a plethora of other services. As such, user
accounts can be seen as our personal presence on the internet. As with any method of personal
identification it is vitally important to keep our user accounts safe. A malicious agent obtaining a
username and password is akin to a fraudster gaining access to a person's banking details and home
address. A great deal of damage can be done with even the smallest of information.

A great deal of password alternatives exists. Hardware verification, such as security tokens are
often used in corporate situations, particularly for delicate and/or restricted network access. The cost
of such systems prevent wide spread distribution, however, given that an authority capable of the
maintenance and issuing of such tokens is required. Biometric evaluation, such as finger print
scanning, provides another more secure form of access but in several situations such measures are
impractical due to expense of implementation.

This paper sets out to discuss the idea that despite the prevalence of the user/password
identification system, people rarely use passwords of any reliable strength or complexity, instead
sticking rigidly to out-dated guidelines which make passwords difficult for people to remember but
easy for computers to break.
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2. Literature Survey

There are much work in Cryptanalysis .The related work below is an important review:

In 2016 Amin R. [6] Introduced Cryptanalysis of the proposed scheme shows that the authentication
system is more authentic, secure and efficient than related schemes published earlier.

In 2016 Caragata D. and et al. [7] introduced a study for analyzing Teng et al.’s fragile
watermarking algorithm. This study shows that it is not secure against two different cryptographic
attacks.

In 2016 Sun B. and et al. [8] investigated the security of structures against impossible differential
and zero correlation linear cryptanalysis.

3. Problem Statement and Motivations

The main problems could be summarized in the next few points:

1. This paper sets out to discuss the idea that despite the prevalence of the user/password
identification system, people rarely use passwords of any reliable strength or complexity, instead
sticking rigidly to out-dated guidelines which make passwords difficult for people to remember but
easy for computers to break.

4. Proposed Image In-painting System (11S)

The suggested schemes consist of some coding modules. The first coding modules is indicated to
perform recursive byte array permutation (i.e., generate all possible keys), their suitability was
investigated experimentally. The second cryptanalysis method step is the application of the password
strength tester (checker), this system performance have been tested. The message digest hashing
function MD5 algorithm is exploited to regenerate password, and used to give more secure on
password OS file system. The regenerated passwords have been created using traditional MD5. The
third cryptanalysis method is XOR cracking with password brute-force attacking.

The full cryptanalysis system have been designed and implemented and their results were analysed.
Standard cracked password data sets were used as test materials to investigate the performance of the
suggested cryptanalysis scheme; the results indicate that the efficiency of proposed scheme is
encouraging when it is compared with state of the art other cryptanalysis scheme..

Cryptanalysis of the
D Password
cryptanalysis

Generate of the Application of the
Password > Password

Figure 1- The proposed system Cryptanalysis

The layout of proposed cryptanalysis system consists of two modules (XOR cracking with
password brute-force attacking). Each module has its own method. Figure-2 shows the system layout.
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[ Generate of the Password ]

¥

Preprocessing

(Crack Detection) |

XOR Cracking Brute-Force Attacking

Cracked Password ]J

Figure 2- The block diagram of proposed system layout
4.1. Simple Recursive Permutation
This section is related to the password Generator Possibilities method. Takes in a string and splits
out all possible permutations of the inputted characters using a simple recursive routine.

Table 1- The block diagram of Simple Recursive Permutation.

Algorithm (1):Generate All Possible Combinations of a Given List of Numbers
Goal: Takes in a string and spits out all possible permutations of the inputted characters using a
simple recursive routine.
Input: Letters[] // String of characters
Output: Permut // List of all Possible Permutations of Letters characters

Algorithm Steps:
Step 1: If (Length (Letters) =1) Then
Print Built & Letters
Goto Step 3
Step 2: For all i Do {where 0 <i > Length (Letters) }
st « Letters[i]
stmo «— Letters[i — 1]
stpo « Letters[i + 1]
Letters «— stmo & stpo
Built < Built & st
GotoStep 1
Step 3: Goto Step 2

