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Abstract

In this paper we offer two new subclasses of an open unit disk of r-fold
symmetric  bi-univalent  functions. = The  Taylor-Maclaurin  coefficients
le,+1] and |e,-1| have their coefficient bounds calculated. Furthermore, for
functions in My ,.(y,7,9), we have solved Fekete-Szegd functional issues. For the
applicable classes, there are also a few particular special motivator results.
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1. Introduction
Let U ={w € C: |w| < 1} be an open unit disc in C. Let H(U) be the class of analytic
functions in I and consider U[a, i] be a subclass of H(U) of the form

h(w)=¢e + ew' + e wtt +-- -,

where e € Candi € N = {1,2, ...}. The class A of normalizing functions is meeting the
constraint h(0) = h'(0) — 1 = 0 and its obtained by the next Taylor series expansion.
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h(w) =w + z e;wh, (w € U). (1.1
The Hadamrd product of two functionéj:i?\ A, can be defined by
kw) =w + Z d; wt, (w € U), (1.2)
which is given by i::
h(w) * k(w) = w + Z e d;wi,(w € U). (1.3)
=2

Furthermore, assume H be the class of all univalent functions of A in U.
The Kuebe one Qoarter Theorem [1] verifies that the image is correct of U each and every

univalent function h € H contains a disk with a radius i As a result, each univalent function
h has the inverse k1 define w = h™1(h(w)), (w € U)

1
w = k7 (h@)), (0] < o) o) = 7). (1.4)
whereas
h Y (w) = w — s,w? + (252 — s3)w3 — (555 — 55,83 + sy)w?* + ---. (1.5)

If the functions h and h~1 are univalent in U, h € A then both of them are known to be

as the bi-univalent functions. Make a note of the class of bi-univalent functions in by Y, that
are normalized by (1.1).
Now, we assume h(w) and k(w) to be analytic functions in U. The function h(w) is said to
be subordinate to a function k(w), or the k(w) is said to be superordinate to h(w), if there
exists a Schwarz function z(w) analytic in U, with z(0) = 0 and |z(w)| < 1, (w € U), such
that

h(w) = k(z(w)),

h <korh(w)<k(w), (wel).

written as

Furthermore, if the function h is univalent in U, then we get the following equivalence
h(w) < k(w) is obtained if and only if h(0) = k(0) and h(U) < k(U) , this can be shown in
[2-6].

Lewien [7] examined the class Y of bi-univalent functions and got a coefficient bound
given by |e,| < 1.51 for each h € ). Following that, the work of Lewien [7], Clonie, and
Branan [8] encouraged, we guessing|e,| <2 forall h € 3.

In recent times, in fact, Srivastva et. al, [9] have re-energized the study of bi-univalent
and analytic functions, which was followed by Bulot [10]. Adegaeni and et. al, [11], Goney et
al. [12], Srivastva and Wans [13] and other [14-16]. We observe that the class Y, is a

placeholder for a blank note. Consider, the functions w, —, —log(1 — w) and %l(’g%
belong to Y. On the other hand, the Kuebe functions are not ), members. Until date, the
coefficient estimation problem for each of the Taylor-Maclaurin coefficients |e;|,(i € N =
{1,2,3,4,.......},i = 3) has been a challenge, for functions h € ), which is still a work in

progress (see [9]).
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The function I defined by I(w) = YVh(w™), (r € {1,2,3,...}) maps and its is univalent in
U into a place that r-fold symmetry for all h € . If the condition of normalized is met, a
function is said to be r-fold symmetric (see [17-19])).

h(w) = w + Z SpaW™ L, (rEN = {1,23,....},w € U). (1.6)

., indicates the class of r- foId symmetric univalent functions, which are normalized by the
series expansion above (1.6). The function in class H is one-fold symmetric, especially if
r = 1. The concept of r-fold symmetric biunivalent functions can be thought of in the same
way as the concept of r-fold symmetric functions. Each function h in the class ), generates an
r-fold symmetric bivalent function for all positive integers r, k= which is defined as follows:

k(@) =w = 5w+ [(r + 1)5221*+1 — Sorpr]@?

