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Abstract

In this article, we introduce a new type of soft spaces namely, soft L(NpC) —
spaces as a generalization of soft LC — spaces. Also, we study the weak forms of
soft L(NpC) — spaces, namely, soft NpL; — spaces, softNpL, — spaces,
soft NpL; — space, and soft NpL, — spaces. The characterizations and fundamental
properties  related to these types of soft spaces and the
relationships among them are also discussed.

Keywords: Soft K(NpC) — space, soft L(NpC) — space, soft F, — Np — closed set,
soft NpLy — spaces, for k = 1,2,3,4, soft NP — space, and soft NpQ — set space.
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Introduction

Molodtsov [1] introduced the concept of soft set theory as a new mathematical tool for
dealing with uncertainties. He has shown several applications of this theory in solving many
practical problems in economics, engineering, medical science, social science, etc. Shabir and
Naz [2] presented the notion of soft topological spaces which are defined over an initial
universe set with a fixed set of parameters, and they studied some concepts such as soft open
sets, soft closed sets, soft closure and soft separation axioms. Arockiarani and Arokia [3],
Mahmood and Ail [4] and Rong [5] introduced and studied soft pre — open sets, soft N —
pre —open sets, soft N — pre — Lindel6f spaces and soft Lindel6f spaces respectively.
Wilansky [6] presented the notion of KC — spaces in topological spaces and studied some
relationships between KC — spaces and separation axioms. The concept of Lindel6f spaces
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was introduced by Alexandrof and Urysohn [7]. We know that there is no relationship
between the concept of Lindel6f and closed subsets, so this point motivated some researchers
to introduce a new concept that combines between Lindel6f and closed subsets, namely,
LC — spaces. The notion of LC — spaces was first introduced by Mukherji and Sarkar [8].
Salih [9] introduced the concept of soft KC — spaces in soft topological spaces. Ali and
Mahmood [10] generalized the notion of soft KC — spaces into soft K(NpC) — spaces and
they gave several concepts that relate to these soft spaces. Mahmood [11] generalized the
concept of an LC — spaces to soft LC — spaces and studied some relationships between soft
LC — spaces and each of soft KC — spaces and soft separation axioms. The aim of this paper
is to study soft L(NpC) — spaces and weak forms of soft L(NpC) — spaces in soft topological
spaces and prove some of their characterizations and basic properties

1. Preliminaries

Definition 1.1:[1]: A pair (E, G) is said to be a soft set over M if E: G —» P(M) is a function
from the set of parameters G into P(M), and we can expressed by: (E,G) = {(g E(g)):g €
Gand E(g) € P(M)}.

Definition 1.2:[12]: A soft set (E, G) over M is called:
(i) A null soft set denoted by @, if E(g) = @, for each g € G.
(ii) An absolute soft set denoted by M, if E(g) = M, for each g € G.

Definition 1.3:[12,[13]: Let (E;, G;) and (E,, G,) be two soft sets over a common universe
M. Then:

(i) The soft union of (E;, G;) and (E,, G,) is the soft set (E, G), where G = G; UG,, and for all
g € G,

E,(g) ifg € Gy — Gy
E(g) = {E,(g) ifg€ G, — Gy
E;(g)U E,(g) ifg € G1NG,

We write (E, G) = (E;, G;)U(E,, G,).
(i) The soft intersection of (E;, G;) and (E,, G,) is the soft set (E, G), where G = G;NG,, and
forall g € G,
E(g) = E;1(8)NE(g). We write (E, G) = (Eq, G1)N(Ey, G2).
Shabir and Naz [2] introduced the notion of soft topological spaces which are defined
over an initial universe set M with a fixed set of parameters G as follows:

Definition 1.4:[2]: A family G of soft sets over M is said to be a soft topology on M if:
()M, 0 €.
(i) If (E4, G), (E,, G) € G, then (E;, G)N(E,, G) €.
(iii) If (E;,G) €5, forall i € ¥, then U{(E;,G):i € ¥} € &.
The triple (M, G, G) is said to be a soft topological space. Any member of G is said to be
soft open and its
complement is soft closed.

