

ISSN: 0067-2904

Several Subclasses of r-Fold Symmetric Bi-Univalent Functions possess Coefficient Bounds

Mustafa I. Hameed¹*, Buthyna Najad Shihab²

¹Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq ² University of Baghdad, College of Education for Pure Sciences, Ibn Al-Haitham, Department of Mathematics, Baghdad, Iraq

Received: 7/11/2021 Accepted: 17/3/2022 Published: 30/12/2022

Abstract

In this paper we offer two new subclasses of an open unit disk of r-fold symmetric bi-univalent functions. The Taylor-Maclaurin coefficients $|e_{r+1}|$ and $|e_{2r+1}|$ have their coefficient bounds calculated. Furthermore, for functions in $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$, we have solved Fekete-Szegö functional issues. For the applicable classes, there are also a few particular special motivator results.

Keywords: Analytic Functions, Univalent Functions, Bi-Univalent Functions, Taylor-Maclaurin Series, Fekete-Szegö Coefficient.

r-fold تحديد المعاملات لأصناف جزئية من الدوال المتناظرة ثنائية التكافؤ

2 مصطفی ابراهیم حمید 1 *, بثینهٔ نجاد شهاب

أقسم الرياضيات, التربية للعلوم الصرفة, جامعة الانبار, الانبار, العراق - 2 أقسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة بغداد, بغداد, العراق

الخلاصة

قدمنا في هذا العمل صنفين جزئيين جديدتين من الدوال المتكافئة ثنائية التكافؤ r-fold في قرص الوحدة المفتوح, وكذلك تم حساب معاملات تايلور - ماكلورين. وعلاوة على ذلك، قمنا بحل المشكلات الدوال Fekete-Szego بالنسبة للأصناف القابلة للتطبيق.

1. Introduction

Let $U = \{w \in \mathbb{C} : |w| < 1\}$ be an open unit disc in \mathbb{C} . Let H(U) be the class of analytic functions in \mathfrak{I} and consider U[a,i] be a subclass of H(U) of the form

$$h(w) = e + e_i w^i + e_{i+1} w^{i+1} + \cdots,$$

where $e \in \mathbb{C}$ and $i \in \mathbb{N} = \{1,2,...\}$. The class \mathcal{A} of normalizing functions is meeting the constraint h(0) = h'(0) - 1 = 0 and its obtained by the next Taylor series expansion.

^{*} Email: mustafa8095@uoanbar.edu.iq

$$h(w) = w + \sum_{i=2}^{\infty} e_i w^i, (w \in U).$$
 (1.1)

The Hadamrd product of two functions in A, can be defined by

$$k(w) = w + \sum_{i=2}^{\infty} d_i w^i, (w \in U),$$
 (1.2)

which is given by

$$h(w) * k(w) = w + \sum_{i=2}^{\infty} e_i d_i w^i, (w \in U).$$
 (1.3)

Furthermore, assume \mathcal{H} be the class of all univalent functions of \mathcal{A} in U.

The Kuebe one Qoarter Theorem [1] verifies that the image is correct of U each and every univalent function $h \in \mathcal{H}$ contains a disk with a radius $\frac{1}{4}$. As a result, each univalent function h has the inverse h^{-1} define $w = h^{-1}(h(w))$, $(w \in U)$

$$\omega = h^{-1}(h(\omega)), \left(|\omega| < \rho_0(h); \rho_0(h) \ge \frac{1}{4}\right), \tag{1.4}$$

whereas

$$h^{-1}(\omega) = \omega - s_2 \omega^2 + (2s_2^2 - s_3)\omega^3 - (5s_2^3 - 5s_2 s_3 + s_4)\omega^4 + \cdots$$
 (1.5)

If the functions h and h^{-1} are univalent in U, $h \in \mathcal{A}$ then both of them are known to be as the bi-univalent functions. Make a note of the class of bi-univalent functions in by Σ , that are normalized by (1.1).

Now, we assume h(w) and k(w) to be analytic functions in U. The function h(w) is said to be subordinate to a function k(w), or the k(w) is said to be superordinate to h(w), if there exists a Schwarz function z(w) analytic in U, with z(0) = 0 and |z(w)| < 1, $(w \in U)$, such that

$$h(w) = k(z(w)),$$

written as

$$h < k \text{ or } h(w) < k(w), (w \in U).$$

Furthermore, if the function h is univalent in U, then we get the following equivalence h(w) < k(w) is obtained if and only if h(0) = k(0) and $h(U) \subset k(U)$, this can be shown in [2-6].

