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Abstract  

    In this paper, we introduce the bi-normality set, denoted by 𝒩(𝐴,𝐵), which is an 

extension of the normality set, denoted by 𝒩𝐴 for any operators 𝐴, 𝐵 in the Banach 

algebra 𝔅(ℋ). Furthermore, we show some interesting properties and remarkable 

results. Finally, we prove that it is not invariant via some transpose linear operators. 

 

Keywords: Bi-normality set, Unitary operator, Quasi-similar operator, Similar 

operator, Aluthge transformation. 

 
 حول توسيع المجموعة القياسية الثناية للمؤثرات الخطية 

 
 أنس عباس حجاب1*, ايلاف صباح عبدالواحد2

 1قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة تكريت, صلاح الدين, العراق 
 2قسم الرياضيات, كلية التربية للبنات, جامعة تكريت, صلاح الدين, العراق 

 
  الخلاصة 

  القياسية    وهي مفهوم موسع للمجموعة 𝒩(𝐴,𝐵)في هذا البحث, سنقدم المجموعة القياسية الثنائية من النمط       
,𝐴حيث كل من    𝒩𝐴من النمط   𝐵    مؤثران في فضاء باناخ الجبري𝔅(ℋ)  أكثر تحديداً, سوف نعطي بعض .

عة القياسية الثنائية لاتتغير مع بعض  الخواص و النتائج الجوهرية للمجموعة. أضافة لذلك, سنبرهن أن المجمو 
 مؤثرات التحويل الخطي.

 

1. Introduction 

    Let 𝔅(ℋ) be the algebra of all bounded linear operators on Hilbert space ℋ. We studied the 

normality set of linear operators which is denoted by 𝒩𝐴 = {𝑇 ∈ 𝔅(ℋ): 𝐴𝑇∗ = 𝑇∗𝐴}, which 

motivates this work. The normality set has been done by Shaakir, L. K. et al. in [1].  

 

      Now, we extend and improve the concept of the normality set to the bi-normality set which 

is defined by. 𝒩(𝐴,𝐵) = {𝑇 ∈ 𝔅(ℋ): 𝐴𝑇∗ = 𝑇∗𝐵} ≠ ∅. This definition has many properties, so 

we will focus on some of them for some transformation linear operators. In 1950 Fuglede B. 
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proved that if 𝐻 is normal such that 𝐻𝐴 = 𝐻𝐴 for every bounded operator, then 𝐴 commutes 

via the adjoint of operator 𝐻 [2]. Putnam C. R. 1951 extends Fuglede’s theorem [3]. Shihab, 

M. K. 2017 proved that extension of the Fuglede-Putnam theorem for two operators [4]. For 

more details see [5, 6, 7, 8, 9]. 

 

      In the current study, the concept of bi-normality set of 𝐴, 𝐵 ∈ 𝔅(ℋ) is given and studied. 

We also prove many properties, specifically product operators among them like 𝒩̃(𝐴,𝐵). 

Furthermore, it is not invariant for transpose linear operators and has a nontrivial-invariant 

subspace. Finally, the current work highlights some properties and basic concepts, as well as 

some results and theorems on the bi-normality set. 

 

      The paper’s organization is as follows. Section 2 contains some preliminary properties, 

definitions and concepts which will be necessary to prove our main results. In section 3, we 

present some results on the possible connection by strong conditions between the normal 

operator, normality set and quasi-normality sets by using Fuglede-Putnam theorem their 

consequences in the form of many results. Section 4 exhibits several of relationships among the 

normality, bi-normality sets and many linear transformations. 

 

2. Preliminaries 

       The aim of this section is to give and introduce some basic properties and concepts that are 

needed throughout this work. 

 

Definition 2.1 [6, 7]: Let 𝑇 ∈ 𝔅(ℋ). The adjoint of 𝑇 is 𝑇∗, if 𝑇∗ = 𝑇, 𝑇𝑇∗ = 𝑇∗𝑇, 𝑇𝑇∗ ≥ 𝑇∗𝑇  

and 𝑇𝑇∗ = 𝑇∗𝑇 = 𝐼, then 𝑇 is called self-adjoint, normal,  hyponormal and unitary operator , 

respectively, where 𝐼 the identity operator. 

 

Definition 2.2 [10]: For any 𝐴, 𝐵 ∈ 𝔅(ℋ), the operator 𝐴 is said to be similar to 𝐵, if there 

exists an invertible operator 𝑋 ∈ 𝔅(ℋ), yields  𝐴X = X𝐵, denoted by 𝐴 ≈ 𝐵. 

 

Definition 2.3 [10]: Let ℋ1, ℋ2 be two Hilbert spaces, and  𝐴 ∈ 𝔅(ℋ1), 𝐵 ∈ 𝔅(ℋ2), the 

operator 𝐴 is said to be quasi-similar to 𝐵, if there exists injective via dense range 𝑇1: ℋ1 ⟶
ℋ2 and 𝑇2: ℋ2 ⟶ ℋ1, bounded operators such that. 𝑇1𝐴 = 𝐵𝑇1 and 𝐴𝑇2 = 𝑇2𝐵, denoted by 

𝐴 ≃ 𝐵. 

 

Definition 2.4 [10]: If there exists a unitary operator 𝑈 that verifies 𝑈𝐴 = 𝐵𝑈; that means  𝐴 =
𝑈∗𝐵𝑈 or 𝐵 = 𝑈𝐴𝑈∗. Then it is said to be a unitarily equivalent as denoted by 𝐴 ≅ 𝐵. 

 

Definition 2.5 [11, 12]: Let 𝐴 = 𝑈|𝐴| be the polar decomposition of 𝐴. Aluthge transformation 

of 𝐴 is defined as follows: △ (𝐴) = 𝐴̃ = |𝐴|
1

2𝑈|𝐴|
1

2 and its adjoint is (𝐴̃)
∗

= |𝐴|
1

2𝑈∗|𝐴|
1

2. 