Definition 1.5:[14]: If (M,3,G) is a soft topological space, and @ # (H,G) € M. Then

Fme = {(0,G)N(H,G): (0,G) €T} is called a relative soft topology on (H,G) and
((H,G),8wu,g),G) is called a soft subspace of (M, 3, G).
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Definition 1.6: Let (M,&,G) be a soft topological space, and (E,G) € M. Then (E,G) is
called:

(i) Soft pre — open (briefly soft p — open) [3] if (E,G) € int(cl((E, G))).

(ii) Soft N — pre — open (briefly soft Np — open) [4] if for all m € (E,G), there exists a
soft p — open set (0,G) in (M, 3, G) with m € (0,G) and (0, G) — (E, G) is finite.

Definition 1.7:[10]: If (M, &, G) is a soft topological space, and (E,G) € M. Then:
(i) Soft Np — closure of (E, G) is defined by:

Npcl((E, G)) = N{(F,G): (E,G) € (F,G) & (F,G) is soft Np — closed in M}
(i) (E, G) is soft Np — dense in (M, 3, G) if Npcl((E, G)) = M.

Proposition 1.8:[10]: If (M, 3, G) is a soft topological space, and (E, G) € M. Then:
(i) (E,G) € Npcl((E, @),

(ii) Npcl((E, G)) is soft Np — closed set in M.

(iii) (E, G) is soft Np — closed if and only if Npcl((E, G)) = (E, G).

Proposition 1.9:[4]: Let (H, Sy, G) be a soft open subspace of (M, G, G). Then

(i) (E,G)NH is soft Np — closed (resp. soft Np — open) subset of (H, 3y, G) whenever (E, G)
is soft Np — closed (resp. soft Np — open) subset of (M, G, G).

(i) If (E,G) € H. Then (E,G) is soft Np — open in (M,3,G) ifand only if (E,G) is soft
Np — open in (H, Gy, G).

Proposition 1.10:[4]: If (E, G) is soft Np — closed in (H,Gy, G) and (H, Gy, G) is soft clopen
subspace of (M, G, G), then (E, G) is soft Np — closed in (M, G, G).

Definition 1.11: A soft topological space (M, G, G) is called:

(i) Soft Np — Lindelof [4] (resp. soft Lindeldf [5]) if any cover of M by soft Np — open (resp.
soft open) subsets of (M, G, G) contains a countable subcover.

(ii) Soft T, — space [15] if for all 3,b € M, and & # b, there exist soft open subsets (H;, G)
and (H,, G) of (M,3,G) such thatd € (H,,G),b € (H,, G), and (H;, G)N(H,, G) = B.

(iii) Soft K(NpC) — space [10] if any soft compact subset of (M, G, G) is soft Np — closed.
(iv) Soft LC — space [11] (resp. soft KC — space [9]) if any soft Lindel6f (resp. soft compact)
subset of (M, G, G) is soft closed.

Proposition 1.12:[4]: If (M, S, G) is soft Np — Lindel6f, then any soft Np — closed subset of
(M, G, G) is soft Np — Lindel6f.

2. New Generalizations of Soft LC — Spaces

In this section, we define and study soft L(NpC) — spaces and the four weak forms of
the soft L(NpC) — spaces, namely, soft NpLy, — spaces, for k = 1,2,3,4. We obtain several
characterizations about these soft spaces as well as we also discuss the relationships among
themselves.

Definition 2.1: A soft topological space (M, S, G) is called a soft L(NpC) — space if any soft
Lindelof set in (M, G, G) is soft Np — closed.

Remark 2.2: Each soft LC — space is a soft L(NpC) — space, but the converse may not be
true.
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Examples 2.3: If M=%, G ={g., 8} (g,,{5})) = m E R, and
Fine. = {(E,G) ER:m € (E,G)}U {@} is the included soft point topology on %R. Then
(R, G1ne, G) is soft L(NpC) — space, because, if (D,G) is soft Lindeldf subset of R, then
(D, G)C is soft Np — open subset of R, since for all % € (D,G)S, there exist {%, i} is a soft
p — open subset of R such that X € {&, i} and {& m} — (D, G) is finite, so (D, G) is soft Np —
closed. But (R, Gy, G) is not soft LC — space, because (S, G) = {(g4,{5}), (g2, {3})} is soft
Lindelof, but is not soft closed.