Lewien [7] examined the class Σ of bi-univalent functions and got a coefficient bound given by $|e_2| \leq 1.51$ for each $h \in \Sigma$. Following that, the work of Lewien [7], Clonie, and Branan [8] encouraged, we guessing $|e_2| \leq \sqrt{2}$ for all $h \in \Sigma$.

In recent times, in fact, Srivastva et. al, [9] have re-energized the study of bi-univalent and analytic functions, which was followed by Bulot [10]. Adegaeni and et. al, [11], Goney et al. [12], Srivastva and Wans [13] and other [14-16]. We observe that the class Σ is a placeholder for a blank note. Consider, the functions w, $\frac{w}{1-w}$, $-\log(1-w)$ and $\frac{1}{2}\log\frac{1+w}{1-w}$ belong to Σ . On the other hand, the Kuebe functions are not Σ members. Until date, the coefficient estimation problem for each of the Taylor-Maclaurin coefficients $|e_i|$, ($i \in \mathbb{N} = \{1,2,3,4,\ldots,\}$, $i \geq 3$) has been a challenge, for functions $h \in \Sigma$ which is still a work in progress (see [9]).

The function l defined by $l(w) = \sqrt[r]{h(w^r)}$, $(r \in \{1,2,3,...\})$ maps and its is univalent in U into a place that r-fold symmetry for all $h \in \mathcal{H}$. If the condition of normalized is met, a function is said to be r-fold symmetric (see [17-19]).

$$h(w) = w + \sum_{i=1}^{\infty} s_{ri+1} w^{ri+1}, (r \in \mathbb{N} = \{1, 2, 3, \dots\}, w \in U).$$
 (1.6)

 \mathcal{H}_r indicates the class of r-fold symmetric univalent functions, which are normalized by the series expansion above (1.6). The function in class \mathcal{H} is one-fold symmetric, especially if r = 1. The concept of r-fold symmetric biunivalent functions can be thought of in the same way as the concept of r-fold symmetric functions. Each function h in the class \sum generates an r-fold symmetric bivalent function for all positive integers r, h^{-1} which is defined as follows:

$$k(\omega) = \omega - s_{r+1} w^{r+1} + \left[(r+1) s_{2r+1}^2 - s_{2r+1} \right] \omega^{2r+1} - \left[\frac{1}{2} (r+1) (3r+1) s_{r+1}^3 - (3r+1) s_{r+1} s_{2r+1} \right] \omega^{3r+1} + \cdots, (k=h^{-1}), \quad (1.7)$$

where \sum_r denotes the class of r-fold symmetric bivalent functions. The formula (1.7) of the class Σ is synchronized with the expression (1.5) for r = 1. \mathcal{G} of the form's class function should be used to indicate:

$$t(w) = 1 + t_1 w + t_2 w^2 + \cdots, (w \in U),$$
 as a result

$$\Re e(t(w) > 0 \quad (w \in U).$$

Pommerenke [17] used a symmetric r-fold function t in the class \mathcal{G} by having the following forms

$$t(w) = 1 + u_r w^r + u_{2r} w^{2r} + u_3 w^{3r} + \cdots$$
 (1.8)

Throughout this study, we assume that an analytic function θ with a positive real portion in U has the properties $\vartheta(0) = 0$ and $\vartheta'(0) > 0$, and $\vartheta(U)$ is symmetric in the true sense. A function of this type has a shape expansion in series:

$$\vartheta(w) = 1 + F_1 w + F_2 w^2 + F_3 w^3 + \dots, (F_1 > 0). \tag{1.9}$$

Now, if we have two analytic functions q(w) and $v(\omega)$ in U with

$$q(0) = v(0)$$
 and $\max\{|q(w)|, |v(\omega)|\} < 1$.

