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Abstract

In this paper, we introduce the concept of s.p-semisimple module. Let S be a
semiradical property, we say that a module M is s.p - semisimple if for every
submodule N of M, there exists a direct summand K of M such that K <N and N/ K
has S. we prove that a module M is s.p - semisimple module if and only if for every
submodule A of M, there exists a direct summand B of M suchthat A=B +Cand C
has S. Also, we prove that for a module M is s.p - semisimple if and only if for every
submodule A of M, there exists an idempotent e € End(M) such that e(M) < A and
(1-e)(A) has S.

Keywords: Semiradical (radical) property, Semisimple modules, t- semisimple
modules.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary
left R-modules. Let A be a submodule of a module M. A is called an essential submodule of
M (denoted by A< M) if ANB#0,V 0#B <M. A submodule B of M is called a closed
submodule of M if B has no proper essential extension. A module M is called an extending
module if every submodule of M is essential in a direct summand. Equivalently, every closed
submodule of M is a direct summand, see [1], [2], [3].
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Let M be a module. Recall that the socle of M (denoted by Soc(M)) is the sum of all
simple submodules of M, a module M is called a semisimple if Soc(M) = M. Equivalently a
module M is semisimple if and only if every submodule is a direct summand of M, see [1],
[4]. Recall that the Jacobson radical of M (denoted by J(M)) is the intersection of all maximal
submodules of M. If M has no maximal submodule, we write J(M) = M, see [5].

Let x € M. Recall that ann (x) = {r € R: rx = 0}. For a module M, the singular submodule
is defined as follows Z(M) = {x € M | ann x <. R} or equivalently, Ix = 0 for some essential
left ideal | of R. If Z(M) = M, then M is called a singular module. If Z(M) = 0, then M is
called a nonsingular module. The second singular (or Goldie torsion) submodule of a module
M (denoted by Z,(M)) is defined by Z(M / Z(M)) = Z,(M) / Z(M), see [1],[6].

A submodule A of a module M is called t- essential submodule (denoted by A < s M) if
for any submodule B of M, A N B < Zy(M) implies B < Z3(M). A module M is called
t-semisimple if for every submodule N of M there exists a direct summand K of M such that
K <+ts N, see [5]. [7].

A property S is called a radical property if:
1- for every module M, there exists a submodule (denoted by S(M)) such that
a- S(M) has S.
b- A <S(M), for every submodule A of M such that A has S.
2- If f: M — N is an epimorphism and M has S, then N has S.
3- S(M / S(M)) = 0 for every R- module M, see [8].
A property S is called a semiradical property if it satisfies conditions 1 and 2, see [8].

It's known that each of the following two properties is a radical property, see [8].

1- S = Z,. For amodule M, S(M) = Z,(M), the second singular of M.

2- S = Snr. For a module M, Snr(M) is a submodule of M such that

ai- J(Snr(M)) = Snr(M) {i.e. Snr(M) has no maximal submodule}.

bo- A < Snr (M), for every submodule A of M such that J(A) = A, see [8].

While each of the following two properties is a semiradical property (but it is not radical
property), see [8].
1- S =Z. For a module M, S(M) = Z (M), the singular submodule of M.
2- S = Soc. For amodule M, S(M)=Soc(M) =), a<m A.

A is simple

Let S be a semiradical property. It is known that
1- M has S if and only if S(M) = M.
2- S(S(M)) = S(M).
3- If M = @i e M;, then S(M) = Pie S(M;), where | is any index set.
4-if S(M) =0, then S(A) =0, V A<M.
5- For any short exact sequence 0 - M — N — K— 0, if S(M) = 0 and S(K) = 0, then
S(N) =0, see [8].

In this paper, S is a semiradical property, unless otherwise stated.
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2- s.p - semisimple modules
In this section, we introduce the concept of s.p-semisimple modules and give the basic
properties of this module. Also, we illustrate it with some examples.