Moreover, an operator 𝐴 ∈ 𝔅(ℋ), such that 𝐴∗ = 𝑈∗|𝐴∗| be the polar decomposition of 𝐴∗. 

Then ∗ −Aluthge transformation is defined as 𝐴̃(∗) = (𝐴∗̃)
∗

= |𝐴∗|
1

2𝑈|𝐴∗|
1

2. 

More generally, for any real number 𝜆 ∈ [0, 1], the 𝜆-Aluthge transformation is defined as 

△𝜆 (𝐴) = |𝐴|𝜆𝑈|𝐴|1−𝜆. 

 

Theorem 2.6 [2]: (Fuglede’s Theorem) For any bounded linear operator 𝐴, let 𝐻 be a normal 

operator on ℋ  if 𝐴𝐻 =  𝐻𝐴, then 𝐴𝐻∗  =  𝐻∗𝐴. 

 

Theorem 2.7 [3]: (Fuglede-Putnam Theorem) The operators 𝐻, 𝐾 are normal operators on ℋ 

if 𝐴𝐻 =  𝐾𝐴, then 𝐴𝐻∗  =  𝐾∗𝐴  for each bounded linear operator 𝐴. 
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Definition 2.8 [1]: For each operator 𝐴 ∈ 𝔅(ℋ), the normality set of 𝐴 is defined by 𝒩𝐴 =
{𝑇 ∈ 𝔅(ℋ): 𝐴𝑇∗ = 𝑇∗𝐴}. It is clear that it is non-empty set, since 𝑂, 𝐼 ∈ 𝒩𝐴 and 𝒩𝛼𝐼 = 𝔅(ℋ) 

also 𝒩𝑂 = 𝔅(ℋ) for every 𝛼 ∈ ℂ, where 𝑂, 𝐼 are the zero,  identity operator on ℋ, respectively. 

 

Theorem 2.9 [6]: If 𝐴 and  𝐵 are two operators on ℋ such that  𝜎(𝐴) ∩ 𝜎(𝐵) = ∅. Then Γ = 0 

is the only solution to the operator equation 𝐴Γ − Γ𝐵 = 0, where 𝜎(𝐴) is the spectrum of the 

operator 𝐴. 

Notice that, since Γ = 0.  We take the adjoint to get Γ∗ = 0 as the only solution to the operator 

equation  𝐴Γ∗ − Γ∗𝐵 = 0. 

 

3. Main Results: 

Definition 3.1: If 𝐴, 𝐵 ∈ 𝔅(ℋ), we define the normality set of two operators (𝐴, 𝐵) as 

follows𝒩(𝐴,𝐵) = {𝑇 ∈ 𝔅(ℋ): 𝐴𝑇∗ = 𝑇∗𝐵}. It is also said to be bi-normality set. It is clear that 

the bi-normality set is nonempty set, since 𝑂 ∈ 𝒩(𝐴,𝐵) and 𝒩(𝑂,𝑂) = 𝔅(ℋ) also, 𝒩(𝛼𝐼,𝛽𝐼) =

𝔅(ℋ) for every 𝛼, 𝛽 ∈ ℂ. 

The next proposition shows that 𝒩(𝐴,𝐵) is  a closed and linear subspace in 𝔅(ℋ). 

 

Proposition 3.2: If 𝐴, 𝐵 ∈ 𝔅(ℋ), then 𝒩(𝐴,𝐵) is a closed and linear subspace on 𝔅(ℋ). 

Proof: Assume that Χ, Υ ∈ 𝒩(𝐴,𝐵) and 𝒶1, 𝒶2 ∈ ℂ. We get 𝐴𝛸∗ = 𝛸∗𝐵 via 𝐴𝛶∗ = 𝛶∗𝐵. 

𝐴(𝑎1𝛸 + 𝑎2𝛶)∗ = 𝑎1̅̅ ̅𝐴𝛸∗ + 𝑎2̅̅ ̅𝐴𝛶∗ = 𝑎1̅̅ ̅𝛸∗𝐵 + 𝑎2̅̅ ̅ 𝛶∗𝐵 = (𝑎1𝛸 + 𝑎2𝛶)∗𝐵. 

Thus, 𝑎1𝛸 + 𝑎2𝛶 ∈ 𝒩(𝐴,𝐵).  

Take {𝑇𝑛} ∈ 𝒩(𝐴,𝐵) is convergent to 𝑇. 𝐴𝑇𝑛
∗ = 𝑇𝑛

∗𝐵 for each 𝑛 ∈ 𝑍+. Hence, {𝑇𝑛
∗} → 𝑇∗, 

{𝐴𝑇𝑛
∗} → 𝐴𝑇∗, and {𝑇𝑛

∗𝐵} → 𝑇∗𝐵. Thus, 𝐴𝑇∗ = 𝑇∗𝐵, this yields 𝑇 ∈ 𝒩(𝐴,𝐵). Therefore, 𝒩(𝐴,𝐵) 

is a linear subspace in 𝔅(ℋ). □ 

 

Remark 3.3:  

1- We denote that 𝒩̃(𝐴,𝐵) = 𝒩(𝐴,𝐵) ∩ 𝒩(𝐵,𝐴) = {𝑇 ∈ 𝔅(ℋ): 𝐴𝑇∗ = 𝑇∗𝐵 and 𝐵𝑇∗ = 𝑇∗𝐴}, 

where 𝐴, 𝐵 ∈ 𝔅(ℋ). Moreover, we always notice that  𝒩(𝐴,𝐵) ≠ 𝒩(𝐵,𝐴), see example 2.  

2- If 𝒩(𝐴,𝐵) ≠ {0} for any two operators 𝐴 and 𝐵 ∈ 𝔅(ℋ), then 𝜎(𝐴) ∩ 𝜎(𝐵) ≠ ∅ , by 

Theorem 2.9. 

