Rezaei et al.

Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2392-2400 DOI: 10.24996/ ijs.2017.58.4C.15

ISSN: 0067-2904

On the Atom Bond Connectivity Index of Titania Nanotubes $TiO_2(m, n)$

Mehdi Rezaei^{*1}, Mohammad Reza Farahani², Muhammad Kamran Jamil³, Hafiz Mutee ur Rehman⁴, Muhammad Imran⁵

¹Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.

²Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.

³Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan.

⁴Department of Mathematics & Statistics, The University of Lahore, Lahore, Pakistan.

⁵ Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates

⁵ Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan

Abstract

Let G(V,E) be a simple molecular graph, for a graph G(V,E) with vertex(atom) set

V and the edge(bond) set E, the third version of atom bond connectivity index is

defined as $ABC_3(G) = \sum_{e=uv \in E(G)} \sqrt{\frac{m_v + m_u - 2}{m_v \cdot m_u}}$, where m_v is the number of

edges of G lying near to u than to v. In this research paper, we compute the third version of atomic-bond connectivity index of the Titania Nanotubes $TiO_2(m,n)$.

Keywords: Molecular graph, Titania Carbon Nanotubes $TiO_2(m, n)$, Orthogonal cuts, atom-bond connectivity index.

1. Introduction

Let G(V,E) be a simple molecular graph, where V and E are the sets of vertices (atoms) and the edges (bonds). The number of vertices in V is called the order and the number of edges in E is called the size of the graph G. The degree of a vertex v, d_v , is the number of adjacent vertices with v. The length of the shortest path between two vertices u and v is called the distance and is denoted by d(u,v).

A topological index is a real number associated with a molecular graph, this real number predict the certain physical or chemical properties of that molecule. A lot of degree, distance and spectrum based topological indices have been introduced. For more details see [1-6].

The very first degree based topological index is Randic Index [7] introduced by Milan Randic as

$$\chi(G) = \sum_{\{u,v\}\in E(G)} \frac{1}{\sqrt{d_u d_v}}$$

Estrada et al. [8] proposed the atom-bond connectivity (ABC) index. It is defined as

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}.$$

^{*}Email: mehdrezaei@gmail.com

Estrada *et al.* developed a basically topological approach on the basis of the ABC index which explains the differences in the energy of linear and branched alkanes both qualitatively and quantitatively. Furtula et al. [2] determined the extremal (minimum and maximum) values of this index for chemical trees and showed that the star is the unique tree with the maximum ABC index. This index has proven to be a valuable predictive index in the study of the formation heat in alkanes [8].

One can consult [3, 4, 6, 9, 10] for recent results on vertex-degree based topological indices.

I. Gutman [11] introduced the distance based topological index named *Szeged index*. Then for an edge $e=uv \in E(G)$, suppose that

 $m_u(e|G) = \{x | x \in E(G), d(u,x) < d(x,v)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x) < d(x,u)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x \in E(G), d(v,x)\}, \\ m_v(e|G) = \{x | x$

where $m_v(e/G)$ is the number of edges of *G* lying near to *v* than to *u* and $m_u(e/G)$ is the number of edges of *G* lying near to *u* than to *v*. On these terminologies the Szeged index of a graph *G* is defined as:

$$S_{\mathcal{Z}_{\mathcal{V}}}(G) = \sum_{e \in E(G)} [n_u(e/G) \times n_v(e/G)]$$

I. Gutman et al. [12] proposed the edge version of Szeged index. This version of Szeged index is defined as

$$Sz_e(G) = \sum_{e \in E(G)} [m_u(e/G) \times m_v(e/G)].$$

Readers are encouraged to see [1-7, 12, 13] for computations of this index for some graph. The *third atom-bond connectivity index* of a graph *G* is defined as

$$ABC_{3}(G) = \sum_{e=uv \in E(G)} \sqrt{\frac{m_{v} + m_{u} - 2}{m_{v} \cdot m_{u}}}$$

Titania nanotube (TiO_2) is among the most studied compounds in materials science. This material has application in various fields for examples biomedical sciences like used in photo catalysis, dye-sensitized solar cells etc. In this research paper, we computed the third version of ABC index of titania nanotube.