Definition2.1. Let S be a semiradical property. We say that a module M is s.p - smisimple
module if for each submodule N of M, there exists a direct summand K of M such that K <N
and N /K has S.

Remarks and Examples2.2.

1- Every semisimple module is s.p - semisimple. The converse is not true in general.

Proof. Let N be a submodule of a semisimple module M, then N is a direct summand of M,
by [4]. Let K=N, hence S(N/K)=S(N/N)=S(0)=0= N/ K. Thus M is s.p - semisimple.
For example Zg as Zg- module is s.p - semisimple module.

For the converse, Let S = Second singularity. Consider module Z4 as Z- module. Since Z, is
singular, then every submodules of Z, is singular, by [1]. Therefore, Z,(N) = Z(N) =N,V N
<Z4 Let K=0,hence Z,(N/0) = Zy(N)=Z(N)=N=N/0.SoN/0has S, VN <Z, Thus
Z, is s.p - semisimple. Cleary that Z, is not semisimple.

Recall that a semiradical property S is called hereditary if S is closed under submodules,
see [8].
2- Let S be a hereditary property and M be a module. If M has S, then M is s.p - semisimple.

Proof. Let N be a submodule of M and S(M) = M. Since S is hereditary, then S(N) = N. Let
K=0,thenS(N/0) = S(N)=N = N/0. Thus M is s.p - semisimple.

3- Let S = singularity. Consider module Q as Z-module. Clearly, that Q is nonsingular. Hence,
Z(Q) = 0. Let N = 3Z. Since Q is indecomposable, then 0 is the only direct summand
contained in 3Z. S0 S(3Z/0) = S(32) = Z(3Z) = 0. Thus Q is not s.p - semisimple module.

Proposition2.3. Every submodule of s.p - semisimple module M is s.p — semisimple, For
every property S.

Proof. Let N be a submodule of M and A <N. Since M is s.p - semisimple, then there exists a
direct summand K of M such that K < A and A / K has S. By modular law, K is a direct
summand of N. Thus N is s.p - semisimple.

Proposition2.4. Let M be an indecomposable module and S be an assumed. Then M is s.p -
semisimple if and only if every proper submodule of M has S.
Proof. =) Let N be a proper submodule of M. Since M is s.p - semisimple, then there exists a
direct summand K of M such that K < N and N / K has S. But M is an indecomposable.
Therefore, K=0. Hence S(N) = S(N/0) =S(N/K)=N/K=N/0= N. Thus N has S.
<) Clear.

Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) =0
is closed under homomaorphic images of M for every module M, see [8].

Proposition2.5. Let S be a cohereditary property and let M be a module. If S(M) = 0. Then M
is semisimple if and only if M is s.p - semisimple.
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Proof. =) Clear.

<) Let N be a submodule of M. Since M is s.p - semisimple, then there exists a direct
summand K of M such that K <N and N / K has S. But S(M) = 0, therefore S(N) = 0, by [8].
Since S is cohereditary property, then S(N / K) = 0. Hence N = K is a direct summand of M.
Thus M is semisimple.

Remark2.6. Let S be a hereditary property and M be a module. If S(M) = M, then M / N is
s.p - semisimple module, for each submodule N of M.

Proof. Let N be a submodule of M and S(M) = M, then M / N has S, by [8]. Thus by. 2.2-2,
M/ N is s.p - semisimple module.

Proposition2.7. Let M be s.p - semisimple module. Then every submodule N of M such that
S(N) = 0 is a direct summand of M. The converse is true if S(M) = 0.

Proof. Assume that N is a submodule of M such that S(N) = 0. Then there exists a direct
summand K of M such that K <N and N/K has S. Let M = K @ Ky, for some submodule K;
of M. By modular law, N = K @ (N N K3). Since N N K; <N and S(N)=0, then S(NNK;) =0,
by [8]. Since N/ K = (K @ (NNKy)) / K = (N N Kq) /0 = N N Ky, by the second
isomorphism theorem, then S(N / K) = 0. But S(N / K) = N / K, therefore N / K = 0. Thus
N = K is a direct summand of M.