3- 𝐼 ∈ 𝒩(𝐴,𝐵) if and only if 𝐴 = 𝐵. This means 𝒩(𝐴,𝐵) = 𝒩𝐴. As a result, we attempt to take 𝐴  

is not equal 𝐵  throughout this paper. 

In the following proposition, we prove the relationship of a composite of two sets with another 

set that means, if 𝑇 ∈ 𝒩(𝐵,𝐶)𝒩(𝐴,𝐵), we have that 𝑇 = 𝑆𝐾, where 𝑆 ∈ 𝒩(𝐵,𝐶) and 𝐾 ∈ 𝒩(𝐴,𝐵). 

 

Proposition 3.4: If 𝐴, 𝐵, 𝐶 ∈ 𝔅(ℋ), then 

1- 𝒩(𝐴,0) = 𝒩(0,𝐵) = {0} for every injective operator in 𝔅(ℋ). 

2- 𝒩(𝐴+𝛽𝐼,𝐵+𝛽𝐼) = 𝒩(𝐴,𝐵)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽 ∈ ℂ. 

3- 𝒩(𝐵,𝐶)𝒩(𝐴,𝐵) ⊆ 𝒩(𝐴,𝐶). In particular, 𝒩(𝐴,𝐵)𝒩(𝐵,𝐴) ⊆ 𝒩𝐴. 

 

Proof: The proof 1 and 2 are obtained by Definition 3.1. Now, it is enough to prove 3 by 

𝒩(𝐵,𝐶)𝒩(𝐴,𝐵) = {𝑇1𝑇2: 𝑇1  ∈ 𝒩(𝐵,𝐶) and 𝑇2 ∈ 𝒩(𝐴,𝐵)}, such 𝑇1𝑇2 ∈ 𝒩(𝐴,𝐶), there 𝐵𝑇1
∗ = 𝑇1

∗𝐶 

and 𝐴𝑇2
∗ = 𝑇2

∗𝐵. Thus, 𝐴𝑇2
∗𝑇1

∗ = 𝑇2
∗𝐵𝑇1

∗ = 𝑇2
∗𝑇1

∗𝐶. Therefore, 𝐴(𝑇1𝑇2)∗ = (𝑇1𝑇2)∗𝐶. In 

particular, if 𝐴 = 𝐶. □ 

 

Theorem 3.5: If 𝐴, 𝐵 ∈ 𝔅(ℋ), then 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴+𝐵. 
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Proof: By [7], we have. 𝒩𝐴⋂𝒩𝐵 ⊆ 𝒩𝐴+𝐵. So, it is enough to prove that 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆

𝒩𝐴⋂𝒩𝐵. Let 𝑇, 𝑆 ∈ 𝒩̃(𝐴,𝐵), so 𝐴𝑇∗ = 𝑇∗𝐵 via 𝐵𝑇∗ = 𝑇∗𝐴, also, we have 𝐴𝑆∗ = 𝑆∗𝐵 

and 𝐵𝑆∗ = 𝑆∗𝐴. Hence, 𝐴(𝑇𝑆)∗ = 𝐴𝑆∗𝑇∗ = 𝑆∗𝐵𝑇∗ = (𝑇𝑆)∗𝐴. Therefore, 𝑇𝑆 ∈ 𝑁𝐴. 

That means 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴. By the same way, we can see that 𝐵(𝑇𝑆)∗ = 𝐵𝑆∗𝑇∗ =

𝑆∗𝐴𝑇∗ = (𝑇𝑆)∗𝐵. Hence, 𝑇𝑆 ∈ 𝒩𝐵. That means  𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐵. 

Therefore, we have, 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴⋂𝒩𝐵. □ 

 

Corollary 3.6: If 𝐴, 𝐵 ∈ 𝒩̃(𝐴,𝐵), then, 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴 + 𝒩𝐵. 

 

Proof: Suppose that 𝐴, 𝐵 ∈ 𝒩̃(𝐴,𝐵). So, we have 𝐴𝐴∗ = 𝐴∗𝐵;  𝐵𝐴∗ = 𝐴∗𝐴, and 𝐴𝐵∗ =

𝐵∗𝐵;  𝐵𝐵∗ = 𝐵∗𝐴, respectively. First, we have to prove that 𝐴𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐵, that is; 𝐴𝑌 ∈ 𝒩𝐵, 

where 𝑌 ∈ 𝒩̃(𝐴,𝐵). Hence, 𝐴𝑌∗ = 𝑌∗𝐵 and 𝐵𝑌∗ = 𝑌∗𝐴. Since 𝐴𝑌∗ = 𝑌∗𝐵. So 𝐴∗𝐴𝑌∗ =

𝐴∗𝑌∗𝐵. Hence, 𝐵𝐴∗𝑌∗ = 𝐴∗𝑌∗𝐵. So 𝐵(𝑌𝐴)∗ = (𝑌𝐴)∗𝐵. That means, 𝑌𝐴 ∈ 𝒩𝐵. Also, since, 

𝐵𝑌∗ = 𝑌∗𝐴. So 𝐵𝑌∗𝐴∗ = 𝑌∗𝐴𝐴∗. Hence, 𝐵𝑌∗𝐴∗ = 𝑌∗𝐴∗𝐵. So 𝐵(𝐴𝑌)∗ = (𝐴𝑌)∗𝐵. That means  

𝐴𝑌 ∈ 𝒩𝐵. Then, 𝐴𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐵, and 𝒩̃(𝐴,𝐵)𝐴 ⊆ 𝒩𝐵. 

In the same way, we can prove that, 𝐵𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴, and 𝒩̃(𝐴,𝐵)𝐵 ⊆ 𝒩𝐴. 

Now, it is clear that 𝐴 + 𝐵 ∈ 𝒩̃(𝐴,𝐵), by Proposition 3.2, so 𝐴𝒩̃(𝐴,𝐵) +  𝐵𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐵 + 𝒩𝐴. 