2. Main Results and Discussions

Let G be the graph of $TiO_2(m,n)$ for all $m, n \in N$ depicted in Figure-1 This graph has 2(3n+2)(m+1) vertices/ atoms and 10mn+6m+8n+4 edges (bonds). By using the edge partition, the graph has 2mn+4n+4 atoms of degree two, 2n atoms of degree four, 2mn atoms with degree five and the atoms of degree three are 2mn+4m. For more information and details see [14-27]. Our aim to compute the atom bond connectivity index of G the number of edges in the left component representing m_u ($e | TiO_2(m, n)$) and the number of edges in the right component as $m_v(e | TiO_2(m, n))$ based on orthogonal cuts of G with 5n+3 vertical cuts for horizontal edges. Let e being an oblique edge we denote its orthogonal cut by C_i or $F_j \forall i = 1, 2, ..., 2(n+1)$ and j = 1, ..., 3n+1.

Note that the sizes of all orthogonal cuts are equivalent with $|C_i| = 2m+1$ and $|F_i| = 2(m+1)$.

Figure 1- Titania Nanotubes TiO₂[m,n] [14, 15].

In case the orthogonal cuts C_i (i=1,...,2(n+1)), see Figure-2: The values C_i are classified as following: **1. For** C_1 :

 $\overline{m_u(e_1/TiO_2(m,n))} = 0 \text{ and } m_v(e_1/TiO_2(m,n)) = /E(TiO_2(m,n)) - /C_1 / = 10mn + 6m + 8n + 4 - (2m+1) = 10mn + 4m + 8n + 3.$

2. <u>For C₂:</u>

 $m_u(\overline{e_2/TiO_2(m,n)} = |C_1| + |F_1| = 2m + 1 + 2m + 2 = 4m + 3$ and

 $m_{\nu}(e_2/TiO_2(m,n)) = |E(TiO_2(m,n)| - (|C_1| + |F_1| + |C_2|) = 10mn + 6m + 8n + 4 - (6m + 4) = 10mn + 2m + 8n.$

3. <u>*For* C₃:</u>

 $m_{u}(e_{3}/TiO_{2}(m,n)=2/C_{1}/+3/F_{1}/=10m+8andm_{v}(e_{3}/TiO_{2}(m,n)=/E(TiO_{2}(m,n)/-(3/C_{1}/+3/F_{1}/)=10mn+6m+8n+4-(12m+9)=10mn+8n-6m-5.$

4. <u>For C₄:</u>

 $m_{u}(\overline{e_{4}/\text{Ti}O_{2}(m,n)}=3/C_{1}/+4/F_{1}/=14m+11andm_{v}(e_{4}/\text{Ti}O_{2}(m,n)=/E(\text{Ti}O_{2}(m,n)/-(3/C_{1}/+4/F_{1}/)=10mn+6m+8n+4-(16m+12)=10mn+8n-10m-8$

5. <u>For C_(2h-1):</u>

 $m_u(e_{(2h-1)}/\overline{TiO_2}(m,n) = (2h-2)/C_1/+(3h-3)/F_1/=(2h-2)(2m+1)+(3h-3)(2m+2) = (10m+8)(h-1) \text{ and } m_v(e_{(2h-1)}/\overline{TiO_2}(m,n) = /E(\overline{TiO_2}(m,n)/-((2h-1)/C_1/+(3h-3)/F_1/) = 10mn+6m+8n+4-(10m+8)(h-1)-(2m+1)$

6. For C_(2h):

 $m_{u}(e_{(2h)}/TiO_{2}(m,n) = (2h-1)/C_{1}/+(3h-2)/F_{1}/=(2h-1)(2m+1) + (3h-2)(2m+2) = 10hm+8h-6m-5 and m_{v}(e_{(2h)}/TiO_{2}(m,n) = /E(TiO_{2}(m,n)/-(2h/C_{1}/+(3h-1)/F_{1}/) = 10m(n-h) + 10m+8(n-h)+8.$

7. *For* C_{2n+2} :

 $m_{u}(\overline{e_{2n+2}}/\overline{TiO_2}(m,n) = (2n+1)/C_1/(3n+1)/F_1/(2n+1) + (3h-2)(2m+2) = 10nm+8n+4m+3$ and $m_v(e_{2n+2}/\overline{TiO_2}(m,n) = 0.$

In case the orthogonal cuts F_i (j=1,...,3n+1), see Figure-2:

1. For
$$F_1$$
: $m_u(e_1/TiO_2(m,n)=2m+1=|C_i|$ and

 $m_{v}(\overline{e_{1}/TiO_{2}}(m,n)) = |E(TiO_{2}(m,n)| - (|C_{1}| + |F_{1}|)) = 10mn + 6m + 8n + 4 - (4m + 3) = 10mn + 8n + 2m + 1.$

2. ForF₂:
$$m_u(e_2/TiO_2(m,n)=2/C_1/+/F_1/=6m+4$$
 and

 $m_{\nu}(e_2/TiO_2(m,n)) = |E(TiO_2(m,n)| - (2/C_1/2/F_1/2)) = 10mn + 6m + 8n + 4 - (8m + 6) = 10mn + 8n - 2m - 2$.