If we consider the following scenario

$$q(w) = p_r w^r + p_{2r} w^{2r} + p_{3r} w^{3r} + \cdots$$

$$v(\omega) = u_r \omega^r + u_{2r} \omega^{2r} + u_{3r} \omega^{3r} + \cdots$$
(1.10)
(1.11)

$$v(\omega) = u_r \omega^r + u_{2r} \omega^{2r} + u_{3r} \omega^{3r} + \cdots$$
 (1.11)

By taking,

$$|p_r| \le 1$$
, $|p_{2r}| \le 1 - |p_r|^2$, $|u_r| \le 1$ and $|u_{2r}| \le 1 - |u_r|^2$. (1.12)

We have arrived to this conclusion using simple calculations.

$$\vartheta(h(w)) = 1 + F_1 p_r w^r + F_1 p_{2r} w^{2r} + F_2 p_r^2 w^r w^{2r} + \cdots, (|w| < 1), \tag{1.13}$$

and

$$\vartheta(v(\omega)) = 1 + F_1 u_r \omega^r + F_1 u_{2r} \omega^{2r} + F_2 u_r^2 \omega^{2r} + \dots, (|\omega| < 1).$$
 (1.14)

There are two classes of r-fold bivalent functions are proposed in this paper, and the Taylor-Maclauain coefficients' boundary values $|s_{r+1}|$ and $|s_{2r+1}|$ are obtained. We discussed another two new classes of Fekte-Szgö functional issues with a function.

Definition 1.1: Assume that h(w) is a function in the class $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$ which is described in (1.6). If the following criteria are met

$$h \in \sum\nolimits_r , \left(\frac{wh'(w)}{h(w)}\right)^{\gamma} \left(\frac{wh'(w) + (1+2\tau)w^2h''(w)}{(1-\tau)h(w) + \tau wh'(w)}\right) < \vartheta(w),$$

whereas $w \in U$, $0 \le \tau \le 1$, $\gamma \ge 0$, and

$$\left(\frac{\omega k'(\omega)}{k(\omega)}\right)^{\gamma} \left(\frac{\omega k'(\omega) + (1+2\tau)\omega^2 k''(\omega)}{(1-\tau)k(\omega) + \tau \omega k'(\omega)}\right) < \vartheta(\omega), (k(\omega) = h^{-1}(\omega)),$$

whereas $k(\omega)$ be a function by which (1.7).

The following theorem is demonstrated to a class $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$.

2. Main Results

Theorem 2.1: Assume that h(w) be a function of the class $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_{r+1}| \leq \frac{F_1\sqrt{2F_1}}{\sqrt{\left[r^2\tau^2(r^2\tau^2+r+1)+r\tau(r^3+4r^2+r+1)\right]}F_1^2-2r^2(r\tau+\tau+r+\gamma+1)^2F_2}, (2.15)$$

$$+(r\tau+\tau+r+\gamma+1)^2F_1$$

and

$$\begin{cases} \frac{(r+1)F_{1}}{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]}; if |F_{2}| \leq F_{1} \\ \frac{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]}{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]} F_{1}^{2} \\ \frac{(r+1)\left[\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]F_{1}^{2}\right]}{-2r^{2}(r\tau+\tau+r+\gamma+1)^{2}F_{2}} \\ \frac{+(r+1)(r\tau+\tau+r+\gamma+1)^{2}F_{2}}{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]\times} ; if |F_{2}| > F_{1} \\ \frac{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]}{+r(r^{3}+2r^{2}+1)+r^{2}\gamma(r(\tau+1)+\tau+2)} \\ \frac{\left[r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\right]}{-2r^{2}(r\tau+\tau+r+\gamma+1)^{2}F_{1}} \end{cases}$$

Proof. If $h \in \mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$. There are two analytic functions such that $q:U \to U$ and $v:U \to U$ with q(0) = v(0) = 0, satisfying the following criteria:

$$\left(\frac{wh'(w)}{h(w)}\right)^{\gamma} \left(\frac{wh'(w) + (1+2\tau)w^2h''(w)}{(1-\tau)h(w) + \tau wh'(w)}\right) = \vartheta(q(w)), \tag{2.17}$$