Conversely, let S(M) = 0 and N be a submodule of M. Then S(N) = 0, by [8]. By our
assumption N, is a direct summand of M. Therefore M is semisimple. Thus by 2.2-1, M is
S.p - semisimple module.

Proposition 2.8. Let M = A + S(M) be s.p - semisimple module. Then there exists a direct
summand B of M such that B< A, M =B + S(M) and A/ B has S.

Proof. Assume that M is s.p - semisimple module. Then there exists a direct summand B of M
such that B < A and A/ B has S. Let M = B @ C, for some submodule C of M. Then
A=B @ (C N A), by modular law. But A/ B = (C N A), by the second isomorphism
theorem, therefore (C N A) has S. Since (C N A) has S, then (C N A) < S(M). Thus
M=A+S(M) =B+ (CNA) + S(M) and hence M = B + S(M).

Proposition2.9. Let S be a hereditary property and M = M; @ M; be a module such that M;
has S and M is semisimple. Then M is s.p - semisimple module.

Proof. Let N be a submodule of M. Since M; is semisimple, then N N M is a direct summand
of M,. But, M, is a direct summand of M, therefore N N M; is a direct summand of M. By the
second isomorphism theorem, M / M, = (M1@M,) / M, = Mj. Since M; has S, then M / M,
has S. But N/ (N N M) = (N + My) / My, <M / M; and S hereditary property. So N/ (N N
M) has S. Thus M is s.p - semisimple module.

Corollary 2.10. Let S be a hereditary property and M be a module. If M = S(M) @ M, where
M; is a semisimple module, then M is s.p - semisimple module.

4904



Al-Dhaheri and Al-Bahrani Iragi Journal of Science, 2022, Vol. 63, No. 11, pp: 4901-4910

Proof. Clear.

Proposition 2.11. Let M = M; @ M, be a module such that R = Ann(M;) + Ann (M,). If M;
and M; are s.p - semisimple modules, then M is s.p - semisimple module.

Proof. Let N be a submodule of M = M; @ M. Since R = Ann(M;) + Ann (M), then by the
same argument of the proof [9, prop.4.2, CH.1], N = N3 @ Ny, where N1 < M; and N, < M,.
Since M; is s.p - semisimple for i= 1, 2, then there exist direct summands K; of M; such that K;
is a submodule of Njand N; / Kjhas S (i = 1, 2). Let M; = K; @ L, for some submodule L; of
M;. Therefore M = M, M, = (K1 ) L1) ) (K2 ) L2) = (K1 ) Kz) ) (L1 &) Lz). Hence
(K1 BKy) is a direct summand of M and (K; @ K3) < N; @ N, = N. Now since N; / K;jhas S
(i =1, 2), then by [8], (N1 / K)® (N2 / Ky) has S. But (N1 / K;) @ (N; /Kp) =
((N1DN2) / (KiDK?y)), by [10, p. 33], hence (N1DBNy) / (Ki® Kz) = N/ (K1 © Ky) has S.
Thus M is s.p - semisimple module.

Let M be an R- module. Recall that M is called a duo-module if every submodule of M is
fully invariant, see [11].

Proposition 2.12. Let M = @j e M; be a duo module. Then M is s.p - semisimple modules if
and only if M is s.p - semisimple module V i € 1.

Proof. Since M is s.p - semisimple, then by prop.2.3, M is s.p - semisimple, V i€ I.
Conversely, let M = @ie | M; be a module such that M; is s.p - semisimple, V i € I. Let
N<M,thenN=NNM=NN (@iEI Mi) = Pie (N N Mi), by [12,Iem.2.1]. Let Nj=N N M;,
Vi € I, then Nj < M; V i€ I. Since M; is s.p - semisimple, then there exists K; is a direct
summand of M; such that Kjis a submodule of N; and N;/ Kihas SV i € I. Hence ((@ie Ni)/
(Bie1 Ki) = Diei (Nj/ Kj) has S, by [10]. Thus M = @iec| M is s.p - semisimple.