3. For F₃: $m_u(e_3/TiO_2(m,n)=2/C_1/+2/F_1/=8m+6$ and

 $m_{\nu}(e_{3}/TiO_{2}(m,n) = |E(TiO_{2}(m,n)| - (2/C_{1}/+3/F_{1}/) = 10mn + 6m + 8n + 4 - (10m + 8) = 10mn + 8n - 4m - 4.$

4. **<u>ForF</u>₄:** $m_u(e_4/TiO_2(m,n)=3/C_1/+3/F_1/=12m+9$ and

 $m_{v}(e_{4}/TiO_{2}(m,n)) = /E(TiO_{2}(m,n)) - (3/C_{1}/+4/F_{1}/) = 10mn + 6m + 8n + 4 - (14m + 11) = 10mn + 8n - 8m - 7.$

5. <u>For F_5 </u>: $m_u(e_5/TiO_2(m,n)=4/C_1/+4/F_1/=16m+12$ and

 $m_{v}(e_{5}/TiO_{2}(m,n)) = |E(TiO_{2}(m,n)| - (4/C_{1}/+5/F_{1}/)) = 10mn + 6m + 8n + 4 - (18m + 14) = 10mn + 8n - 12m - 10.$

6. <u>For F_{6} </u>: $m_u(e_6/TiO_2(m,n)=4/C_1/+5/F_1/=18m+13$ and $m_{\nu}(e_{6}/TiO_{2}(m,n)) = |E(TiO_{2}(m,n)| - (4/C_{1}/+6/F_{1}/)) = 10mn + 6m + 8n + 4 - (20m + 15) = 10mn + 8n - 14m - 11.$ 7. For $F_{7:}$ $m_u(e_7/TiO_2(m,n)=5/C_1/+6/F_1/=22m+17$ and $m_{\nu}(e_7/TiO_2(m,n)) = |E(TiO_2(m,n)| - (4/C_1) + 6/F_1|) = 10mn + 6m + 8n + 4 - (24m + 19).$ 8. For F_8 : $m_u(e_8/TiO_2(m,n)=6/C_1/+7/F_1/=22m+17$ and $m_{\nu}(e_{8}/TiO_{2}(m,n)) = /E(TiO_{2}(m,n)) - (4/C_{1}/+6/F_{1}/) = 10mn + 6m + 8n + 4 - (24m + 19).$ 9. <u>For F_{3h+1} (h=0,...,n):</u> $m_u(F_{3h+1}/TiO_2(m,n)=(2h+1)/C_1/+(3h)/F_1/=(2h+1)(2m+1)+(3h)(2m+2)=10hm+2m+8h+1.$ $m_{v}(F_{3h+1}/TiO_{2}(m,n)) = |E(TiO_{2}(m,n)| - (10hm + 4m + 8h + 3)) = (10m + 8)(n-h) + 2m + 1.$ 10. <u>For F_{3h-1} (h=1,...,n):</u> $m_u(F_{3h-1}/TiO_2(m,n)=(2h)/C_1/+(3h-2)/F_1/=(2h)(2m+1)+(3h-2)$ $(2m+2)=(10m+8)h-2/F_1/=10hm-4m+8h-4.$ $m_{v}(F_{3h-1}/TiO_{2}(m,n) = (10mn+6m+8n+4)-(10hm-2m+8h-2) = (10m+8)(n-h)+8m+6.$ 11. <u>For F_{3h} (h=1,...,n):</u> $m_u(F_{3h}/TiO_2(m,n)=m_u(F_{3h-1}/TiO_2(m,n)+|F_1|)$ $k2=2h/C_1/+(3h-1)/F_1/=(10m+8)h-/F_1/=(10m+8)h-2m-2.$ $m_{v}(F_{3h}/TiO_{2}(m,n)=m_{v}(F_{3h-1}/TiO_{2}(m,n)-F_{1}/=(10m+8)(n-h)+6m+4.$

Based on the above calculations we have two following results.