Hence, (𝐴 + 𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴 + 𝒩𝐵. Then 𝒩̃(𝐴,𝐵)𝒩̃(𝐴,𝐵) ⊆ 𝒩𝐴 + 𝒩𝐵. □ 

The next example shows that Corollary 3.6 is not true if we replace 𝒩̃(𝐴,𝐵) with the set 𝒩(𝐴,𝐵). 

 

Example 1: We show that 𝑇, 𝑇∗ ∉ 𝒩(𝑇,𝑇∗). Let (𝑒𝑛)𝑛=1
∞  be an orthonormal basis of a separable 

Hilbert space ℋ and let (𝑎𝑛)𝑛=1
∞  be a bounded sequence of scalars. Define a bounded linear 

map 𝑇: ℋ → ℋ by 𝑇𝑒𝑖 = 𝑎𝑖𝑒𝑖+1, foe each 𝑖 ∈ ℕ or , 

𝑇𝑥 = ∑ 〈𝑥, 𝑒𝑛〉𝑎𝑛𝑒𝑛+1
∞
𝑛=1 , and 𝑇∗𝑥 = ∑ 〈𝑥, 𝑒𝑛〉𝑎𝑛̅̅ ̅𝑒𝑛+1

∞
𝑛=1 . 

Now, we show that 𝑇 is hyponormal if and only if the sequence (|𝑎𝑛|)𝑛=1
∞  monotonically 

increasing. 

On the other hand, 𝑇 is normal if and only if 𝑎𝑛 = 0, for all 𝑛 ∈ ℕ, that is; 𝑇 = 0. We know 

that every normal is hyponormal operator, however, the converse is not true. Therefore, 𝑇, 𝑇∗ ∉
𝒩(𝑇,𝑇∗). 

 

Theorem 3.7: If 𝑇𝑖 ∈ 𝒩(𝐴,𝐵) for all 𝑖 = 1, … , 𝑛, then  

1- 𝑇1 ⊕ 𝑇2 ⊕ … ⊕ 𝑇𝑛 ∈ 𝒩(𝐴,𝐵). 

2- 𝑇1 ⊗ 𝑇2 ⊗ … ⊗ 𝑇𝑛 ∈ 𝒩(𝐴,𝐵). 

 

Proof: (1) Since 𝑇𝑖 ∈ 𝒩(𝐴,𝐵), ∀𝑖 = 1, 𝑛̅̅ ̅̅ ̅, and 𝐴, 𝐵 ∈ 𝔅(ℋ). So that, 𝐴𝑇𝑖
∗ = 𝑇𝑖

∗𝐵. Hence, 

𝐴(𝑇1 ⊕ 𝑇2 ⊕ … ⊕ 𝑇𝑛)∗ = (𝐴𝑇1
∗ ⊕ 𝐴𝑇2

∗ ⊕ … ⊕ 𝐴𝑇𝑛
∗) 

= (𝑇1
∗𝐵 ⊕ 𝑇2

∗𝐵 ⊕ … ⊕ 𝑇𝑛
∗𝐵) = (𝑇1 ⊕ 𝑇2 ⊕ … ⊕ 𝑇𝑛)∗𝐵. 

(2) Let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℋ. Then 𝐴(𝑇1 ⊗ 𝑇2 ⊗ … ⊗ 𝑇𝑛)∗(𝑥1 ⊗ 𝑥2 ⊗ … ⊗ 𝑥𝑛) 

= (𝐴𝑇1
∗ ⊗ 𝐴𝑇2

∗ ⊗ … ⊗ 𝐴𝑇𝑛
∗)(𝑥1 ⊗ 𝑥2 ⊗ … ⊗ 𝑥𝑛)  

= (𝐴𝑇1
∗(𝑥1) ⊗ 𝐴𝑇2

∗(𝑥2) ⊗ … ⊗ 𝐴𝑇𝑛
∗(𝑥𝑛)) = (𝑇1

∗𝐵(𝑥1) ⊗ 𝑇2
∗𝐵(𝑥2) ⊗ … ⊗ 𝑇𝑛

∗𝐵(𝑥𝑛))  

= (𝑇1 ⊗ 𝑇2 ⊗ … ⊗ 𝑇𝑛)∗𝐵(𝑥1 ⊗ 𝑥2 ⊗ … ⊗ 𝑥𝑛). □ 

 

Proposition 3.8: If 𝐴, 𝐵 ∈ 𝔅(ℋ), then 

1- 𝒩∗
(𝐴,𝐵) = 𝒩(𝐵∗,𝐴∗). However,  𝒩̃∗

(𝐴,𝐵) = 𝒩̃(𝐴∗,𝐵∗).  

2- If 𝐴 and 𝐵 are normal operator, then 𝒩(𝐴,𝐵) = 𝒩∗
(𝐵,𝐴), where 𝒩∗

(𝐵,𝐴) = {𝑇∗: 𝑇 ∈ 𝒩(𝐵,𝐴)}.  
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3- If 𝐴, 𝐵 are invertible operators, then 𝒩(𝐴,𝐵) = 𝒩(𝐴−1,𝐵−1),  via 𝒩̃(𝐴,𝐵) = 𝒩̃(𝐴−1,𝐵−1). 

 

Proof: (1) Consider that 𝑇 ∈ 𝒩(𝐵∗,𝐴∗), were 𝐵∗𝑇∗ = 𝑇∗𝐴∗. Hence, 𝑇𝐵 = 𝐴𝑇 or 𝐴𝑇 = 𝑇𝐵. Then, 

𝑇∗ ∈ 𝒩(𝐴,𝐵); that is; 𝑇 ∈ 𝒩∗
(𝐴,𝐵). By the same way, we can prove the converse.  Moreover, if 

𝑇 ∈ 𝒩̃(𝐴∗,𝐵∗). Therefore, 𝐴∗𝑇∗ = 𝑇∗𝐵∗ and 𝐵∗𝑇∗ = 𝑇∗𝐴∗. Hence,  𝐵𝑇 = 𝑇𝐴 and 𝐴𝑇 = 𝑇𝐵. 