Hameed and Shihab

and

$$\left(\frac{\omega k'(\omega)}{k(\omega)}\right)^{\gamma} \left(\frac{\omega k'(\omega) + (1 + 2\tau)\omega^2 k''(\omega)}{(1 - \tau)k(\omega) + \tau \omega k'(\omega)}\right) = \vartheta(v(w)). \tag{2.18}$$

$$\left(\frac{wh'(w)}{h(w)}\right)^{\gamma} \left(\frac{wh'(w) + (1+2\tau)w^{2}h''(w)}{(1-\tau)h(w) + \tau wh'(w)}\right) = 1 + r(\tau r + \tau + r + \gamma + 1)s_{r+1}w^{r} + 2r(2\tau r + \tau + 2r + \gamma + 1)s_{2r+1}w^{2r+1} - \left(r^{2}(\tau r + \tau + r + 1)(\tau r + \tau + 2r - \gamma + 1) - \frac{r}{2}(\gamma^{2} - 3\gamma)\right)s_{r+1}^{2}w^{2r+1} + \cdots, (2.19)$$

$$\left(\frac{\omega k'(\omega)}{k(\omega)}\right)^{\gamma} \left(\frac{\omega k'(\omega) + (1+2\tau)\omega^{2}k''(\omega)}{(1-\tau)k(\omega) + \tau\omega k'(\omega)}\right) = 1 - r(\tau r + \tau + r + \gamma + 1)s_{r+1}\omega^{r} - 2r(2\tau r + \tau + 2r + \gamma + 1)s_{2r+1}\omega^{2r+1} + \left(r^{2}(\tau r + \tau + r + 1)(\tau r + \tau + 2r - \gamma + 1) + 2r(r + 1) + \frac{r}{2}(\gamma^{2} - 3\gamma)\right)s_{r+1}^{2}\omega^{2r+1} + \cdots, \tag{2.20}$$

We can deduce that from (1.13), (1.14), (2.19), and (2.20), that

$$r(\tau r + \tau + r + \gamma + 1)s_{r+1} = F_1 p_r, \tag{2.21}$$

 $r(\tau r + \tau + r + \gamma + 1)s_{r+1} = F_1 p_r,$ $2r(2\tau r + \tau + 2r + \gamma + 1)s_{2r+1} w^{2r+1}$

$$-\left(r^{2}(r\tau+\tau+r+1)^{2}-r^{2}\gamma(r\tau+\tau+r+1)-\frac{1}{2}r(\gamma^{2}-3\gamma)\right)s_{r+1}^{2}$$

$$=F_{1}p_{2r}+F_{2}p_{r}^{2},$$

$$r(\tau r+\tau+r-\gamma+1)s_{r+1}=F_{1}u_{r},$$
(2.22)
(2.23)

and

$$-2r(2\tau r + \tau + 2r + \gamma + 1)s_{2r+1}w^{2r+1}$$

$$+\left(r^{2}(\tau r + \tau + r + 1)(\tau r + \tau + 2r - \gamma + 1) + 2r(r + 1) + \frac{r}{2}(\gamma^{2} - 3\gamma)\right)s_{r+1}^{2}$$

$$= F_{1}u_{2r} + F_{2}u_{r}^{2}.$$
(2.24)

We derive (2.21) and (2.23) from (2.21)

$$u_r = -p_r, (2.25)$$

and

$$2r^2(\tau r + \tau + 2r + \gamma + 1)^2 s_{r+1}^2 = F_1^2(p_r^2 + u_r^2).$$

We get (2.22) and (2.24) by putting them together and then by doing some calculations with (2.21) and (2.25), we have

$$\left(\begin{bmatrix} r^{2}\tau^{2}(r^{2}\tau^{2}+r+1)+r\tau(r^{3}+4r^{2}+r+1)\\ +r(r^{3}+2r^{2}+1)+r^{2}\gamma(r(\tau+1)+\tau+2) \end{bmatrix}F_{1}^{2}-2r^{2}(r\tau+\tau+r+\gamma+1)^{2}F_{2}\right)s_{r+1}^{2}$$

$$=F_{1}^{3}(p_{2r}+u_{2r}). \tag{2.26}$$

Furthermore, when the equations (2.25), (2.26), and (1.12) are combined, we have the following result

$$\left| \left(\begin{bmatrix} r^2 \tau^2 (r^2 \tau^2 + r + 1) + r \tau (r^3 + 4r^2 + r + 1) \\ + r (r^3 + 2r^2 + 1) + r^2 \gamma (r(\tau + 1) + \tau + 2) \end{bmatrix} F_1^2 - 2r^2 (r\tau + \tau + r + \gamma + 1)^2 F_2 \right) \right| \le 2F_1^3 (1 - |u_r|^2). \tag{2.27}$$