Figure 2- [16-19] Orthogonal cuts representation of the Titania Nanotubes.

Theorem 2-1 The third atom-bond connectivity index (ABC_3) of Titania Nanotubes $(TiO_2[m,n])$ is equal to

$$ABC_{3}(TiO_{2}[m,n]) = (2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=2}^{n+1} \left[(2(5m+4)(h-1)((10m+8)(n-h)+14m+11))^{-0.5} \right] + (2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=1}^{n} \left[(2(10hm+8h-6m-5)(5m+4)(n-h+1))^{-0.5} \right] + (2m+2)\sqrt{10mn+4m+8n}\sum_{h=0}^{n} \left[(10hm+8h+2m+1)^{-0.5}((10m+8)(n-h)+2m+1)^{-0.5} + \frac{1}{2}(5mh+4h-m-1)^{-0.5}((5m+4)(n-h)+3m+2)^{-0.5} + \frac{1}{2}(5hm+4h-2m-2)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5} \right]$$

Proof:

____From the definition of third atom bond connectivity index and the calculation done early in this section we have

$$\begin{split} &ABC_{3}(TiO_{2}(m,n)) = \sum_{e_{i}=we \in E(TiO_{2}(m,n))} \sqrt{\frac{m_{e}+m_{u}-2}{m_{e},m_{u}}} \\ &= \sum_{\substack{f_{i}=we \in E_{i}}\\i=1,\dots,3n+2}} |C_{i}| \left[\sqrt{\frac{m_{e}(e_{i}|(TiO_{2}(m,n))+m_{u}(e_{i}|(TiO_{2}(m,n))-1)}{m_{e}(e_{i}|(TiO_{2}(m,n))+m_{u}(f_{i}|(TiO_{2}(m,n))-2})} \right] \\ &+ \sum_{\substack{f_{i}=we \in E_{i}\\i=1,\dots,3n+2}} |F_{i}| \left[\sqrt{\frac{m_{e}(f_{i}|(TiO_{2}(m,n))+m_{u}(f_{i}|(TiO_{2}(m,n))-1)}{m_{e}(f_{i}|(TiO_{2}(m,n))+m_{u}(f_{i}|(TiO_{2}(m,n))-2)}} \right] \\ &+ |C_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(e_{2h-1}|(TiO_{2}(m,n))+m_{2h-1}(e_{i}|(TiO_{2}(m,n))-2)}{m_{e}(e_{2h-1}|(TiO_{2}(m,n))+m_{2h-1}(e_{i}|(TiO_{2}(m,n))-2)}} \right] \\ &+ |C_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(e_{2h-1}|(TiO_{2}(m,n))+m_{2h}(e_{i}|(TiO_{2}(m,n))-2)}{m_{e}(e_{2h}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}} \right] \\ &+ |F_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(f_{3h-1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}{m_{e}(f_{3h+1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}} \right] \\ &+ |F_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(f_{3h-1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}{m_{e}(f_{3h+1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}} \right] \\ &+ |F_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(f_{3h-1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}{m_{e}(f_{3h+1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)} \right] \\ &+ |F_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{m_{e}(f_{3h-1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)}{m_{e}(f_{3h+1}|(TiO_{2}(m,n))+m_{2h}(f_{3h+1}|(TiO_{2}(m,n))-2)} \right] \\ &+ |F_{i}| \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{(10m+8h-6m-5)+(10mn+8n+6m+4)-(10m+8h(n-1)-(2m+1))}{(10m+8h-6m-5)+(10m(n-h)+10m+8(n-h)+8h-2)}} \right] \\ &+ 2(m+1) \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{(10hm+2m+8h+1)+((10m+8)(n-h)+6m+4)-2}{(10hm+2m+8h+1)+((10m+8)(n-h)+6m+4)-2}} \right] \\ &+ 2(m+1) \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{(10hm+3h-2m-2)+((10m+8)(n-h)+8m+6)-2}{(10hm+4m+8h-4)\times((10m+8)(n-h)+8m+6)-2}} \right] \\ &+ 2(m+1) \sum_{\substack{h=1,\dots,n+1\\hert=h}} \left[\sqrt{\frac{(10hm-4m+8h-4n)\times((10m+8h-6m-5)\times(10mn-10mh-8h+14m+8n+11)}{(10m+4m+8h-4)\times((10m+8h-6m-5)\times(10mn-10mh-8h+14m+8h+1)}}}$$