Then, 𝑇∗ ∈ 𝒩̃(𝐴,𝐵); that is; 𝑇 ∈ 𝒩̃∗
(𝐴,𝐵). Also, in the same way we can prove the converse. 

(2) Assume that 𝑇 ∈ 𝒩(𝐴,𝐵), were 𝐴𝑇∗ = 𝑇∗𝐵, via adjoint. We see that 𝑇𝐴∗ = 𝐵∗𝑇. By  

Theorem 2.7. Therefore, 𝑇𝐴 = 𝐵𝑇, (i.e. 𝐵𝑇 = 𝑇𝐴). Then, 𝑇∗ ∈ 𝒩(𝐵,𝐴); that is, 𝑇 ∈ 𝒩∗
(𝐵,𝐴). 

The converse is similar. 

(3) Let 𝐴 and 𝐵 have an invertible, and 𝑋 ∈ 𝒩(𝐴,𝐵). So 𝐴𝑋∗ = 𝑋∗𝐵. Hence 𝑋∗𝐵−1 = 𝐴−1𝑋∗ or 

𝐴−1𝑋∗ = 𝑋∗𝐵−1. Then 𝑋 ∈ 𝒩(𝐴−1,𝐵−1). The converse is similar. 

By same way to prove, 𝒩̃(𝐴,𝐵) = 𝒩̃(𝐴−1,𝐵−1). □ 

 

Lemma 3.9: If the operators𝐴, 𝐵 ∈ 𝔅(ℋ). Then 

1- For every invertible operator 𝑇 ∈ 𝒩(𝐴,𝐵) if and only if 𝑇−1 ∈ 𝒩(𝐵,𝐴). Moreover,  𝑇 ∈ 𝒩̃(𝐴,𝐵) 

if and only if, 𝑇−1 ∈ 𝒩̃(𝐴,𝐵). 

2- Let 𝐴 and 𝐵 be normal operators. Then 𝑇 ∈ 𝒩̃(𝐴,𝐵) if and only if 𝑇∗ ∈ 𝒩̃(𝐴,𝐵). 

 

Theorem 3.10: If  𝐴, 𝐵, 𝐶 and  𝐷 ∈ 𝔅(ℋ). Then 

1- 𝒩(𝐴,𝐵)⋂𝒩(𝐶,𝐷) ⊆ 𝒩(𝐴𝐶,𝐵𝐷). 

2- 𝒩(𝐴,𝐵) ⊆ 𝒩(𝐴𝑛,𝐵𝑛), ∀ 𝑛 ∈ ℤ+. 

 

Proof: (1) Suppose that 𝑋 ∈ 𝒩(𝐴,𝐵)⋂𝒩(𝐶,𝐷). Therefore, 𝐴𝑋∗ = 𝑋∗𝐵 and 𝐶𝑋∗ = 𝑋∗𝐷. Hence, 

𝐴𝑋∗𝐷 = 𝑋∗𝐵𝐷. So 𝐴𝐶𝑋∗ = 𝑋∗𝐵𝐷, that is, 𝑋 ∈ 𝒩(𝐴𝐶,𝐵𝐷).  

(2) Assume that 𝑌 ∈ 𝒩(𝐴,𝐵). Therefore, 𝐴𝑌∗ = 𝑌∗𝐵. Hence, 𝐴2𝑌∗ = 𝐴𝑌∗𝐵 = 𝑌∗𝐵2. by the 

mathematical induction, it is easy to prove that  𝐴𝑛𝑌∗ = 𝑌∗𝐵𝑛 for each positive integer number 

𝑛. Then, 𝑌 ∈ 𝒩(𝐴𝑛,𝐵𝑛). □ 

 

Corollary 3.11: If he operators 𝐴, 𝐵, 𝐶 and  𝐷 ∈ 𝔅(ℋ). Then, 𝒩(𝐴,𝐵)⋂𝒩(𝐶,𝐷) ⊆ 𝒩(𝐴+𝐶,𝐵+𝐷). 

In particular, 𝒩̃(𝐴,𝐵) ⊆ 𝒩(𝐴+𝐵). 

Notice that, this property does not hold  in general. We see that in the following example. 

 

Example 2: Let 𝐴 = [
1 0
0 𝑖

], 𝑋 = [
1 𝑖

−𝑖 2
] and 𝐵 = [

2 − 𝑖 2 + 2𝑖
1 + 𝑖 −1 + 2𝑖

]. 

First, since 𝑋 = 𝑋∗ is self-adjoint, and we have, 𝐴𝑋∗ = [
1 𝑖
1 2𝑖

] = 𝑋∗𝐵. But, we see that 

(𝐴 + 𝐵) = [
3 − 𝑖 2 + 2𝑖
1 + 𝑖 −1 + 3𝑖

]. So (𝐴 + 𝐵)𝑋∗ = [
5 − 3𝑖 5 + 7𝑖
4 + 2𝑖 −3 + 7𝑖

] and 

𝑋∗(𝐴 + 𝐵) = [
2 −1 + 𝑖

3 − 𝑖 3𝑖
]. Hence, (𝐴 + 𝐵)𝑋∗ ≠ 𝑋∗(𝐴 + 𝐵). It implies that 𝑋 ∈ 𝒩(𝐴,𝐵) 

and 𝑋 ∉ 𝒩(𝐴+𝐵) This means 𝒩(𝐴,𝐵) ⊈ 𝒩(𝐴+𝐵). 

Also, 𝐵𝑋∗ = [
2 5 + 6𝑖

3 + 2𝑖 −3 + 5𝑖
] ≠ [

1 −1
−𝑖 2𝑖

] = 𝑋∗𝐴. We have 𝑋 ∉ 𝒩̃(𝐴,𝐵). That means, 

𝒩(𝐴,𝐵) ≠ 𝒩̃(𝐴,𝐵). 