Theorem 2.4: A soft topological space (M, G, G) is a soft L(NpC) — space iff every soft point
in (M, G, G) has a soft clopen neighborhood which is a soft L(NpC) — subspace.

Proof: Suppose (M,5,G) is a soft L(NpC) — space, so for any i € M, M is itself a soft
clopen neighborhood which is a soft L(NpC) — subspace. Conversely, Assume that (S, G) is
soft Lindeléf in (M,3,G) and fii € (S, G). Choose a soft clopen neighborhood (Hg, G) of f
with ((Hg, G), 8(uc), G) is a soft L(NpC) — subspace of (M, G, G). Thus (Hg, &N(S,G) is
soft Lindel6f in ((Hg, G), 8(1,6), G)- But ((Hw, G), S(u c), G) is soft L(NpC) — space, hence
(Hg, G)N(S,G) is soft Np — closed in ((Hg, G),Su,6) G), and so soft Np — closed in
(M, 3, G) by Proposition (1.8). Therefore, (Hgz, G) — [(Hz, G)N(S,G)] = (Hi, G) — (S,G) is
soft Np — open in (M, 3, G) such that i € (Hg, G) — (S,G) and [(Hgz, G) — (S, ®]N(S,G) =
@, thus (S, G) is soft Np — closed. Hence (M, G, G) is a soft L(NpC) — space.

Definition 2.5: If (M,3,G) is a soft topological space, and (E,G) € M, then (E,G) is called
soft F, — Np — closed (resp. soft G, — Np — open) if (E,G) is a countable soft union (resp.
soft intersection) of soft Np — closed (resp. soft Np — open) sets.

Remark 2.6: Any soft Np — closed (resp. soft Np — open) set is soft F, — Np — closed (resp.
soft G, — Np — open), but the converse may not be true.

Example 2.7: If M=Z, G = {g1,85, 83}, and Gor = {(D,G) € Z: (D, G)¢ is finite}U{D} is
the soft cofinite topology on Z. Then (E,G) = {(g1,Z — {5}),(g2,Z — {5}), (g3, Z — {5})} is
soft Fy,—Np—closed in (ZG.G), but not soft Np-—closed, since
(E,G)° = {(g1,{5}), (82, {5}), (83, {51} is  not  soft Np — open. Also,
(T,G) = {(g1,{5}), (82, {5}), (g3, {5})} is soft G, — Np — open in (Z, 5., G), but is not soft
Np — open.

Definition 2.8: A soft topological space (M, ,G) is said to be a soft NP — space if any soft
G, — Np — open
subset of (M, G, G) is soft Np — open.

Now, we present generalizations of soft L(NpC) — spaces.

Definitions 2.9: A soft topological space (M, &, G) is said to be:

(i) Soft NpL, — space if any soft Lindelof F;, — Np — closed subset of (M, 3, G) is soft Np —
closed.

(i) Soft NpL, — space if Npcl((E, G)) is soft Lindel6f whenever (E, G) is soft Lindel6f subset
of (M, G, G).

(iii) Soft NpL; — space if any soft Lindel6f subset of (M, 3, G) is soft F, — Np — closed.
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(iv) Soft NpL, — space if (E, G) is soft Lindelof subset of (M, 3, G), then there exists a soft
Lindelof F,—Np—  closed subset (S,G) of (M, 3, G) with
(E,G) € (S,G) € Npcl((E,G)).

Theorem 2.10: Each soft L(NpC) — space is a soft NpLy — space, k = 1,2,3,4.