$$\begin{split} &+2(m+1)\sum_{\substack{f_{n=0}^{n},\dots,m}}\left[\sqrt{\frac{10mn+4m+8n}{(10hm+2m+8h+1)\times(10mn-10mh+8n-8h+2m+1)}}\right] \\ &+2(m+1)\sum_{\substack{f_{n=0}^{n},\dots,m}}\left[\sqrt{\frac{10mn+4m+8n}{(10mh+8h-2m-2)(10mn-10mh+8n-8h+8m+4)}}\right] \\ &+2(m+1)\sum_{\substack{f_{n=0}^{n},\dots,m}}\left[\sqrt{\frac{10mn+4m+8n}{(10mh-4m+8h-4)\times(10mn-10mh+8n-8h+8m+6)}}\right] \\ &=(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=1}^{n+1}\left[\frac{(10mh+8h-10m-8)^{-0.5}(10mn-10mh-8h+14m+8n+11)^{-0.5}}{(10mn-10mh+8n-8h+8m+6)}\right] \\ &=(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(10mh+8h-2m-2)^{-0.5}(10mn-10mh+8n-8h+2m+1)^{-0.5}}{(10mn-10mh+8n-8h+2m+1)^{-0.5}(10mn-10mh+8n-8h+2m+1)^{-0.5}}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(10mh+2m+8h+1)^{-0.5}(10mn-10mh+8n-8h+2m+1)^{-0.5}}{(10mn-10mh+8n-8h+8m+6)^{-0.5}(10mn-10mh+8n-8h+8m+6)^{-0.5}}\right] \\ &=(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(5m+4)(h-1)((10m+8)(n-h)+14m+11))^{-0.5}}{(10mn+10m+8h-8h+2m+1)^{-0.5}}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(10hm+8h+2m+1)^{-0.5}((10m+8)(n-h)+2m+1)^{-0.5}}{(10m+4h-2m-2)^{-0.5}((5m+4)(n-h)+3m+2)^{-0.5}}\right] \\ &=(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(5m+4)(h-1)((10m+8)(n-h)+14m+11))^{-0.5}}{(10m+8h-2m-2)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}\right] \\ &=(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(10hm+8h-2m-1)^{-0.5}((5m+4)(n-h)+14m+11))^{-0.5}}{(10m+8h-2m-2)^{-0.5}((5m+4)(n-h)+14m+11)}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(10hm+8h-2m-1)^{-0.5}((5m+4)(n-h)+14m+11))^{-0.5}}{(10m+8h-2m+1)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(10hm+8h-2m-1)^{-0.5}((5m+4)(n-h)+14m+11))^{-0.5}}{(10m+8h-2m+1)^{-0.5}((5m+4)(n-h)+14m+11)}\right] \\ &+(2m+1)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(10hm+8h-2m+1)^{-0.5}((5m+4)(n-h)+14m+11)}{(10m+8h-2m+1)^{-0.5}}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(2(10hm+8h-2m-2)^{-0.5}((5m+4)(n-h)+14m+11)}{(2(5m+4h-m-1)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}}\right] \\ &+(2m+2)\sqrt{10mn+4m+8n+1}\sum_{h=0}^{n}\left[\frac{(10hm+8h-2m+1)^{-0.5}((5m+4)(n-h)+14m+11)}{(10m+8h-2m+1)^{-0.5}}}\right] \\ &+\frac{1}{2}(5m+4h-2m-2)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}\right] \\ &+\frac{1}{2}(5m+4h-2m-2)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}\right] \\ &+\frac{1}{2}(5m+4h-2m-2)^{-0.5}((5m+4)(n-h)+4m+3)^{-0.5}}\right] \\ &+\frac{1}$$

<u>Corollary 2-1</u> Consider the graph of Titania Nanotubes $(TiO_2[m,n])$ depicted in Figure-2, thus $ABC_3(TiO_2(n,n))$

$$=(2n+1)\sqrt{10n^{2}+12n+1}\sum_{h=2}^{n+1}\left[\left(2(5n+4)(h-1)((10n+8)(n-h)+14n+11)\right)^{-0.5}\right]$$