4.2 XOR Password Cracker

The binary operation XOR (stands for exclusive OR) is a binary operand (as are AND, OR, etc)
from Boole algebra. This operand will compare two bits and will produce one bit in return. That bit
will be equal to 1 if the two compared bits were different, O if they were equal. Xor encryption is
commonly used in several symmetric ciphers (especially AES). A symetric cipher is simply a cipher in
which the key is used for encryption and decryption process. The XOR operand is so applied to each
bit between the text you want to encrypt and the key you'll choose. Examples are better than words ,
let's take the word "xor".
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4.3 Offline Attack Phase (Brute Force Attack)

This method permutated a byte array of a given size using a given byte set. Note "repetitions”
means the same character can be repeated in the permutation not that there are repeats of the
permutation. Compile before testing it will be slow in the IDE.

The attack this time is much faster. Running at over 16000 attempts per second, a much larger
password file (in excess of 300 megabytes) was used and in a far shorter time. Additionally, the GPU
can be used instead of the CPU to dramatically increase cracking speed.

5. Experimental Results

The implementation of cryptanalysis steps (Brute Force Simulation) is explained in Figure-3 see
appendix (A.1).

1. This method permutated a byte array of a given size using a given byte set. Note "repetitions"
means the same character can be repeated in the permutation not that there are repeats of the
permutation. Compile before testing it will be slow in the IDE. The attack this time is much faster.

2. Running at over 16000 attempts per second (as demonstrated in Figure- 3), a much larger
password file (in excess of 300 megabytes) was used and in a far shorter time. Additionally, the GPU
can be used instead of the CPU to dramatically increase cracking speed. It is this result that lends
credence to the idea that password-cracking requirements have stayed stagnant while cracking
techniques have advanced.

3. Even on a standard processor, a password with 8 characters is surprisingly weak. Sixteen thousand
attempts a second would take several years to break into an 8 character password. However, when
running on GPU the dramatic increase in speeds renders an 8-letter password mostly useless. At this
point in the experiment, brute force options were considered. However there were several drawbacks
that prevented us from running them. Primary among them was the available hardware.

4. While GPUs do drastically increase the speed of cracking passwords, the devices available in our
testing environment would not have provided the required power. The cost of obtaining such devices
was also unfeasible for testing purposes, as for a reliable result, high end graphics cards would be
required. A second drawback was in the speed of the devices. Running with substandard hardware, if
we could attain 200,000 guesses a second, an 8 letter password containing only lowercase letters
would still take 12 days to run

5. . While this is not an unreasonable runtime in real world situations, the number of passwords we
needed to test combined with the complexity made testing brute force methods impossible. For the
purposes of this thesis, however, we can consider theoretical values. Brute force attacks can be
considered more effective but far slower than dictionary attacks. Both attacks will be subject to similar
network traffic when used online and thus our online results only need consideration when it comes to
dictionary attacks.

6. Brute force attacks excel when it comes to offline password cracking on dedicated hardware. As
such, we can presume that any system designed for these attacks will provide far better results than our
offline dictionary attack.

7. A loop counting in a given base is the mechanism for this permutation with repetitions algorithm.
It’s easy to figure out if you think of a mile-0-meter (the small group of reels found on a speed-o-
graph) that records a vehicles mileage.

As you know the reels are numbered from 0 — 9 (base 10) and when a reel rotates and reaches 0
again the next reel to the left is incremented by 1. Each element of the count array (m_bCountArr) is a
virtual reel but numbered in the base (integer representation) according to the chosen character set.
So, if the chosen character set was “Lower Case” the base would be 26 and each reel would be
numbered 0 - 25. Using each current reel value as an index to the character set (m_bByteSet) it is
then possible to permute the password array (m_bPwrdAurr) in the correct sequence.

The actual code stays from this concept slightly as each element of the count array can have because
only hold one value, it is merely incremented or reset according to the last value. Also the reel that
stores the units (the reel on the right) is not used.