1
— E(r +1)@Br+1)s3.; — Br+ 1)s,415pp41 | @3+ -, (k= k1), (1.7)

where Y, denotes the class of r-fold symmetric bivalent functions. The formula (1.7) of
the class Y. is synchronized with the expression (1.5) for r = 1. G of the form's class function
should be used to indicate:
tw) =1+ t;w+ t,w? + -+, (w e l),
as a result
Re(t(w) >0 (w e U).

Pommerenke [17] used a symmetric r-fold function t in the class G by having the
following forms
tw) =1+ uw” + uy,w? + uzgw3" + -, (1.8)

Throughout this study, we assume that an analytic function ¥ with a positive real portion
in U has the properties 9(0) = 0 and 9'(0) > 0, and 9(U) is symmetric in the true sense. A
function of this type has a shape expansion in series:

Iw)=1+Fw+ FEw?+Fw+-,(F, >0). (1.9)
Now, if we have two analytic functions q(w) and v(w) in U with

q(0) =v(0) and max{lg(w)|,|v(w)[} < 1.
If we consider the following scenario

qWw) = pw” + porw? + P w3 + - (1.10)
v(w) = u0" + Uy + Uz, w3 + e, (1.11)

By taking,
|pr| Sl: |p2r| Sl_lprlzf |ur| <1 and |u2r| S1_|ur|2- (1'12)

We have arrived to this conclusion using simple calculations.
I(h(W)) = 1+ Fip,w" + Fipo,w? + Fpp2ww? + -, (lw]| < 1), (1.13)
and
I(v(w)) =1+ Fu, 0" + Fiuy,0?” + Ru2ew? + -, (lo| < 1). (1.14)

There are two classes of r-fold bivalent functions are proposed in this paper, and the

Taylor-Maclauain coefficients' boundary values|s,.,;| and |s,,,| are obtained. We discussed
another two new classes of Fekte-Szgo functional issues with a function.
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Definition 1.1: Assume that h(w) is a function in the class My ,.(y, 7,9) which is described
in (1.6). If the following criteria are met
h e Z wh'W)\" (wh'(w) + (1 + 27)w2h" (W)
» \ h(w) (1 —17)h(w) + twh'(w)
whereasw e U,0<t <1,y =0, and

) < 9(w),

wk' (@) [wk'(®) + (1 + 27)w?k" (w)
( k(w) > ( 1 -1k(w) + Twk'(w)

) < 8(w), (k@) = h-1(w)),

whereas k(w) be a function by which (1.7).
The following theorem is demonstrated to a class My ,.(y, 7, 9).

2. Main Results
Theorem 2.1: Assume that h(w) be a function of the class My ,.(y, 7,9), which is defined by
(1.6). Then

|Srea] <
F,J2F,

r2t?2(r?t?2+r+ D) +rt(r3+4r2+r+1)
+r(r3+2r2+ 1) +r2y(r(t+ 1)+ 1+ 2)
+@rt+1+r+y+1)2%F

,(2.15)

]Ff—Zrz(rT+T+r+y+1)2FZ

and

|52r+1| <
( (r+1F A

.7 <
[Tzfz(r2r2+r+1)+rr(r3+4r2+r+1) if 1P| < Fy
+r(r3+2r2+ 1) +r2y(r(t+ 1)+ 14+ 2)

re?(riet+r+ D +re@3+ 42+ r+ 1] .,
r+1) [+r(r3 +2r2 4+ D) +r2yr@@+ D ++ 21| A
=2r¥(rt+t+r+y+1)%F,
+(r+1DOTt+t+7+7y+ 1)?|E|F,
r2t2(r2t2+r+ D) +re(r3+4r2+r+ 1)
[+r(r3 +2r2+ D) +r2y(r(t+ 1)+ 1+ 2)
[rzrz(rzrz +r+ D) +rt(r3+4r2+r+ 1)] F2
+r(3 +2r24+ D) +r2y@r@z+1D)+7+2)] 1
=2r2(rt+t+r+y+ 1)?%F,
\ +(rt+t+r+y+1)2%F J

».(2.16)

sif |Fpl > Fy

Proof. If h € My, (y,7,9). There are two analytic functions such that.q:U —» U and
v:U — U with q(0) = v(0) = 0, satisfying the following criteria:

(wh’(w))y <wh’(w) + (14 20)w2h" (w)

h(w) (1 —Dh(w) + wh'(w) > =9(aw), (2.17)
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and

wk' (@) [(wk'(®) + (1 + 20)w?k" (w)
< k(@) > ( - Dk(w) + 10k (@) >= 9(v(w). (2.18)
We obtain
wh' W\ (wh'W) + (1 + 20)w?h" (W) _
< h(w) ) ( (1 —=7)h(w) + twh'(w) ) B
14+r(er+t+r+y+ Dspow” +2rQRr + v+ 2r + y + 15y, w21

r
- (rz(rr +r+r+D@Er+t+2r—y+1)— E(yz - 3)/)) st w4 (2119)

and
wk' ()" (wk'(®) + (1 + 20 w?k" (@)
k(w) 1 -1k(w) + twk'(w) -
1—r@ar+t+r+y+ Dspp0" —2rQRr+t+ 2r +y + 1)syp 0?1t

r
+ (rz(rr +tt+r+D)@r+t+2r—-y+ 1)+ 2r(r+1) +E(y2 - 3y)>srz+1w2r+1

T (2.20)
We can deduce that from (1.13), (1.14), (2.19), and (2.20), that
recr+t+r+y+ 1)s,.41 = Fip,, (2.21)
2rQr + T+ 2r + y + 1)sp, w21
1
- (rz(rr +t+r+ 1?2 —r2yGr+T+r+1)— Er(y2 - 3)/)) sZ.,
= Fipar + F>p7, (2.22)
rer+t+r—y+1)s,,1 = Fiu,, (2.23)

and
=2rQQtr + T+ 2r + ¥y + D5y w2t

T
+<r2(rr+r+r+1)(1r+r+2r—y+1)+2r(r+1)+§(y2—3y)>sr2+1

= F1u2r + qu-’% (224‘)
We derive (2.21) and (2.23) from (2.21)
u"l" = _pr: (225)

and
2r2(mr + 1+ 2r + y + 1)%s2,, = FZ(p? + u?).

We get (2.22) and (2.24) by putting them together and then by doing some calculations
with (2.21) and (2.25), we have

([rzrz(rzrz +r+1D)+rt@r3+4r2+7r+1)
+r(@3+2r2+ D) +r2y@r(+) + v+ 2)
= Ff(er + Upyp). (2.26)

F2=2r(rt+1+r+y+ 1)2F2) s

Furthermore, when the equations (2.25), (2.26), and (1.12) are combined, we have the
following result

([rzrz(rzrz +tr+ D)+ + 4 +r+1)] .,
+r(3+2r2+ D +r2yr@H)+t+2) 11
< 2F3(1 — |u,|?). (2.27)

2ri(rt+t+r+y+ l)ZFZ)
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We now have (2.21) and (2.27) just like our starting points.

|Sr41l <
F,J2F,

r2t2(r2t2+r+ D +rt(r3+4r2+r+1)
+r(r3+2r2+ 1) +r2y@r(z+ 1)+ 17+ 2)
+rt+t+r+y+1)2F

]Flz—ZTZ(T‘T+T+T+]/+1)2F2

By subtracting (2.24) from (2.22) and multiplying by (2.25) and (2.21), we obtain
1
r’(or+t+r+D@r+t+2r—-y+ 1) +2y(r+1) +E(y2 = 3y)Fu,,

1
+ (rz(rr +t+r+ 1?2 —r?yGr+Tr+r+1)— Er(yz - 3]/)) Fipy,

+2ri(rt+1+r+y+ 1)%F,p?
=2r2(rt+t+7r+y + 1)2%s5,41. (2.28)
As a result, applying equation (2.24) in (2.28), we get
=2r2r+t+2r+y + 1)|s544]

1
STZ(TT+T+T+1)(TT+T+27‘—]/+1)+2)/(T+1)+§()/2—3]/)F1

1
—rirt+r+r+ 1> —riy@rr+r+r+1) - Er(yz - 3Y)Fp,I?
=@ +1DQtr+1t+2r+y+ D|E]p % (2.29)
Since

lpr|? <
rt+t+7r+1)2%F

.(2.30)

r2t2(r2t?2+r+ D) +rt(r3+4r2+r+1)
+r(r3+2r2+ 1) +r2y(r(t+ 1)+ 14+ 2)
+(rt+t+r+y+1)2%F

]Flz—Zrz(rT+T+r+y+1)2F2

We can simply get from Theorem 2.1's assertion the equation (2.16) by swapping from
(2.30) into (2.29).