We now have (2.21) and (2.27) just like our starting points.

$$|s_{r+1}| \leq$$

$$\frac{F_1\sqrt{2F_1}}{\sqrt{\left[r^2\tau^2(r^2\tau^2+r+1)+r\tau(r^3+4r^2+r+1)\right]}F_1^2-2r^2(r\tau+\tau+r+\gamma+1)^2F_2} \sqrt{\frac{\left[r^2\tau^2(r^2\tau^2+r+1)+r\tau(r^3+4r^2+r+1)\right]}{+(r\tau+\tau+r+\gamma+1)^2F_1}}$$

By subtracting (2.24) from (2.22) and multiplying by (2.25) and (2.21), we obtain

$$r^{2}(\tau r + \tau + r + 1)(\tau r + \tau + 2r - \gamma + 1) + 2\gamma(r + 1) + \frac{1}{2}(\gamma^{2} - 3\gamma)F_{1}u_{2r}$$

$$+ \left(r^{2}(r\tau + \tau + r + 1)^{2} - r^{2}\gamma(r\tau + \tau + r + 1) - \frac{1}{2}r(\gamma^{2} - 3\gamma)\right)F_{1}p_{2r}$$

$$+ 2r^{2}(r\tau + \tau + r + \gamma + 1)^{2}F_{2}p_{r}^{2}$$

$$= 2r^{2}(r\tau + \tau + r + \gamma + 1)^{2}s_{2r+1}.$$
(2.28)

As a result, applying equation (2.24) in (2.28), we get

$$-2r(2\tau r + \tau + 2r + \gamma + 1)|s_{2r+1}|$$

$$\leq r^{2}(\tau r + \tau + r + 1)(\tau r + \tau + 2r - \gamma + 1) + 2\gamma(r + 1) + \frac{1}{2}(\gamma^{2} - 3\gamma)F_{1}$$

$$-r^{2}(r\tau + \tau + r + 1)^{2} - r^{2}\gamma(r\tau + \tau + r + 1) - \frac{1}{2}r(\gamma^{2} - 3\gamma)F_{1}|p_{r}|^{2}$$

$$= (r + 1)(2\tau r + \tau + 2r + \gamma + 1)|F_{2}||p_{r}|^{2}. \tag{2.29}$$

Since $|p_r|^2 \le$

$$\frac{(r\tau + \tau + r + 1)^{2}F_{1}}{\left[\left[r^{2}\tau^{2}(r^{2}\tau^{2} + r + 1) + r\tau(r^{3} + 4r^{2} + r + 1) \right] F_{1}^{2} - 2r^{2}(r\tau + \tau + r + \gamma + 1)^{2}F_{2}} + (r\tau + \tau + r + \gamma + 1)^{2}F_{1}} \right] + (r\tau + \tau + r + \gamma + 1)^{2}F_{1}}$$
(2.30)

We can simply get from Theorem 2.1's assertion the equation (2.16) by swapping from (2.30) into (2.29).

The following findings are obtained when one-fold symmetric functions of Theorem 2.1 are used.

Corollary (2.2): Assume h(w) be a function of the class $\mathcal{M}_{\Sigma,1}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_2| \leq \frac{F_1\sqrt{2F_1}}{\sqrt{\left| [\tau^2(\tau^2+2)+6\tau+4+\gamma(2\tau+3)]F_1^2-2(2\tau+\gamma+2)^2F_2\right|}},$$

and

 $|s_3| \leq$

$$\begin{cases} \frac{2F_1}{\tau^2(\tau^2+2)+7\tau+3+\gamma(2\tau+3)} & ; if \ |F_2| \leq F_1 \\ \\ 2[|[\tau^2(\tau^2+2)+7\tau+3+\gamma(2\tau+3)]F_1^2-2(2\tau+\gamma+2)^2F_2|]F_1 \\ \\ \frac{+2(2\tau+\gamma+2)^2|F_2|F_1}{[\tau^2(\tau^2+2)+7\tau+3+\gamma(2\tau+3)]\times} & ; if \ |F_2| > F_1 \\ \\ \Big| \Big[\frac{\tau^2(\tau^2+2)+7\tau}{[\tau^2(\tau^2+2)+7\tau]} \Big] F_1^2 - 2(2\tau+\gamma+2)^2F_2 + (2\tau+\gamma+2)^2F_1 \Big| \end{cases}$$