Proof:It is followed from Definition (2.9).
The converse of Theorem (2.10) may not be true as in the following examples:

Examples 2.11:
(i) If M=%R, G={g} and G, is the soft usual topology on R. Then (R,G,,G) is a soft
hereditarily Lindel6f NpL, — space, and thus soft NpL, — space, but neither soft NpL; —
space, since (E,G) = {(g, (0,1))} is soft Lindel6f in (R,5,, G), but it is not soft F; — Np —
closed nor a soft NpL; — space, since (H,G) = {(g, (0,1])}

= U{(g [1/n, 1]):n = 2,3,....} is soft Lindel6f F; — Np — closed in (R,3,, G) which is
not soft Np —  closed. Therefore, (R, G, G) is not a soft L(NpC) — space.
(ii) Let M =R, G = {g1, 82}, (g1, {V2}) =MER, and let
Gexe. = {(H,G) S R: i € (H,G)} U {R} be the excluded soft point topology on R. Then
(R, Oxc, G) is a soft NpL; — space, because if (E,G) is soft Lindeldf subset of (R, Ggxc, G),
then either i € (E,G) or i € (m, G). If f € (E,G), then (E,G) is soft closed. Hence, soft
F, — Np — closed, and if f & (E,G), then (E,G) is countable, so (E,G) is soft

F, — Np —closed. But, (R,Ggx,G) is not soft L(NpC) — space, because (B,G) =
{(g1,Q),(g2,Q} ER s soft Lindeldf, but is not soft Np — closed.

Proposition 2.12: (M, 3, G) is a soft L(NpC) — space if and only if it is a soft NpL; — space
and a soft NpL, — space.

Proof: Assume (B, G) is soft Lindelof in (M, S, G), since (M, &, G) is soft NpL; — space, so
(B,G) is soft F; — Np — closed, but (M,,G) is a soft NpL, — space, hence (B,G) is soft
Np — closed in (M,3,G) that is (M,5,G) is a soft L(NpC) — space. The other direction
follows from Theorem (2.10).

Proposition 2.13: Each soft space which is a soft NpL; and a soft NpL, — space is a soft
NpL, — space.

Proof: Suppose (P,G) is soft Lindel6f in (M, G, G), since (M,G,G) is soft NpL,, so there
exists a soft Lindelof F,—Np—closed set (S,G) in (M,5,G) with
(P,G) € (S,G) € Npcl((P,R)). But (M,3,G) is a soft NpL; — space. Hence, (S,G) is soft
Np — closed. Therefore, Npcl((P,G)) € (S,G) € Npcl((P,G)). Thus (S,G) = Npcl(P,G) is
soft Lindel6f. That is (M, G, G) is a soft NpL, — space.

Proposition 2.14: Each soft NpL, — space (resp. soft NpL; — space) is a soft NpL, — space.

Proof: Assume (B, G) is soft Lindel6f in (M, G, G). Since (M, G, G) is a soft NpL, — space, so
Npcl((B,G)) is soft Lindelof. That is (B,G) € Npcl((B,G)) € Npcl((B,G)). But,
Npcl((B,Q)) is soft Np — closed, hence there exists (F,G) = Npcl((B, G)) which is a soft
Lindelof F, — Np — closed subset of (M, 3, G) such that (B, G) € (F,G) € Npcl((B, G)). Thus
(M, 5, G) is a soft NpL, — space. In the same way, we can prove that (M, 3, G) is a soft
NpL, — space, if (M, G, G) is a soft NpL; — space.
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Remark 2.15: The converse of Proposition (2.14) is not true. In Examples (2.11),(i),
(R,6,,G) is a soft NpL, — space, but it is not soft NpL; — space. Also, in Examples
(2.112),(ii), (R, Gy, G) is a soft NpL, — space, but it is not soft NpL, — space.

Proposition 2.16: Any soft Np — Lindel6f space (M, S, G) is a soft NpL, — space, and any
soft NpL, — space with soft Lindel6f Np — dense set is a soft Lindelof.

Proof: Assume that (K,G) is soft Lindelof in (M,3,G), since Npcl((K,G)) is soft Np —
closed in (M, G, G), then Npcl((K, G)) is soft Np — Lindel6f in (M, &, G) by Proposition (1.10),
and so is soft Lindelof. Therefore, (M,3,G) is soft NpL, — space. Now, if (H,G) is soft
Lindel6f Np — dense set in (M, &, G), then Npcl((H, G)) = M. But (M, 3, G) is a soft NpL, —
space, so (M, G, G) is soft Lindelof.

Proposition 2.17: Any soft NP — space (M, G, G) is a soft NpL,; — space.