+(2n+1) $\sqrt{10n^{2}+12n+1}\sum_{h=1}^{n}\left[\left(2(10hn+8h-6m-5)(5n+4)(n-h+1)\right)^{-0.5}\right]$
+2(n+1) $\sqrt{10n^{2}+12n}\sum_{h=0}^{n}\left[\frac{(10nh+8h+2n+1)^{-0.5}((10n+8)(n-h)+2n+1)^{-0.5}}{+\frac{1}{2}(5nh+4h-n-1)^{-0.5}((5n+4)(n-h)+3n+2)^{-0.5}}+\frac{1}{2}(5nh+4h-2n-2)^{-0.5}((5n+4)(n-h)+4n+3)^{-0.5}}\right]$

Example 2-1 By $ABC_3(TiO_2(n,n))$ from Theorem 2-1 and Corollary 2-1 we can compute some values of the third atom-bond connectivity index (ABC_3) of Titania Nanotubes $TiO_2[n,n]$ in cases n=10,20,..., 100,200,..., 10000,20000,..., 100000 as follows:

ABC3(Tio2[10,10])	189.471697164 843	ABC3(Tio2[6000,6000])	130133.909653 037
ABC3(Tio2[20,20])	391.487186003 641	ABC3(Tio2[7000,7000])	151908.517175 455
ABC3(Tio2[30,30])	597.131141691 419	ABC3(Tio2[8000,8000])	173688.764745 554
ABC3(Tio2[40,40])	804.729712667 658	ABC3(Tio2[9000,9000])	195473.621746 691
ABC3(Tio2[50,50])	1013.59838300 573	ABC3(Tio2[10000,10000])	217262.337766 23
ABC3(Tio2[60,60])	1223.37763792 512	ABC3(Tio2[20000,20000])	435279.414451 257
ABC3(Tio2[70,70])	1433.85097603 564	ABC3(Tio2[30000,30000])	653423.028535 021
ABC3(Tio2[80,80])	1644.87607484 862	ABC3(Tio2[40000,40000])	871632.145006 282
ABC3(Tio2[90,90])	1856.35345552 17	ABC3(Tio2[50000,50000])	1089883.12161 511
ABC3(Tio2[100,100])	2068.21035019 857	ABC3(Tio2[60000,60000])	1308163.83297 695
ABC3(Tio2[200,200])	4199.61273279 957	ABC3(Tio2[70000,70000])	1526467.07598 731
ABC3(Tio2[300,300])	6343.56697894 067	ABC3(Tio2[80000,80000])	1744788.15739 478
ABC3(Tio2[400,400])	8494.03953630 257	ABC3(Tio2[90000,90000])	1963123.81724 07
ABC3(Tio2[500,500])	10648.6833454 523	ABC3(Tio2[100000,10000	2181471.68196 077
ABC3(Tio2[600,600])	12806.2923999 935	ABC3(Tio2[200000,20000 0])	4365361.20101 551
ABC3(Tio2[700,700])	14966.1494849 107	ABC3(Tio2[300000,30000 0])	6549650.89257 744
ABC3(Tio2[800,800])	17127.7869546 141	ABC3(Tio2[400000,40000 0])	8734147.72923 624
ABC3(Tio2[900,900])	19290.8798131 657	ABC3(Tio2[500000,50000	10918776.9431 84
ABC3(Tio2[1000,1000])	21455.1913412 62	ABC3(Tio2[600000,60000	13103500.1888 751
ABC3(Tio2[2000,2000])	43139.3483679 292	ABC3(Tio2[700000,70000	15288294.6872 743
ABC3(Tio2[3000,3000])	64863.4930266 201	ABC3(Tio2[800000,80000	17473145.5965 71
ABC3(Tio2[4000,4000])	86608.3427742 496	ABC3(Tio2[900000,90000	19658042.6076 03
ABC3(Tio2[5000,5000])	108366.425858 07	ABC3(Tio2[1000000,1000 000])	21842978.2143 297