Theorem (2.3): Assume h(w) be a function of the class $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_{2r+1} - \beta s_{r+1}^{2}| \leq \begin{cases} \frac{F_{1}}{2r(r\tau + \tau + r + \gamma + 1)} & \text{for } o \leq |x(\beta)| < \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \\ 2F_{1}|x(\beta)| & \text{for } |x(\beta)| \geq \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \end{cases}, (2.31)$$

whereas

$$x(\beta) = \frac{(r+1-2\beta)F_1^2}{2\left[\frac{r^2\tau^2(r^2\tau^2+r+1)+r\tau(r^3+4r^2+r+1)}{r^3+2r^2+1)+r^2\gamma(r(\tau+1)+\tau+2)}\right]F_1^2 - 2r^2(r\tau+\tau+r+\gamma+1)^2F_2},$$

$$s_{r+1}^2 = F_1^3(p_{2r}+u_{2r})$$

$$(2.22)$$

$$\frac{F_1^3(p_{2r} + u_{2r})}{\left[r^2\tau^2(r^2\tau^2 + r + 1) + r\tau(r^3 + 4r^2 + r + 1)\right]F_1^2 - 2r^2(r\tau + \tau + r + \gamma + 1)^2F_2}.$$
 (2.32)

By subtracting (2.24) from (2.22) we arrive at

$$s_{2r+1} = \frac{(r+1)F_1^2(p_r^2 + u_r^2)}{2r^2(r\tau + \tau + r + \nu + 1)^2} + \frac{F_1(p_{2r} - u_{2r})}{2r(r\tau + \tau + r + \nu + 1)}.$$
 (2.33)

Consequently, from (2.32) and (2.33), we have

 $s_{2r+1} - \beta s_{r+1}^2 = F_1 \left[\left(x(\beta) + \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \right) p_{2r} + \left(x(\beta) - \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \right) u_{2r} \right], (2.34)$

whereas

$$x(\beta) = \frac{(r+1-2\beta)F_1^2}{2\left[r^2\tau^2(r^2\tau^2+r+1)+r\tau(r^3+4r^2+r+1)\right]F_1^2 - 2r^2(r\tau+\tau+r+\gamma+1)^2F_2}.$$

Because each of $A_i \in \mathbb{R}$ and $A_1 > 0$, this implies we get the equation (2.31). Theorem 2.3 has been reduced to the next level when one fold functions are symmetric.

Corollary 2.4: Assume h(w) be a function of the class $\mathcal{M}_{\Sigma,1}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_3 - \beta s_2| \le \begin{cases} \frac{F_1}{2(2\tau + \gamma + 2)} & \text{for } o \le |x(\beta)| < \frac{1}{2(2\tau + \gamma + 2)} \\ 2F_1|x(\beta)| & \text{for } |x(\beta)| \ge \frac{1}{2(2\tau + \gamma + 2)} \end{cases}$$

In Theorem 2.3 in the case where $\beta = 1$. As a result, we have the corollary.

Corollary 2.5: Assume h(w) be a function of the class $\mathcal{M}_{\Sigma,r}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_{2r+1} - s_{r+1}^2| \le \begin{cases} \frac{F_1}{2r(r\tau + \tau + r + \gamma + 1)} & for \quad o \le |x(\beta)| < \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \\ 2F_1|x(\beta)| & for \quad |x(\beta)| \ge \frac{1}{2r(r\tau + \tau + r + \gamma + 1)} \end{cases}.$$

Corollary 2.5 has been reduced to the following Corollary if there is a one fold symmetric.

Corollary 2.6: Assume h(w) be a function of the class $\mathcal{M}_{\Sigma,1}(\gamma,\tau,\vartheta)$, which is defined by (1.6). Then

$$|s_3 - s_2^2| \le \left(\frac{F_1}{2(2\tau + \gamma + 2)}\right).$$

3. Conclusions

We conclude that when the two new classes r-fold symmetric bi-univalent are applied to geometric functions, it is possible to figure out $|s_{r+1}|$ and $|s_{2r+1}|$ for each class r-fold symmetric bi-univalent, this is advantageous in complex analysis. The Fekte-Szgo functional issues for functions are also obtained, and a large number of improver findings for these two new classes are published within a new U.