Proof: Suppose (E,G) is soft Lindel6f and soft F;, — Np — closed subset of (M, 3, G), hence
(E,G)C is soft G, — Np — open, but (M,3,G) is a soft NP — space, so by Definition (2.8),
(E,G)€ is soft Np — open in (M, G, G). That is (B, G) is soft Np — closed. Therefore, (M, G, G)
is a soft NpL; — space.

Proposition 2.18: If {(E;G):i € N} is a countable family of soft Np — Lindel6f sets in
(M, 3, G). Then U{(E;, G):i € N} is soft Np — Lindelf.

Proposition 2.19: Each soft Np — Lindel6f NpL,; — space (M, G, G) is a soft NP — space.

Proof: Assume (H,G) is a soft F; — Np — closed subset of (M,3,G). Hence (H,G) =
U{(H,,G):n € N}, where (H,,G) is soft Np — closed in M, vn € N. But (M,3,G) is soft
Np — Lindel6f, so by Proposition (1.10), (H,, G) is soft Np — Lindel6f in (M, 5,G), V n € N.
Thus, (H,G) = U{(H,,G):n € N} is soft Np — Lindeléf in (M,3,G) by Proposition (2.18).
Since (M, G, G) is a soft NpL; — space, so (H, G) is soft Np — closed. Therefore, (M, 3, G) is a
soft NP — space.

Corollary 2.20: A soft Np — Lindel6f space (M, G, G) is a soft NpL; — space if and only if it
is a soft NP — space.

Proposition 2.21: A soft open subspace (H,&y, G) of a soft L(NpC) — space (resp. soft
NpL; — space) (M, G, G) is a soft L(NpC) — space (resp. soft NpL; — space).

Proof: Suppose (E, G) is any soft Lindelof subset of (H, Gy, G), then (E, G) is a soft Lindel6f
in (M, 3,G). Since (M,&,G) is a soft L(NpC) — space, then (E,G) is soft Np — closed in
(M, 3, G). By Proposition (1.7),(i), (E,G) = (E,G)NH is soft Np — closed in (H, Gy, G). Hence
(E, G, G) is a soft L(NpC) — space.

Proposition 2.22: A soft clopen subspace (H,Gy, G) of a soft NpL; — space (resp. soft
NpL, — space, soft NpL, — space) (M, G, G) is a soft NpL,; —space (resp. soft NpL, — space,
soft NpL, — space).

Proof: Suppose that (B, G) is any soft Lindel6f F, — Np — closed set in (H, &y, G). Hence,
there exist {(By, G): k € N} is a countable family of soft Np — closed in (H, &y, G) such that
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(B, G) = U{(By,G): k € N}. Since (H,5y,G) is a soft clopen subspace of (M,3,G), then by
Proposition (1.8), (By, G) is soft Np — closed in (M, S, G) for each k € N. Hence, (B,G) is a
soft Lindelof F;, — Np — closed set in (M, 3, G). But, (M, 3, G) is soft NpL, so (B, G) is a soft
Np — closed subset of (M, 3, G). Thus (B, G) = (B, G)NH is soft Np — closed in (H, Gy, G) by
Proposition (1.7),(i). Therefore, (H, Gy, G) is a soft NpL,; —space.

Proposition 2.23: A soft topological space (M,3,G) is a soft T, — space if and only if for
every two distinct soft points fii, fi, € M, there exists a soft open set (0, G) containing i,
such that fm, & cl((0, G)).

Theorem 2.24: A soft T, — space (M, G, G) is a soft L(NpC) — space if and only if it is a soft
NpL, — space and a soft NpL, — space.

Proof: The first direction is followed from Theorem (2.10).

Conversely, suppose (L,G) is soft Lindel6f in (M,3,G), and let a € (L, G). Since
(M,3,G) is asoft T, — space, so by Proposition (2.23), we have for any b € (L, G), there
exists (E;, G) €T containing b such that a¢ cl((Eg, G)). Since
(L,G) € U{(E; G): b € (I,G)} and (L,G) is soft Lindelof, then there exists {(Es,,» ©)}men
which is a countable subcover, that is (L,G) € U{(E_,G):m € N} € U{cl((E_,G)):m €
N}. Now, for each m € N,
cl((Eg_, ©)N(L,G) is a soft Lindelof, and so Npcl[cl((Es,_, G))N (L, G)] is also soft Lindelof,
since (M, 3,G) is a soft NpL, — space. Put (P,G) = U{Npcl[cl((E5,_, G))N(L,G)]:m € N},
so (P, G) is a soft Lindel6f and soft F, — Np — closed subset of (M, 3, G). Since (M, 3, G) is a
soft NpL, — space, then (P,G) is soft Np — closed in (M,5,G) and i€ (P,G), thus
A € Npcl((L,G)). This shows (L,G) is soft Np — closed in M. That is (M,&,G) is a soft
L(NpC) — space.