Corollary 2-2. By using the above table and Corollary 2-1 we have following approach for ABC₃ of Titania Nanotubes $TiO_2[n,n]$ for enough large integer number $m,n,k,p\geq 1$, where in $TiO_2[m,n]$, $m = n = p \times 10^k$: $ABC_3(TiO_2[10^k, 10^k]) = 2.185 \times 10^{k+1}$ $\begin{aligned} ABC_{3}\left(TiO_{2}\left[2\times10^{k}, 2\times10^{k}\right]\right) &= 4.365\times10^{k+1} \\ ABC_{3}\left(TiO_{2}\left[3\times10^{k}, 3\times10^{k}\right]\right) &= 6.5 \ \ \le 10^{k+1} \\ ABC_{3}\left(TiO_{2}\left[4\times10^{k}, 4\times10^{k}\right]\right) &= 8.734\times10^{k+1} \\ ABC_{3}\left(TiO_{2}\left[5\times10^{k}, 5\times10^{k}\right]\right) &= 1.092\times10^{k+2} \\ ABC_{3}\left(TiO_{2}\left[6\times10^{k}, 6\times10^{k}\right]\right) &= 1.31\times10^{k+2} \\ ABC_{3}\left(TiO_{2}\left[7\times10^{k}, 7\times10^{k}\right]\right) &= 1.53\times10^{k+2} \\ ABC_{3}\left(TiO_{2}\left[8\times10^{k}, 8\times10^{k}\right]\right) &= 1.75\times10^{k+2} \\ ABC_{3}\left(TiO_{2}\left[9\times10^{k}, 9\times10^{k}\right]\right) &= 1.97\times10^{k+2}. \end{aligned}$

ACKNWLEDGMENT

We thank the reviewers for their constructive comments for improving the quality of this research paper.

REFERENCES

- 1. Khadikar, P.V., Deshpande, N.V., Kale P.P., Dobrynin A.A. and Gutman, I., 1995. The Szeged index and an analogy with the Wiener index. J. Chem. Inf. Comput. Sci., 35: 547–550. doi/abs/10.1021/ci00025a024
- Das, K., Domotor, G., Gutman, I., Joshi, S., Karmarkar, S., Khaddar, D., Khaddar, T., Khadikar, P.V., Popovic, L., Sapre, N.S., Sapre, N. and Shirhatti, A. 1997. A comparative study of the Wiener, Schultz and Szeged indices of cycloalkanes. *Journal of the Serbian Chemical Society*, 62: 235-240. doi/pdf/10.1021/ci980139h
- **3.** Vukičević, D. and Furtula, B., **2009.** Topological index based on the ratios of geometrical and arithmetical means of end vertex of degree of edges. *Journal of Mathematical Chemistry*, **46**(4): 1369-1376. DOI: 10.1007/s10910-009-9520-x
- 4. Chepoi, V. and Klavžar, S. 1997. The Wiener index and the Szeged index of Benzenoid systems in linear time. *J. Chem. Inf. Comput. Sci.* 37(4): 752–755. doi/pdf/10.1021/ci9700079
- 5. Gutman, I. and Dobrynin, A.A. 1998. The Szeged index—a success story. *Graph Theory Notes*. N. Y. 34: 37–44.
- **6.** Iranmanesh, A. and Pakravesh, Y. **2007.** Szeged index of HAC₅C₆C₇ [k, p] Nanotubes. *J. Applied Sciences*, **7**(23): 3606-3617.
- **7.** Randic, M., **1975.** On characterization of the molecule branching. *J. Amer. Chem. Soc.*, **97**(23). 6609-6615. doi/abs/10.1021/ja00856a0
- 8. Estrada, E., Torres L., Rodriguez L. and Gutman I., **1998**. An ABC index: modelling the enthalpy of formation of alkanes. *Indian J. Chem*, **37**A: 849-855.
- 9. Iranmanesh, A., Soleimani B. and Ahmadi A. 2007. Szeged index of TUC4C8(R) Nanotubes, *Journal of Computational and Theoretical Nanoscience*, **4**(1): 147-151.
- **10.** Farahani. M.R. **2014.** The Application of Cut Method to Computing the Edge Version of Szeged Index of Molecular Graphs. *Pacific Journal of Applied Mathematics*, **6**(4): 249-258.
- 11. Gutman, I. and Klavžar, S. 1995. An algorithm for the calculation of the Szeged index of Benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci., 35: 1011–1014.
- 12. Gutman, I. Ashrafi A.R. 2008. The edge version of the Szeged index. *Croat. Chem. Acta.* 81(2), 263-266.
- **13.** Iranmanesh, A., Pakravesh, Y. and Mahmiani, A. **2008.** PI and edge-Szeged index of. HC₅C₇ [k, p] nanotubes. *Utilitas Mathematica*, **77**: 65-78.
- 14. Malik, M.A. and Imran, M. 2015. On multiple Zagreb index of TiO₂ nanotubes. *Acta Chimica Slovenica*, 62: 973–976.