Let M; and M5 be R- modules. M; is called M,- projective if for every submodule N of M,
and any homomorphism f: M; — My / N, there is a homomorphism g : M; — M, such that
mog =f. where r: My, — M3 / N is the natural epimorphism, see [13].

My

R — >
M2 VA Mz/N 0

M; and M are called relatively projective if M; is M,- projective and M, is M- projective.

We know that for a module M = A @ B. A is B-projective if and only if for every
submodule C of M such that M = B + C, there exists a submodule D of C such that
M =B @ D, see [14].

Proposition2.13. Let S be a hereditary property. Let My and M be s.p - semisimple modules
such that M; and M are relative projective. Then M = My @ Mais s.p - semisimple.

4905



Al-Dhaheri and Al-Bahrani Iragi Journal of Science, 2022, Vol. 63, No. 11, pp: 4901-4910

Proof. Let N be a submodule of M. Since (N + M,) N M; < M; and My is s.p - semisimple,
then there exists a direct summand A; of M such that A; < (N + M) N M; and
((N + M) N M;) / A; has S. Let M; = A; @ B,, for some submodule B; of M;. Hence
(N + M) N My = At (N + M) N M;) N By, by modular law. Since by the second
isomorphism theorem, (N + M3) N M3) / Az = (N + M;) N"M; N By), then (N + M3) N By has
S, by[8] Therefore M = M; @ M, = A; @ B, & M2:(N+M2)OM1+81+M2:
N+M2+Bl+M2:N+(M2@Bl). Since(N+Bl)ﬂM2§M2and M, is
s.p - semisimple, then there exists a direct summand A, of M, such that A, < (N + B;) N M,
and ((N + By) N Mp) / Az has S. Let M, = A, @ By, for some submodule B, of M, then
(N+B1)) N Ma=A; @ ((N + B;1) N My) N By, by modular law. By the second isomorphism
theorem, ((N + Bl) N Mz) [ A, = ((N + Bl) N Mz) N B,, then (N + Bl) N M, N By, =
(N+Bl)ﬂB2 has S, by[8].ThUSM:N+(M2@81)ZN+A2+82+81: N+(Bl® Bz)
Since M = (A1 @ Ay @ (B1 & By) and My and M, are relative projective, then A; is
B; - projective and A; is B; - projective for j = 1, 2, by [9, prop. 2.1.6]. So by [15, prop.2.1.7],
A; is Bi@Bgy-projective and A; is By @ B, - projective. Hence A; @ A, is
B1@B,-projective, by [15, prop.2.1.6]. Hence, there exists X < N such that M = X @B; &
B, by [14, lem. 5].

Now, we want to show that NN (B1@ B;) has S. Since (N+M;) NB; = ((N + (A2 € B,)) N B;
has S and (N + B2) N By < (N + (A2 © B2)) N By, then (N €@ Bz) N By has S. Since
(N +B;) N By has S, then (N @ B,) N B1 @& (N @ B;) N B, has S, by [8]. But by
[15,1611’1.3.2], N N (B1 @ Bz) < (N @ Bz) n By EB (N @ Bl) N B.. Therefore,
N N (By @ B,) has S. Thus M is s.p - semisimple module.

Let M be an R-module. M is said to have the summand intersection property (briefly SIP) if
the intersection of any two direct summands of M is a direct summand of M, see [16].

Proposition 2.14. Let M be s.p - semisimple module. If for any two direct summand A and B
of M, S(A N B) =0, then M has SIP.

Proof. Let A and B be direct summands of M. Since M is s.p - semisimple, then there exists a
direct summand N of M such that N < A N B and (A N B)/ N has S. Let M =N @ N;, for
some submodule N; of M, then ANB = N@ (N1N(ANB)). Hence by the second isomorphism
theorem, (ANB) / N = [N @ (N:N (ANB))] /N = N;N(ANB) <A N B. Since S(ANB) =0,
then S(N; N (A N B)) = 0, by [8]. So S((ANB) / N) = 0. But (A N B) / N has S, therefore
A N B=N. Hence A N B is a direct summand of M. Thus M has SIP.