Theorem 2.25: Each soft T, — space (M, 3, G) which is a soft NP — space is a soft L(NpC) —
space.

Proof: Suppose (B,G) is soft Lindelof subset of (M,3,G). If a€ (B,G)¢, then for
allb € (B,G), we have d # b, but (M, 3, G) is soft T,, so there exist soft open sets (U, G)5 and
(V,G)5 in (M,3,G) with 4 € (U,G)3 b € (V,G)5 and (U,G)sN(V,G)gz = @. Hence {(V,G); :
b € (B,G)} is a soft open cover of (B,G). But (B,G) is a soft Lindelof, so there exists
{(v, G)gi:i € N} which is a countable subcover. Put (W, G) = U{(V, G)gi:i € N}and (V,G) =
N {(U, G)s,:1 € N}. Thus (V,G) is a soft Np — open, since (M, 3, G) is a soft NP — space and
also (W, G) is soft open, since (W,G) is a soft union of soft open sets. So a € (V,G) and
(B,G) € (W,G). To show that (V,&)N(W,G) = @. Since (U,G)5N(V,G)5 =8, ¥ i€N,
then (V,)N(V,G)5, =&, ¥V i €N, Thus (V,G)N

(W,G) = @. Therefore, (V,G)N(B,G) = @, that is 4 € (V,G) € (B,G)¢, so (B,G)¢ is soft
Np — open. Hence (B, G) is a soft Np — closed set. Therefore, (M, 3, G) is a soft L(NpC) —
space.

Remark 2.26: In Theorem (2.25), if (M, G, G) is not soft NP — space, then the theorem is not
true. In Example (2.11), (i), (R,6,,G) is not soft NP —space, because (H,G) =
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{(g (01D} = U{(g [Y/n,1]):n = 2,3,....} is soft F, — Np — closed in (R,5,,G) which is
not soft Np — closed. While (R, &, G) is not soft L(NpC) — space.

Corollary 2.27: If a soft Np — Lindelof space (M,3,G) is soft T,. Then (M,5,G) is a soft
NP — space iff it is a soft L(NpC) — space.

Proposition 2.28: Any soft L(NpC) — space is a soft K(NpC) — space.

Proof: Suppose (M, &, G) is a soft L(NpC) — space and (E, G) is any soft compact subset of
(M, G, G), then (E, G) is soft Lindel6f in (M, 3, G). Since (M, G, G) is a soft L(NpC) — space,
then (E, G) is soft Np — closed. Thus (M, G, G) is a soft K(NpC) — space.

Remark 2.29: The converse of Proposition (2.28) is not true. In examples (2.11), (ii),
(R, Gpxe, Q) is a soft K(NpC) — space, but is not soft L(NpC) — space.

Corollary 2.30: If (M,5,G) is soft NpL; and soft NpL; — space, then (M,G,G) is soft
K(NpC) — space

Proof: Since (M,G,G) is soft NpL; and soft NpL; — space, then by Proposition (2.12),
(M, 3, G) is a soft L(NpC) — space, and by Proposition (2.28), (M, 3, G) is a soft K(NpC) —
space.

Definition 2.31: A soft topological space (M, G, G) is called:

(i) Soft hereditarily Lindel6f if any soft set in (M, G, G) is soft Lindelof.

(i) Soft anti — Lindelof if any soft Lindelof set in (M, G, G) is soft countable.
(iii) Soft NpQ — set space if any soft set in (M, &, G) is soft F, — Np — closed.