 

Corollary 3.12: The  𝐴 is a nilpotent operator if and only if 𝐵  is  nilpotent for each injective 

operator in 𝒩(𝐴,𝐵). 
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Proof: It is clear by Theorem 3.10, and let 𝑇 is injective in 𝒩(𝐴,𝐵). So 0 = 𝐴𝑛𝑇∗ = 𝑇∗𝐵𝑛. 

Hence, 𝑇∗𝐵𝑛 = 0. Since 𝑇 is injective. Therefore, 𝐵 is nilpotent for all positive integer number 

𝑛. □ 

 

Lemma 3.13: If 𝑇 ∈ 𝒩(𝐴,𝐵) and 𝑇 ∈ 𝒩𝐴 or 𝑇 ∈ 𝒩𝐵, then 𝑇𝑛 ∈ 𝒩(𝐴,𝐵) for each positive integer 

number 𝑛 ≥ 1. 

 

Remark 3.14: If 𝑇 ∈ 𝒩̃(𝐴,𝐵), then 𝐴𝑇∗ = 𝑇∗𝐵 and 𝐵𝑇∗ = 𝑇∗𝐴. Hence, 𝐴(𝑇∗)2 = (𝑇∗)2𝐴 and 

𝐵(𝑇∗)2 = (𝑇∗)2𝐵. Therefore, 𝒩̃(𝐴,𝐵)
2 ⊆ 𝒩𝐴 ∩ 𝒩𝐵, where  𝒩̃(𝐴,𝐵)

2 = {𝑇2: 𝑇 ∈ 𝒩̃(𝐴,𝐵)}. 

 

Theorem 3.15: Let 𝐴, 𝐵 ∈ 𝔅(ℋ). Then for each positive integer number 𝑛 ≥ 1 

(𝒩𝐴 ∩ 𝒩(𝐴,𝐵))
𝑛

⊆ 𝒩(𝐴𝑛,𝐵𝑛). 

 

Proof: Since 𝐴, 𝐵 ∈ 𝔅(ℋ). Therefore, by Lemma 3.13, we have  (𝒩𝐴 ∩ 𝒩(𝐴,𝐵))
𝑛

⊆ 𝒩(𝐴,𝐵), 

and by Theorem 3.10, we have  𝒩(𝐴,𝐵) ⊆ 𝒩(𝐴𝑛,𝐵𝑛) for all positive integer number 𝑛. Therefore, 

the result is got.  

Moreover, it can be proven in the same way that  (𝒩𝐵 ∩ 𝒩(𝐴,𝐵))
𝑛

⊆ 𝒩(𝐴𝑛,𝐵𝑛), ∀𝑛 ≥ 1. □ 

 

Corollary 3.16: Let 𝐴, 𝐵 ∈ 𝔅(ℋ). Then for each positive integer number 𝑛 ≥ 1 

(𝒩̃(𝐴,𝐵)
2 ∩ 𝒩̃(𝐴,𝐵))

𝑛
⊆ 𝒩̃(𝐴𝑛,𝐵𝑛). 

 

Proof: Obviously, by Remark 3.14, which that 𝒩̃(𝐴,𝐵)
2 ⊆ 𝒩𝐴 ∩ 𝒩𝐵 and by Theorem 3.15. It’s 

not hard to verify the result. □ 

 

Lemma 3.17: If 𝐴, 𝐵 ∈ 𝔅(ℋ), then 𝒩𝐵𝒩(𝐴,𝐵) = 𝒩(𝐴,𝐵)𝒩𝐴. 

 

Proof: Assume that 𝑇1 ∈ 𝒩𝐴 and 𝑇2 ∈ 𝒩(𝐴,𝐵), respectively. Therefore, 𝐴𝑇1
∗ = 𝑇1

∗𝐴 and 𝐴𝑇2
∗ =

𝑇2
∗𝐵. Hence, 𝐴𝑇1

∗𝑇2
∗ = 𝑇1

∗𝐴𝑇2
∗ implies that 𝐴(𝑇2𝑇1)∗ = (𝑇2𝑇1)∗𝐵, also 𝑇1

∗𝐴𝑇2
∗ = 𝑇1

∗𝑇2
∗𝐵 implies 

that 𝒩(𝐴,𝐵)𝒩𝐴 ⊆ 𝒩(𝐴,𝐵). Since 𝐼𝑇 = 𝑇 ∈ 𝒩(𝐴,𝐵), 𝐴𝐼∗ = 𝐼∗𝐴 and 𝐴𝑇∗ = 𝑇∗𝐵. The converse 

holds. Thus, 𝒩(𝐴,𝐵) = 𝒩(𝐴,𝐵)𝒩𝐴. By same way, we can prove that 𝒩(𝐴,𝐵) = 𝒩𝐵𝒩(𝐴,𝐵). □ 

In the following proposition, we will show a relationship between the normality set and the 

direct sum decomposition. 

 

Proposition 3.18: Consider a direct sum decomposition ℋ = ℋ1 ⊕ ℋ2, if 𝐴 ∈ 𝔅(ℋ1) and 

𝐵 ∈ 𝔅(ℋ2), then 𝒩𝐴 ∪ 𝒩𝐵 ⊂ 𝒩𝐴⊕𝐵. 

 

Proof: Clearly, it suffices to prove that 𝒩𝐴 ⊆ 𝒩𝐴⊕𝐵. Let ∈ 𝑁𝐴 , it implies that 𝐴𝑇∗ = 𝑇∗𝐴. 

Hence, 𝑇 = 𝑇 ⊕ 0 ∈ 𝔅(ℋ). So (𝐴 ⊕ 𝐵)(𝑇 ⊕ 0)∗ = (𝑇 ⊕ 0)∗(𝐴 ⊕ 𝐵) it holds. Therefore, 

we have the result. □ 

However, we can see that whenever 0 ≠ 𝐴 ≠ 𝐵 the 𝒩𝐴 ∪ 𝒩𝐵 = 𝒩𝐴⊕𝐵  does not hold.  

 

4. Equivalent relationships with Bi-Normality set 

In this section, we deal with the following relational structures. 