Let R be an integral domain. Recall that an R- module M is called a torsion free module if
ann (x) =0, for all 0 # X € M, see [1].

Theorem 2.15. Let R be an integral domain and M be a torsion free module and
s.p - semisimple module. Then for every m € M, either Rm is a direct summand of M or Rm
has S.

Proof. Let 0 # m € M. Then there exists a direct summand K of M such that K < Rm and
Rm/Khas S. Let M = K @ H, for some submodule H of M. Then Rm = K& (Rm N H), by
modular law. But Rm / K = Rm N H, by the second isomorphism theorem. Therefore Rm N
H has S.

Let : R — Rm be a map defined by f(r) = rm, for each r € R.It is easy to see that f is an
epimorphism and Ker (f) = ann (m). By the first isomorphism theorem, R / ann(m) = Rm.
Since M is torsion free module, then ann(m)= 0. Thus R = Rm. But R is indecomposable.
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Therefore, Rm is indecomposable. Implies that either Rm = K or Rm = Rm N H. Thus either
Rm is a direct summand of M or Rm has S.

Proposition2.16. Let R be an indecomposable ring and M be a projective module. If M is
s.p - semisimple module, then for every m € M, either Rm is a direct summand of M or Rm
has S.

Proof. Assume that M is a projective and s.p - semisimple module and let m € M. Then there
exists a direct summand K of M such that K < Rm and Rm /K has S. Let M = K & H for
some submodule H of M, then Rm = K @& (H N Rm), by modular law. But
Rm /K = H N Rm, by the second isomorphism theorem. Therefore, H N Rm has S.

Now, let f: R — Rm be a map defined by f(r) = rm, for all r € R. It is clear that f is an
epimorphism map. Let P: Rm — K be the projection map. Clearly, Pof: R — K is an
epimorphism. Since M is projective, then K is projective by [4]. Therefore, Ker (Pof) is a
direct summand of R. Since R is indecomposable, then either Ker Pof = 0 or Ker Pof = R.
Ker (Pof) = f* (Rm N H) = f* (Rm N H). So either Rm N H =0 or Rm N H = R. Thus
Rm =K or Rm N H=Rm has S.

3- Characterization of s.p - semisimple Modules
In this section, we give various characterizations of s.p - semisimple modules.

We start with the following theorem.

Theorem 3.1. Let M be a module. Then the following statements are equivalent

1- M is s.p - semisimple module.

2- For every submodule A of M, there exists a decomposition M = B @C such that B < A and
A NChasS.

3- For every submodule A of M, A= A; @A,, where A; is a direct summand of M and A; has
S.

Proof. 1=2) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a

direct summand B of M such that B< A and A/ B has S. Let M =B @ C, where C is a

submodule of M. Then A =B @ (C N A), by modular law. By the second isomorphism

theorem, A/B=(CNA). ThusA/B=CNA.

2 =3) Let A be a submodule of M. By (2), there exists a decomposition M = B @ C such that

B <A and A N C has S. By modular law, A=B @ (C N A). Let A,=A N C has S.

3=1) Let A be a submodule of M. By (3), A = A1 @ A, where A; is direct summand of M

and A; has S. By the second isomorphism theorem, A/ A; = A;. SO A/ A; has S. Thus M is

S.p - semisimple.

Proposition 3.2. A module M is s.p - semisimple if and only if for every submodule A of M
there exists a direct summand B of M such that A = B + C, where C is a submodule of M has
S.

Proof. =) It is clear by Theorem3.1.