- **15.** Gao, W., Farahani, M.R. and Imran, M. **2017.** About the Randić connectivity, modify Randić connectivity and sum-connectivity indices of titania nanotubes Tio₂(m,n). *Acta Chim. Slov.* **64**(1): 256–260.
- **16.** Farahani, M.R., Pradeep, Kumar, R., Rajesh, Kanna M.R. and Wang, S., **2016.** The vertex Szeged index of Titania Carbon Nanotubes TiO₂(m, n). *International Journal of Pharmaceutical sciences and Research.* **7**(9): 3734-3741.
- **17.** Farahani, M.R., Jamil, M.K. and Imran, M. **2016.** Vertex PIv topological index of Titania carbon Nanotubes, *Applied Mathematics and Nonlinear Sciences*, **1**(1): 170-176.
- 18. Huo, Y., Liu, J.-B., Imran, M., Saeed, M., Farahani, M.R., Iqbal, M.A. and Malik, M.A. 2016. On Some Degree-Based Topological Indices of Line Graphs of TiO₂ [m,n] Nanotubes, *Journal of Computational and Theoretical Nanoscience*, 13(12): 9131–9135.
- **19.** Jiang, H., Jamil, M.K., Siddiqui, M.K., Farahani, M.R. and Shao, Z. **2017.** Edge-Vertex Szeged Index of Titania Nanotube TiO₂ (m, n), m, n>1. *International Journal of Advanced Biotechnology and Research.* **8**(2): 1590-1597.
- 20. Gao, W., Liu, J.B., Siddiqui, M.K. and Farahani, M.R. 2016. Computing three topological indices for Titania Nanotubes TiO₂ [m, n]. *AKCE International Journal of Graphs and Combinatorics*, 13(3): 255–260. DOI: 10.1016/j.akcej.2016.07.001
- 21. Gao, W., Farahani M.R., Jamil M.K. and Siddiqui M.K. 2016. The Redefined First, Second and Third Zagreb Indices of Titania Nanotubes TiO₂ [m, n]. *The Open Biotechnology Journal*, 10: 272-277. DOI: 10.2174/1874070701610010272
- **22.** Gao, W., Jamil, M.K., Farahani, M.R. and Imran, M. **2016.** Certain topological indices of Titania TiO₂ (m,n). *Journal of Computational and Theoretical Nanoscience*, **13**(10): 7324–7328. doi:10.1166/jctn.2016.5719
- **23.** Li, Y., Yan, L., Farahani, M.R., Imran, M. and Jamil, M.K. **2017.** Computing the Theta Polynomial and the Theta Index of Titania Nanotubes TiO₂(m, n), *Journal of Computational and Theoretical Nanoscience*, **14**(1): 715–717. doi:10.1166/jctn.2017.6262
- 24. Yan, L., Li, Y., Farahani, M.R. and Imran, M. 2016. Sadhana and Pi polynomials and their indices of an infinite class of the Titania Nanotubes TiO₂ (m, n). *Journal of Computational and Theoretical Nanoscience*, 13(11): 8772–8775. doi:10.1166/jctn.2016.6039
- **25.** Yan, L., Li, Y., Farahani, M.R. and Jamil, M.K. **2016.** The Edge-Szeged index of the Titania Nanotubes TiO₂ (m, n). *International Journal of Biology, Pharmacy and Allied Sciences.* **5**(6): 1260-1269.
- 26. Yan, L., Li, Y., Hayat, S., Afzal Siddiqui, H.M., Imran, M., Ahmad, S. and Farahani, M.R. 2016. On degree-based and frustration related topological indices of single-walled titania nanotubes. *Journal of Computational and Theoretical Nanoscience*, 13(11): 9027–9032. doi:10.1166/jctn.2016.6080
- **27.** Liu, Y., Rezaei, M., Husin, M.N., Farahani, M.R. and Imran, M. **2017.** The Omega polynomial and the Cluj-Ilmenau index of an infinite class of the Titania Nanotubes Tio₂ (m, n). *Journal of Computational and Theoretical Nanoscience*, **14**(7): 3429–3432. doi:10.1166/jctn.2017.6646