Proposition 2.32: Each soft anti — Lindel6f space with a finite set of parameters is soft NpL;.
Hence, each soft anti — Lindel6f NpL, — space with a finite set of parameters is a soft
L(NpC) — space.

Proof: Assume that (L, G) is a soft Lindel6f subset of a soft anti — Lindel6f space (M, G, G),
so (L,G) is countable. Since {f} is soft Np — closed in (M,&,G) for each m € M and G is
finite, then (L,G) = U{{f,}:n € N}, hence (L,G) is a soft F, — Np — closed set. Thus
(M, 3, G) is a soft NpL; — space.

The converse of Proposition (2.32) is not true we can see that in the following example:

Example 2.33: The soft indiscrete topology (R, 3;, G) on R is a soft NpL; — space, but it is
not soft anti — Lindeldf, since & € R is soft Lindelof, but it is not countable.

Proposition 2.34: Each soft NpQ — set space (M, G, G) is a soft NpL; — space.

Proof: Assume that (L, G) is any soft Lindel6f subset of a soft NpQ — set space (M, G, G),
then (L, G) is soft F; — Np — closed in (M, 3, G), so (M, 3, G) is a soft NpL; — space.

Remark 2.35: The converse of Proposition (2.34) is not true. In Example
(2.11),(ii), (R, Gxc, G) is a soft NpL; — space, but it is not soft NpQ — set space, because
(H,G) = {(g1, {R — (V2}), (g2, R)} € R is not soft F, — Np — closed, since if (H,G) is soft
F, — Np — closed, then (H,G) = D{(Sj,G):j € N}, where (S;,G) is soft Np — closed in R,
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VjeN. Since i & (S;,G),VjEN, then (5;,G) is finite Vje N. Therefore, (H,G) is
countable. This is a contradiction.
Now, we set a condition that makes soft NpL; — spaces imply soft NpQ — set spaces.

Proposition 2.36: If (M, 3, G) is soft hereditarily Lindel6f NpL; — space, then (M, G, G) is
soft NpQ — set space.

Proof: Suppose that (L, G) is any soft subset of (M, &, G), since (M, G, G) is a soft hereditarily
Lindelof, then (L, G) is soft Lindel6f. Since (M, G, G) is a soft NpL; — space, then (L, G) is a
soft F; — Np — closed set in (M, 3, G). Therefore, (M, 3, G) is a soft NpQ — set space.

Corollary 2.37: A soft hereditarily Lindel6f space (M, G, G) is soft NpQ — set space if and
only if it is soft NpL; — space.

Corollary 2.38: If (M, &, G) is a countable soft space with G is finite. Then (M, 3, G) is a soft
NpL; — space if and only if it is a soft NpQ — set space.

Proposition 2.39:

(i) Each soft NpQ — set space which is a soft NpL; is a soft L(NpC) — space.

(i) Each soft NpQ — set space which is a soft NP — space is a soft L(NpC) — space.
(iii) Each soft NP — space which is a soft NpL; is a soft L(NpC) — space.

Proof: (i) Assume (M, 3, G) is a soft NpQ — set space, then (M, G, G) is a soft NpL; — space
by Proposition (2.34). But (M, G, G) is a soft NpL; — space, thus (M, G, G) is a soft L(NpC) —
space by Proposition (2.12).
(i) Suppose (P, G) is a soft Lindelof subset of a soft NpQ — set space (M, &, G), then (P,G) is
soft F; — Np —

closed. Since (M,d,G) is a soft NP — space, then (P,G) is soft Np — closed. Hence,
(M, 3, G) is a soft L(NpC)

— space.
(iii) Assume that (M, G, G) is a soft NP — space, hence by Proposition (2.17), (M,3,G) is a
soft NpL; — space,

but (M, G, G) is a soft NpL; — space, so by Proposition (2.12), (M, G, G) is a soft L(NpC)

— space.

Corollary 2.40: (i) Each soft NpQ — set space which is a soft NpL,; — space is a soft NpL, —
space.
(i) Each soft NP — space which is a soft NpL; — space is a soft NpL, —space.