<) Let A be a submodule of M. By our assumption, there exists a direct summand B of M
such that A= B + C and C has S. Let M = B @ D, for some submodule D of M, then
A =B @ (A N D), by modular law. Hence, (A/B)=(B +C)/B = C /(B N C), by the
second isomorphism theorem. But C has S, then C / (B N C) has S. This implies that A / B has
S. Thus M is s.p - semisimple.
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Proposition3.3. A module M is s.p - semisimple if and only if for each submodule A of M,
there exists an idempotent e € End(M) such that e (M) < A and (1- €)(A) has S.

Proof. =) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a
decomposition M = B @ C such that B< A and A N C has S, by th.3.1, 1-2. Lete : M — B
be the projection map. Clearly that e = e and C = (1 — e) (M). Claim that
(1-e)(A) = (1-e) M)NA. To show that, let m € (1-e) (A), then there is a € A such that
m = (1 —e)@ = a — e(a). Therefore m € A and hence m € (1-e¢) (M) N A. Thus
(1-e) (A) < (1-e) M) N A. Now, let n € (1-¢) (M) NA, then n € (1-e) (M) and n € A. Hence,
there is k € M such that n = (1 — e)(k) = k — e(k). So n + e(k) = k € A. then n € (1-e) (A).
Thus ANC=AN(1-e) (M) =(1-e) (A). Thus (1-e)A has S.

<) Let A be a submodule of M and e € End(M) be an idempotent such that e(M) < A and
(1- e)A has S. Claim that M = e(M)&@(1-e)(M). To show that, let x €M, then x = x+ e(x)- e(X)
=e(x)+x—e(x) =e(X) +(L—e)(x). Thus M =e (M) + (1-e) (M).

Now, lety € e (M) N (1-e) (M), then y = e(m;) and y = (1 — e)(my), for some m;, m, € M. So
y = e(m) = e(e(my)) = e((1- e)(my)) = e(my) - e(my) = 0O, then y = e(my) = 0. Thus
M = e(M)®(1-e)(M). Let B = e(M) < A and C = (1-e)(M). Therefore M = B @ C and
ANC=AN(-e)M = (1-e)A has S. Thus M is s.p - semisimple, by Theorem 3.1.

Let M be a module and N be a submodule of M. Recall that a submodule K of M is called
an S-generalized supplement of N in M, if M =N + K and N N K < S(K), see [17].

Let M be a module. Recall that M is called an S-generalized supplemented module
(or briefly S-GS module), if every submodule of M has S-generalized supplement in M,
where S is semiradical property on modules, see [17].

Proposition3.4. Every s.p - semisimple module M is S-GS supplemented module.

Proof. Let M is s.p - semisimple module and N be a submodule of M, then there exists a
direct summand K of M such that K < N and N / K has S. Hence, M = K @ K, for some
submodule K; of M. But K <N, therefore M = N + K;. So by modular law, N = K(N N K3),
then by the second isomorphism theorem, N/ K = N N Kj has S. Thus N N K; < S(K) by [8].

Proposition3.5. Let M be s.p-semisimple module. If M = N + K, where N is a direct summand
of M, then N contains an S-generalized supplement submodule of K in M.

Proof. Since M is an s.p - semisimple, then by Theorem 3.1.1-3, N N K = A @ B, where A is
a direct summand of M and B has S. Let M = A @ C, for some submodule C of M. Hence,
N = A @(NNC), by modular law. Let A; =NNC, then M =N + K = (A+A;) + K. But A <K.
Therefore, M = K + A;. Now we want to show K N A; < S(Aj). Since NNK=(A @ A) N
K=A @ (KNA;), by modular law. Let : N=A @ A; — A; be the projection map. So we
have KN A; = (A @ (KNA;))=(N NK)=(A @ B) = (B). But B has S. Therefore, KN
A; has S, by [8]. Hence, KNA; < S(A3). Thus A; is an S-generalized supplement submodule
of Kin M and A; is contained in N.

Proposition3.6. Let S be a hereditary property and M be a module. Then the following
statements are equivalent

1- M is s.p - semisimple module.