At the first tested this algorithm, it must admit didn’t expect it to be so fast, having said that don’t
be disappointed if the input a long password with all the characters selected and the program just
keeps churning away. Brute forcing a password could take years in some cases.
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(A.1) Brute Force Simulation
Description:

A password cracker simulator using a permutation of a byte array algorithm. Hold on to your hat
this class is fast!
Algorithm

A loop counting in a given base is the mechanism for this permutation with repetitions algorithm.
It’s easy to figure out if you think of a mile-o-meter (the small group of reels found on a speed-o-
graph) that records a vehicles mileage.

As you know the reels are numbered from 0 — 9 (base 10) and when a reel rotates and reaches 0
again the next reel to the left is incremented by 1. Each element of the count array (m_bCountArr) is a
virtual reel but numbered in the base (integer representation) according to the chosen character set.
So, if the chosen character set was “Lower Case” the base would be 26 and each reel would be
numbered 0 - 25. Using each current reel value as an index to the character set (m_bByteSet) it is
then possible to permute the password array (m_bPwrdArr) in the correct sequence.

The actual code stays from this concept slightly as each element of the count array can have
because only hold one value, it is merely incremented or reset according to the last value. Also the
reel that stores the units (the reel on the right) is not used. At the first tested this algorithm, it must
admit didn’t expect it to be so fast, having said that don’t be disappointed if the input a long password
with all the characters selected and the program just keeps churning away. Brute forcing a password
could take years in some cases.

Table (A.1)- This class permutated a byte array Permutation with repetitions algorithm.

This class permutated a byte array of a given size using a given byte set. Note "repetitions™ means the
same character can be repeated in the permutation ' not that there are repeats of the permutation.
Compile before testing it will be slow in the IDE. Use VVB5 to compile if possible, VBG6 is slightly
slower.

Option Explicit

xRxkx* For faster DoEvents

Private Declare Function GetQueueStatus Lib "user32" (ByVal fuFlags As Long) As Long
Private Const QS_MOUSEBUTTON As Long = &H4

Private Const QS_PAINT As Long = &H20

Private Const QS_TIMER As Long = &H10

Pexkkxx* For faster DoEvents

Private Declare Sub CopyMemory Lib "kernel32" Alias _

"RtIMoveMemory" (dest As Any, source As Any, _

ByVal numBytes As Long)

Private m_bSoughtArr() As Byte ' known password

Private m_iSoughtLen As Integer ' known length

Private m_bByteSet() As Byte

Private m_bCountArr() As Byte

Private m_bPwrdArr() As Byte

Private m_iPwrdLen As Integer

Private m_iBase As Integer

Public fActive As Boolean

Public Function PermByte() As Boolean
Had to write this just to cope with a password length of one! | didn't want to include error trapping/If
statement in the main loop. Align length to ubound.
iCurLen =m_iPwrdLen - 1
For IPos =0 To m_iBase - 1
Change last byte on every pass. The only byte in this case.
m_bPwrdArr(iCurLen) = m_bByteSet(IPos)
exkxkx Test for password match, *xx*x*
iFound = m_iSoughtLen
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If m_bPwrdArr(iCurLen) = m_bSoughtArr(iCurLen) Then iFound = iFound - 1
If iFound = 0 Then GoTo PasswordFound
Thkkkkkkhkhkhkhkkhkkkhkhkhkhkhkhkkhkhkhkkhkhkhkhhkhkhkhkhikikihkikiikiik
Next
PasswordNotFound:
Exit Function
PasswordFound:
PermByte = True
End Function