Proof: (i) If (K, G) is a soft Lindel6f subset of a soft NpQ — set space (M, G, G), then (K, G) is
soft F, — Np — closed, but (M,3,G) is soft NpL;, so (K,G) is soft Np — closed. Thus
(K,G) = Npcl((K,G)), and Npcl((K,G)) is soft Lindelof. Therefore, (M,3,G) is a soft
NpL, — space.
(if) Assume (K, G) is a soft Lindelof subset of a soft NpL; — space (M, &, G), so (K,G) is a
soft F; — Np —

closed. Since (M,G,G) is a soft NP — space, thus (K,G) is soft Np — closed, that is
Npcl((K,G)) = (K, G)),

so Npcl((K, G)) is soft Lindel6f. Hence (M, G, G) is a soft NpL, — space.
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Proposition 2.41: If (M,3,G) is soft hereditarily Lindeloéf and soft NP — space. Then
(M, 3, G) is a soft NpQ
— set space iff (M, G, G) is a soft L(NpC) — space.

Proof: Suppose that (M, G, G) is a soft NpQ — set space, since (M, G, G) is soft NP — space,
hence by Proposition (2.39),(ii), (M, 3, G) is a soft L(NpC) — space. Conversely, suppose that
(M, G, G) is a soft L(NpC) — space, then by Theorem (2.10), (M, G, G) is a soft NpL; — space,
and since (M, G, G) is soft hereditarily Lindel6f, then (M, 3, G) is a soft NpQ — set space by
Proposition (2.36).

Theorem 2.42: If (M, 3, G) is a soft T, — space and a soft NpL, — space. The following are
equivalent:

(@) (M, 3, G) is a soft L(NpC) — space.

(b) (M, G, G) is a soft NpL, — space.

(c) (M, 3, G) is asoft NpL; — space.

(d) (M, 5, G) is asoft NpL, — space.

Proof: (a) = (b): By Theorem (2.10).

(b) = (a): According to Proposition (2.13) and Theorem (2.24).

(b) = (c): Assume that (M, G, G) is a soft NpL, — space, since (M, 3, G) is a soft NpL; —
space, then by Proposition (2.13), (M, 3, G) is a soft NpL, — space. But (M, 3, G) is soft T,, so
(M, 3, G) is a soft L(NpC) — space by Theorem (2.24). Thus (M, G, G) is a soft NpL; — space
by Theorem (2.10).

(c) = (b): This is followed by Proposition (2.12), and Theorem (2.10).

(c) = (d): Assume that (M,3,G) is a soft NpL; — space, since (M,3,G) is a soft NpL; —
space, then (M, G, G) is a soft L(NpC) — space by Theorem (2.12). So by Theorem (2.10),
(M, 3, G) is a soft NpL, — space.

(d) = (c): Assume (M, 3, G) is soft NpL, — space, since (M, &, G) is soft T, and soft NpL; —
space, then by Theorem (2.24), (M, G, G) is a soft L(NpC) — space. Therefore, by Proposition
(2.12), (M, G, G) is a soft NpL3 — space.

Conclusions
(i) Each soft LC — space (resp. soft L(NpC) — space, soft NP — space and soft NpQ — set
space) are a soft L(NpC) — space (resp. soft K(NpC) — space, soft NpL; — space and soft
NpL; — space), respectively.
(ii) Each soft L(NpC) — space is a soft NpLy — space, k = 1,2,3,4, but the converse is not
true.
(iii) Each soft NpL, — space (resp. soft NpL; — space) is a soft NpL, — space, but the
converse is not true.
(iv) Each soft Np — Lindel6f NpL, — space is a soft NP — space.
(v) A soft open subspace of a soft L(NpC) — space (resp. soft NpL; — space) is a soft
L(NpC) — space (resp.

soft NpL; — space).
(vi) A soft clopen subspace of a soft NpL; — space (resp. soft NpL, — space, soft NpL, —
space) is a soft NpL; —space (resp. soft NpL, — space, soft NpL, — space).
(vii) A soft T, — space (M, 3,G) is a soft L(NpC) — space if and only if it is a soft NpL; —
space and a soft NpL, — space.
(viii) Each soft T, — space (M, 3, G) which is a soft NP — space is a soft L(NpC) — space, but
the converse is not true.
(ix) We can apply this research to the algebraic, dynamic and geometric topology.
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