Theorem 4.1: If 𝐴 ≈ 𝐵, then 𝒩(𝐴,𝐵)=𝒩̃(𝐴,𝐵). 
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Proof: Suppose that  𝐴 is similar to𝐵. Then there exists 𝑋 is an invertible operator such that 

𝐴 = 𝑋𝐵𝑋−1. First, we have to prove that 𝒩(𝐴,𝐵) = 𝒩𝐵𝑋∗ = 𝑋∗𝒩𝐴. Let 𝑇 ∈ 𝒩(𝐴,𝐵). Therefore, 

𝐴𝑇∗ = 𝑇∗𝐵. So (𝑋𝐵𝑋−1)𝑇∗ = 𝑇∗𝐵. Hence, 𝐵(𝑇𝑋∗−1)∗ = (𝑇𝑋∗−1)∗𝐵. Then 𝑇𝑋∗−1 ∈ 𝒩𝐵 or 

𝑇 ∈ 𝒩𝐵𝑋∗, that is, 𝒩(𝐴,𝐵) ⊆ 𝒩𝐵𝑋∗. By the same way, we can prove that 𝒩𝐵𝑋∗ ⊆ 𝒩(𝐴,𝐵). Then 

𝒩(𝐴,𝐵) = 𝒩𝐵𝑋∗ . Also, by [7, Theorem 12], we have 𝒩𝐵𝑋∗ = 𝑋∗𝒩𝐴. By the similar way , we 

can prove that 𝒩̃(𝐴,𝐵) = 𝒩𝐵𝑋∗ = 𝑋∗𝒩𝐴. Therefore, we  have the result. □ 

 

Theorem 4.2: If 𝐴 ≅ 𝐵, then 𝒩(𝐴,𝐵)=𝒩̃(𝐴,𝐵). 

 

Proof: Suppose that 𝐴 and 𝐵 are unitarily equivalent. Then there exists a unitary operator 𝑈 

such that 𝐴 = 𝑈∗𝐵𝑈. Let 𝑇 ∈ 𝒩(𝐴,𝐵), then 𝐴𝑇∗ = 𝑇∗𝐵. Hence, (𝑈∗𝐵𝑈)𝑇∗ = 𝑇∗𝐵. Thus, 

𝐵(𝑇𝑈∗)∗ = (𝑇𝑈∗)∗𝐵. Then 𝑇𝑈∗ ∈ 𝒩𝐵 or 𝑇 ∈ 𝒩𝐵𝑈, that is 𝒩(𝐴,𝐵) ⊆ 𝒩𝐵𝑈. By the same way, 

we can reverse the proof. Therefore, 𝒩(𝐴,𝐵) = 𝒩𝐵𝑈. Also, by [7, Theorem 13], we can see that 

𝒩(𝐴,𝐵) = 𝒩𝐵𝑈 = 𝑈𝒩𝐴. By the similar way, we can prove that  𝒩̃(𝐴,𝐵) = 𝒩𝐵𝑈 = 𝑈𝒩𝐴. Then 

we have the result. □ 

In the following theorem, we notice that, if the relation is quasi-similar, then the result does not 

necessarily equal.  
 

Theorem 4.3: If 𝐴 ≃ 𝐵, then  

1- 𝑇1
∗𝒩(𝐵,𝐴)𝑇1

∗ ⊆ 𝒩(𝐴,𝐵). 

2- 𝑇1
∗𝒩̃(𝐴,𝐵)𝑇1

∗ ∩ 𝑇2
∗𝒩̃(𝐴,𝐵)𝑇2

∗ ⊆ 𝒩̃(𝐴,𝐵). 

 

Proof: Assume 𝐴 is quasi-similar to 𝐵, if there exists  𝑇1 form ℋ1 to ℋ2 and 𝑇2 form ℋ2 to ℋ1 

are injective via dense range such that  𝑇1𝐴 = 𝐵𝑇1 and 𝐴𝑇2 = 𝑇2𝐵. 

(1) Assume that 𝑋 ∈ 𝒩(𝐴,𝐵), where 𝐴𝑋∗ = 𝑋∗𝐵. Hence, 𝑇1𝐴𝑋∗𝑇1 = 𝑇1𝑋∗𝐵𝑇1. Thus, 

𝐵𝑇1𝑋∗𝑇1 = 𝑇1𝑋∗𝑇1𝐴 or, 𝐵(𝑇1
∗𝑋𝑇1

∗)∗ = (𝑇1
∗𝑋𝑇1

∗)∗𝐴, that is; 𝑇1
∗𝑋𝑇1

∗ ∈ 𝒩(𝐴,𝐵) implies that 

𝑇1
∗𝒩(𝐵,𝐴)𝑇1

∗ ⊆ 𝒩(𝐴,𝐵). 

(2) Suppose that 𝑌 ∈ 𝒩̃(𝐴,𝐵), where 𝐴𝑌∗ = 𝑌∗𝐵 and 𝐵𝑌∗ = 𝑌∗𝐴. So, 𝐵𝑇1𝑌∗𝑇1 = 𝑇1𝑌∗𝑇1𝐴 and 

𝐴𝑇2𝑌∗𝑇2 = 𝑇2𝑌∗𝑇2𝐵. Hence, 𝐵(𝑇1
∗𝑌𝑇1

∗)∗ = (𝑇1
∗𝑌𝑇1

∗)∗𝐴 and 𝐴(𝑇2
∗𝑌𝑇2

∗)∗ = (𝑇2
∗𝑌𝑇2

∗)∗𝐵. 