References

- [1] P. L. Duren, "Univalent Functions," Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [2] T. Bulboaca, "Differential subordinations and superordinations," Recent Results, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
- [3] M. I. Hameed, C. Ozel, A. Al-Fayadh and A.R.S. Juma, "Study of certain subclasses of analytic functions involving convolution operator, " *AIP Conference Proceedings*, vol. 2096, no. 1, AIP Publishing LLC, 2019.
- [4] M. Hameed and I. Ibrahim, "Some Applications on Subclasses of Analytic Functions Involving Linear Operator, " *International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA)*, *IEEE*, 2019.
- [5] M. I. Hameed, B. N. Shihab and K. A. Jassim, "Certain Geometric Properties of Meromorphic Functions Defined by a New Linear Differential Operator," *In Journal of Physics: Conference Series*, vol. 1999, no. 1, p. 012090, IOP Publishing, 2021.
- [6] S. S. Miller and P. T. Mocanu, "Differential subordinations," *Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York*, 2000.
- [7] M. I. Hameed, B. N. Shihab and K. A. Jassim, "An application of subclasses of Goodman-Salagean-type harmonic univalent functions involving hypergeometric function," *In AIP Conference Proceedings*, vol. 2398, no. 1, p. 060012, AIP Publishing LLC, 2022.
- [8] A. Baernstein, D. A. Brannan and J. G. Clunie, "Aspects of contemporary complex analysis. Analytic functions of bounded mean oscillation," p. 2-26, 1980.
- [9] H. M. Srivastava, A. K. and P. Gochhayat,"Certain subclasses of analytic and bi-univalent functions," *Applied mathematics letters*, vol.23, no.10, pp.1188-1192, 2010.
- [10] S. Bulut,"Coefficient estimates for general subclasses of m -fold symmetric analytic bi-univalent functions," *Turkish Journal of Mathematics*, vol.40, no.6, pp.1386-1397, 1016.

- [11] E. A. Adegani, S. Bulut and A. Zireh, "Coefficient estimates for a subclass of analytic biunivalent functions," *Bulletin of the Korean Mathematical Society*, vol.55, no.2, pp. 405-413, 2018.
- [12] M. I. Hameed and B. N. Shihab, "Some Classes of Univalent Function with Negative Coefficients," *In Journal of Physics: Conference Series*, vol. 2322, no. 1, p. 012048, IOP Publishing, 2022.
- [13] M. I. Hameed, B. N. Shihab and K. A. Jassim, "Some properties of subclass of P-valent function with new generalized operator," *In AIP Conference Proceedings*, vol. 2394, no. 1, p. 070006, AIP Publishing LLC, 2022.
- [14] S. Altınkaya and S. Yalçın, "On the (p, q)-Lucas polynomial coefficient bounds of the biunivalent function," vol. 25, no. 3, pp.567-575, 2019.
- [15] M. I. Hameed and M. H. Ali, "Some Classes Of Analytic Functions For The Third Hankel Determinant," *In Journal of Physics: Conference Series*, vol. 1963, no. 1, p. 012080, IOP Publishing, 2021.
- [16] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, "Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator," *Bulletin of the Iranian Mathematical Society*, vol. 44, no. 1, pp. 149-157, 2018.
- [17] C. Pommerenke, "On the coefficients of close-to-convex functions," The Michigan Mathematical Journal, vol. 9, no. 3, pp. 259-269, 1962.
- [18] H. M. Srivastava, N. Tuneski and E. Georgieva-Celakoska, "Some distortion and other properties associated with a family of n-fold symmetric Koebe type functions," Austral. J. Math. Anal. Appl., vol. 9, no. 2, Article 1, pp.1–17, 2012.
- [19] M. I. Hameed, M. H. Ali and B. N. Shihab, "A certain Subclass of Meromorphically Multivalent Q-Starlike Functions Involving Higher-Order Q-Derivatives," *Iraqi Journal of Science*, vol. 63, no. 1, pp. 251-258, 2022.