2- Every submodule N of M has S-generalized supplement K in M such that N N K is a direct
summand of N.
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Proof. 1=2) Let N be a submodule of M. Then by the same argument of proof of Proposition
3.4. N has an S-generalized supplement.

2=1) Let N be a submodule of M. Then by our assumption N has an S-generalized
supplement K in M such that NNK is a direct summand of N. Hence M=N + K and N N K <
S(K). Let N= (N N K) & L, for some submodule L of N. Then M =(NNK) + L+ K=L + K.
But, LN K=NNKNL=0. Therefore, M = L @ K. By the second isomorphism theorem,
N /L =N NK. Since NN K < S(K) and S is hereditary property, then N N K has S by [8]
and hence N/ L has S. Thus M is s.p-semisimple.

Proposition3.7. Let M be a module. If M is S-GS supplemented module, then M / S(M) is a
semisimple module.

Proof. Let N / S(M) be a submodule of M / S(M). Since M is S-GS supplemented, then there
exists a submodule K of M such that M = N + K and N N K < S(K). Then
M /S(M) = (N+K)/S(M) = N /S(M)) + (K+S(M))/S(M)). Since (N/S(M)) N ((K+S(M))/ S(M))
= [(N N K) + S(M)] / S(M)), by modular law and N N K < S(K) < S(M), by [17]. Then
(N N K) + S(M) = S(M). Therefore M / SMM) = (N / S(M)) @ ((K + S(M) / S(M)). Thus
M / S(M) is semisimple.

Corollary3.8. Let M be a module. If M is S-GS supplemented module, then M / S(M) is
S.p - semisimple module.

Proof. Itis clear by Proposition. 3.7 and 2.2-1.

Proposition3.9. Let M be s.p-semisimple module. Then every submodule N of M has an
S-generalized supplement which is a direct summand of M.

Proof. Let N be a submodule of M, then there exists a decomposition M = A @ B such that
A <Nand N N B has S, by Theorem 3.1, 1-2. Clearly M =N + B and N N B < S(B). Thus B
is an S-generalized supplement of N which is a direct summand of M.

Let M be an R- module. Recall that M is called n-projective (or co-continuous) if for every
two submodules U, V of M with U + V = M there exists f € End(M) with Im (f) < U and
Im (1- ) <V, see [18].

Proposition3.10. Let S be a hereditary property and a module M be a m-projective module.
Then M is s.p - semisimple if and only if M is S-GS module.

Proof. =) It is clear by Proposition 3.4.

<) Let N be a submodule of M. Since M is S-GS module, then there exists a submodule K of
M such that M = N + K and N N K < S(K). Since M is n- projective, then there exists an
idempotent e € End (M) such that Im (¢) < N and Im (1 — e) < K. But by the same proof of
Proposition 3.3 we have N(1-e) =N N (1 —e)M <N N K < S(K) and S is hereditary property,
therefore N(1- e) has S. Thus by Proposition 3.3 M is s.p - semisimple.

Conclusion

In this work, the concept of s.p-semisimple module is introduced and studied. We also
conclude the following:
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1. Every semisimple module is s.p — semisimple. However, the converse is not true. Let S =
Second singularity. Consider module Z, as Z- module. Since Z, is singular, then every
submodules of Z, is singular, by [1]. Therefore, Zy(N) = Z(N) = N, Vv N < Z,. let K =0,
hence Z2(N/0) = Z;(N) =Z(N)=N=N/0.So N/OhasS, V N<Z, Thus Z;is s.p -
semisimple. Clearly, that Z, is not semisimple.

2. Let M = @i e M; be a duo module. Then M is s.p - semisimple modules if and only if M; is
S.p - semisimple module Vi € I.

3. Let S be a hereditary property. If M; and M, are s.p - semisimple modules such that M; and
M are relative projective. Then M = M; @ M is s.p - semisimple.

4. Every s.p - semisimple module M is S-GS supplemented module.

5. Let S be a hereditary property and a module M be a m-projective module. Then M is
s.p - semisimple if and only if M is S-GS module.
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