Therefore, 𝑇1
∗𝒩̃(𝐴,𝐵)𝑇1

∗ ⊆ 𝒩(𝐵,𝐴), and 𝑇2
∗𝒩̃(𝐴,𝐵)𝑇2

∗ ⊆ 𝒩(𝐴,𝐵). By intersection, we have the 

result. □ 

 

Proposition 4.4: Let ℋ = ℋ1 ⊕ ℋ2 and 𝒜, ℬ ∈ 𝔅(ℋ) be operators of the form 

𝒜 = [
𝐴1 0
0 𝐴2

] and ℬ = [
𝐵1 0
0 𝐵2

]. If for all 𝑖 = 1, … , 4, 𝑗 = 1, 2. 𝑇𝑖 ∈ 𝒩(𝐴𝑗,𝐵𝑗), then 𝑇 ∈

𝒩(𝒜,ℬ), where 𝑇 = [
𝑇1 𝑇2

𝑇3 𝑇4
]. 

 

Proof: We have that 𝑇𝑖 ∈ 𝔅(ℋ𝑗) and 𝑇𝑖 ∈ 𝑁(𝐴𝑗,𝐵𝑗) for all 𝑖 = 1, … , 4, 𝑗 = 1, 2. 

𝒜𝑇∗ = [
𝐴1𝑇1

∗ 𝐴1𝑇3
∗

𝐴2𝑇2
∗ 𝐴2𝑇4

∗] = [
𝑇1

∗𝐵1 𝑇3
∗𝐵1

𝑇2
∗𝐵1 𝑇4

∗𝐵1
] = 𝑇∗ℬ. □ 

 

Theorem 4.5: Let 𝑆 = 𝑈|𝑆| be the polar decomposition of 𝒩(𝐴,𝐵) for an operator 𝑆, where 𝑈 is 

a unitary and 𝑆 is  a quasi-normal if and only if 𝑆̃ is in 𝒩(𝐴,𝐵). 

Proof: Suppose that 𝑆 ∈ 𝒩(𝐴,𝐵) and 𝑆 = 𝑈|𝑆| is the polar decomposition of 𝑆. Then, 𝐴𝑆∗ =

𝑆∗𝐵. 

⇔  𝐴(𝑈|𝑆|)∗ = (𝑈|𝑆|)∗𝐵, 
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⇔  𝐴|𝑆|
1

2𝑈∗|𝑆|
1

2 = |𝑆|
1

2𝑈∗|𝑆|
1

2𝐵, 

⇔  𝐴𝑆̃∗ = 𝑆̃∗𝐵. Therefore, 𝑆̃ ∈ 𝒩(𝐴,𝐵). □ 

 

Corollary 4.6: If 𝐴 is the Aluthge transformation of 𝐵, then 𝒩(𝐴,𝐵) = 𝒩𝐴 = 𝒩𝐵, where 𝐴 and 

𝐵 are quasi normal. 

 

Proof: Assume that 𝑋 ∈ 𝑁(𝐴,𝐵) and 𝐴 = |𝐵|
1

2𝑈|𝐵|
1

2. So 𝐴𝑋∗ = 𝑋∗𝐵. Thus, 

|𝐵|
1

2𝑈|𝐵|
1

2𝑋∗ = 𝑋∗𝐵. Since 𝐵 = 𝑈|𝐵| is the polar decomposition of 𝐵 and 𝐵 is quasi normal. 

Hence, 𝑈|𝐵|𝑋∗ = 𝑋∗𝐵. Then, 𝐵𝑋∗ = 𝑋∗𝐵. So 𝑋 ∈ 𝒩𝐵. The converse is the same way. 

Now, if 𝐴 = 𝑈|𝐴| is the polar decomposition of 𝐴, in the same way, we can get the result. □ 

 

Proposition 4.7: If 𝐴, 𝐵 be a normal operators, then, 𝐴𝒩̃(𝐴,𝐵) = 𝒩̃(𝐴,𝐵)𝐵 and 𝐵𝒩̃(𝐴,𝐵) =

𝒩̃(𝐴,𝐵)𝐴. 

 

Proof: Suppose that 𝑇 ∈ 𝒩̃(𝐴,𝐵) and 𝐴, 𝐵 are normal operators. So 𝐴𝑇∗ = 𝑇∗𝐵 via 𝐵𝑇∗ = 𝑇∗𝐴. 

We can see that 𝑇𝐴∗ = 𝐵∗𝑇 via 𝑇𝐵∗ = 𝐴∗𝑇. 

Since 𝐴, 𝐵 are normal operators and using Theorem 2.7. Therefore, 𝐴𝑇 = 𝑇𝐵 and 𝐵𝑇 = 𝑇𝐴. 

The result is proven. □ 

 

Proposition 4.8: If 𝐴, 𝐵 ∈ 𝔅(ℋ), and 𝐴 ∈ 𝒩𝐵, then 𝐴𝒩(𝐴,𝐵) ⊆ 𝒩(𝐴,𝐵). 

 

Proof: Let 𝐴𝑇 ∈ 𝒩(𝐴,𝐵), where 𝑇 ∈ 𝒩(𝐴,𝐵), so 𝐴𝑇∗ = 𝑇∗𝐵. Thus, 𝐴(𝐴𝑇)∗ = 𝐴𝑇∗𝐴∗ =

𝑇∗𝐵𝐴∗ = 𝑇∗𝐴∗𝐵 = (𝐴𝑇)∗𝐵. Then 𝐴𝒩(𝐴,𝐵) ⊆ 𝒩(𝐴,𝐵). It has a nontrivial invariant subspace, 

such that  𝐴 ≠ 𝛼𝐼, 𝛼 ∈ ℂ. So 𝒩(𝐴,𝐵) ≠ 𝔅(ℋ). □ 

We will leave the following as an open problem. 

 

Problem 1: If 𝐴 ∈ 𝔅(ℋ1) and 𝐵 ∈ 𝔅(ℋ2), is the formula 𝒩𝐴⊕𝐵 = 𝒩𝐴⨁𝒩𝐵 valid for every 

operator in ℋ = ℋ1 ⊕ ℋ2? 

 

5. Conclusion 

     The aim of this paper is to introduce the general concept of the normality set and to try to 

solve the problems of branching or splitting with some properties of the extended it, and 

showing that not invariant via some transpose linear operators, but has nontrivial invariant 

subspace. Founded some relationships that connect it and the reverse is not true always.  
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