Friend Function PermByteArr() As Boolean
" Warning password length most be > 1 to use this function.
Dim IPos As Long
Dim ITemp As Long ' Temp var gets reused several times.
Dim iCurLen As Integer
Dim iFound As Integer
" Align length to ubound.
iCurLen =m_iPwrdLen - 1
'start the loop
Do
ForIPos=0Tom iBase-1
' Change last byte on every pass.
m_bPwrdArr(iCurLen) = m_bByteSet(IPos)
exkxkx Test for password match, **x*x*
" In most brute force examples the test for password match usually
' consists of "if StringGenerated = StringPassword then" this uses a
" loop to compare each byte. It is important to process all the bytes
' for a true simulation. We could of cause exit the loop as soon as
" the "byteGenerated <> bytePassword" but that would be cheating!
" It may appear to some that using the known length (m_iSoughtLen) of
" the sought password is cheating. This is not the case, no advantage
" is gained using this value it is used to maintain the integrity of
" the simulation.
' Bare in mind changes here only effect the simulation speed! As such
" should not be seen as a way of improving the algorithm.
iFound = m_iSoughtLen
For ITemp=0To iCurLen
If m_bPwrdArr(ITemp) = m_bSoughtArr(ITemp) Then iFound = iFound - 1
Next
If iFound = 0 Then GoTo PasswordFound
Thkkkkhkkhkkhkkhkkhkkkhkhkkhhkkhhkkhkhkkhkkikkikkikkikikk
Next
' Base counter loop. Change other bytes? Will be at least one to change.
For IPos = iCurLen -1 To 0 Step -1
ITemp = m_bCountArr(IPos) + 1
If ITemp = m_iBase Then ‘carry
ITemp =0 'On the last pass this value is used to stop the main loop.
m_bCountArr(IPos) = ITemp ‘reset
m_bPwrdArr(IPos) = m_bByteSet(ITemp)
If GetQueueStatus(QS_MOUSEBUTTON Or QS_PAINT Or QS_TIMER) Then
DoEvents
If Not fActive Then GoTo PasswordNotFound ' Cancel?
End If
Else
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m_bCountArr(IPos) = ITemp 'increment
m_bPwrdArr(IPos) = m_bByteSet(ITemp)
Exit For 'nothing to carry so bail out.
End If
Next
Loop Until ITemp =0
PasswordNotFound:
Exit Function
PasswordFound:
PermByteArr = True
End Function

Public Property Let InitByteSet(ByVal NewVal As String)
"initialise m_bByteSet with charset
m_iBase = Len(NewVal)
ReDim m_bByteSet(0 To m_iBase - 1)
CopyMemory m_bByteSet(0), ByVal NewVal, m_iBase
End Property
Public Property Let InitSoughtArr(ByVal NewVal As String)
" Initialise m_bSoughtArr with the password to find.
m_iSoughtLen = Len(NewVal)
ReDim m_bSoughtArr(0 To m_iSoughtLen - 1)
CopyMemory m_bSoughtArr(0), ByVal NewVal, m_iSoughtLen
End Property

Public Property Get PermCount() As Double
' Compute count from m_bCountArr by converting the base count back to base 10.
" Accurate to within the givin base value as the count array does not
' store the units.
Dimi As Long
Dim iPow As Integer
On Error GoTo NoCount ' Necessary for password length of one.
iPow = UBound(m_bCountArr) + 1
Fori =0 To UBound(m_bCountArr)
PermCount = PermCount + m_bCountArr(i) * (m_iBase ~ iPow)
iPow = iPow - 1
Next
Exit Property
NoCount:
PermCount = 0
End Property

Public Property Let Password(ByVal NewVal As String)
Initialise password array with the first password.
m_iPwrdLen = Len(NewVal)
ReDim m_bPwrdArr(0 To m_iPwrdLen - 1)
CopyMemory m_bPwrdArr(0), ByVal NewVal, m_iPwrdLen
Dimension count array while we are here. Always one less than m_bPwrdArr.
ReDim m_bCountArr(0 To m_iPwrdLen - 2)
End Property

Public Property Get Password() As String
Convert m_bPwrdArr to a string.
Password = Space$(m_iPwrdLen)
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CopyMemory ByVal Password, m_bPwrdArr(0), m_iPwrdLen
End Property

Private Sub Class_Terminate()
'not sure if this has got to be done but it does no harm.
Erase m_bByteSet, m_bCountArr, m_bPwrdArr, m_bSoughtArr

End Sub
Figure 3- Snapshot of password cracking using Brute force method.

6. Conclusions

As mentioned previously in the current research work, with further studies on usability of the
passwords, it could improve the distance function to capture everything the user needs. By getting
some feedback from users it could learn which passwords are more usable for them and give those
operations more weight.
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