The following findings are obtained when one-fold symmetric functions of Theorem 2.1
are used.

Corollary (2.2): Assume h(w) be a function of the class My ; (y, t,9), which is defined by

(1.6). Then
Fi/2F;

Is,| <

[t2(t2+2) + 61+ 4+ YT+ 3)|F2 — 22T + ¥ + 2)%F,
+(2t +y + 2)?%F;

and
|53| <
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( 2F; L if |Fy| < F )
2(12+2)+7t+3+y(@2r+3) 7 AT

<HWH@W+D+7T+3+y@r+$H?—2@r+y+2f5ﬂﬂ
+2Q2t + y + 2)?|F,|Fy
[T2(72+2)+ 7t + 3+ y(2T1+ 3)] X

12(12 4+ 2) + 77] X ,
[+4+er+3)F1 2QT+y+2)%F + 2t +y + 2)%F,

Jif Rl > Fy

\ J

Theorem (2.3): Assume h(w) be a function of the class My ,-(y, 7,9), which is defined by
(1.6). Then

Sor41 — BSFeal <
F, 1

{mﬁ7+r+r+y+1) foroslx(ﬁ)l<2r(rr+r+r+y+1)}
1
k 2F|x(B)I for [x(B)I = 2r(rt+t+r+y+1) )

_ (r+1—2B)Ff
x(B) = [rzz.z(rz.[z +r+D)+rt(r3+4r2+r+1)
tr(? +2r2+ D +r2y(r@+ D +71+2)

,(2.31)

whereas

]Ff—Zrz(rT+T+r+y+1)2Fz

2 —
Sr41 =
F13 (D2r + Uzy) (2.32)
r2t?(r?v?+r+ D) +re@3 +4r2 +r+ 1)] ) 5 o
[+r(r3 +2r2+ D) +r2y(r(z+ 1)+ 17+ 2) Fi—2r2Grtr+r+y+1)°F,
By subtracting (2.24) from (2.22) we arrive at
s — (7' + 1)F12 (p?g + uf) Fl(er - qu) (2 33)
LTttt +r+y+ 12 2rrr4tHr4+y+1) '
Consequently, from (2.32) and (2.33), we have
Sor+1 — .853+1 = 1 1
F. — ) ,(2.34
1[<x('3)+2r(r1+r+r+y+1))p2r+<x(ﬁ) 2r(rt+t+r+y+1) Uar | ( )
whereas

~ (r+1—2B)Ff
x(B) = [rz.[z(rz.[z +r+ D) +rt(r3+4r2+r+1)
+r(3+2r2+ D +r2y(r(t+1) +7+2)

]Ff—Zrz(rT+T+r+y+1)2F2

Because each of 4; € R and 4; > 0, this implies we get the equation (2.31).
Theorem 2.3 has been reduced to the next level when one fold functions are symmetric.

Corollary 2.4: Assume h(w) be a function of the class My ;(y,7,9), which is defined by
(1.6). Then

F, 1
I&—B&IS{HE+Y+2) for Osww”<2@r+y+al

| 2Rx@)I for |x(3)|2m
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In Theorem 2.3 in the case where f = 1. As a result, we have the corollary.

Corollary 2.5: Assume h(w) be a function of the classMy ,.(y,7,9), which is defined by
(1.6). Then
4 < 1x(B)] <
) 2r(rt+t+r+y+1) for o< Ix(f 2r(rt+t+r+y+1)
|52r+1 - Sr+1| =< 1 .

2F; |x(B)| for W2 5

Corollary 2.5 has been reduced to the following Corollary if there is a one fold symmetric.

Corollary 2.6: Assume h(w) be a function of the classMy (v, t,9), which is defined by

(1.6). Then
F
— ¢l < —1)
53 52|—(2(21+y+2)

3. Conclusions

We conclude that when the two new classes r-fold symmetric bi-univalent are applied to
geometric functions, it is possible to figure out|s,,,| and |s,,,,| for each class r-fold
symmetric bi-univalent, this is advantageous in complex analysis.The Fekte-Szgo functional
issues for functions are also obtained, and a large number of improver findings for these two
new classes are published within a new U.
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