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Abstract 

     In this paper we will investigate some Heuristic methods to solve travelling 

salesman problem. The discussed methods are Minimizing Distance Method 

(MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method 

(TTHM) and Greedy Method (GRM). 

     The weak points of MDM are manipulated in this paper. The Improved MDM 

(IMDM) gives better results than classical MDM, and other discussed methods, 

while the GRM gives best time for 5≤ n ≤500, where n is the number of visited 

cities. 
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 محسنة جديدة لحل مسالة البائع المتجول تقريبية طريقة
 
 

 *فائز حسن علي ،  سجاد مجيد جاسم

 العراق. ،بغداد ،الجامعة المستنصرية، كليه العلوم ،قسم الرياضيات
 

 خلاصة
في هذا البحث سيتم تنفيذ بعض الطرق التقريبية لحل مسالة البائع المتجول. هذه الطرق التقريبية هي:      

( وطريقة TTHM(، طريقة الشجرة التقريبية )BABMطريقة التقيد والتفرع )، (MDM) الاصغر طريقة المسافة
 (.GRMالشراهة )

( IMDMالمحسنة ) الاصغر . طريقة المسافةMDMفي هذا البحث تم معالجة نقاط الضعف بطريقة      
التقليدية ومن بقية الطرق التقريبة الاخرى، فيما اعطت طريقة  MDMاعطت نتائج افضل بكثير من طريقة 

GRM  افضل زمن لعدد مدنn 5، حيث ان≤ n ≤500. 
  

1. Introduction 

     Traveling Salesman Problem (TSP) consists of set of cities (say n), between any pair of cities there 

exist a way (path).The pair of cities has known distance each of these paths have specified distance or 

time of the travel, the cost or the trip (all considered distance). Traveling salesman starts from specific 

city and then travel to all other cities without passes from the same city again, finally returns to the 

origin city. The main objective of TSP is finding the complete path where the total distance be reduced 

by the seller during the trip [1]. 

     Many mathematical problems may relate to TSP studied in the start of 18
th
 century by the two 

mathematicians sir W. R. Hamilton and T. P. Kirkman. Hamilton found an Icosian game in 1857 

which required from a player to complete path or tour using specific connectors for 20 points. 

However, K. Menger and Harvard are the first who studied the general form of TSP in the late 1920’s 

or early 1930’s [2].  

       ISSN: 0067-2904  
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     In the mid-1950’s, many solution methods of TSP started to appear many papers, these papers used 

simple variations of the term TSP. In 1954, Dantzig, Fulkerson, and Johnson put a description of a 

method for solving TSP and showing the power of the proposed method by solving an instance with 

49 cities. In 1972, R. M. Karp showed that the Hamiltonian cycle problem (HCP) was NP-complete, 

and since TSP is a HCP, then its NP-complete, (NP-hard, is a class of problems that are informally the 

hardest problems in NP which means no polynomial-time algorithm is known for solving TSP( [3]. 

The main outlines of this paper are as follows: in section 2 we discuss the digraph representation since 

TSP can be treated as graph. While in section 3 we will show the concept of TSP with some 

applications. The mathematical formulation of TSP introduced in section 4. Some heuristic methods of 

TSP are discussed in section 5. In section 6 we suggest some improvements for MDM to construct a 

new method called IMDM. Many practical examples are tested in section 7 using some discussed 

heuristic methods for TSP including the IMDM. Lastly some conclusions are introduced in section 8. 

2. Digraph Representation 

Definition (1) [4]: A graph (G) is a finite set of points, called nodes or vertices (V), together with a 

finite set of edges, each  joins a pair of vertices. A loop is an edge joining a vertex to itself. 

Definition (2) [4]: If G is a graph that has n vertices, then the matrix A(G) (called the adjacency 

matrix of G), whose i
th
, j

th
 element is 1 if there is at least one edge between Vi and Vj and zero 

otherwise. 

Definition (3) [4]: A directed graph or a digraph is a graph has a finite set of directed edges, each 

of which joins an ordered pair of distinct vertices. 

Remark (1): 

 A digraph G contains no loops. 

 There are no multiple edges. 

 The directed edge ViVj in general is different from VjVi. 

 A(G) of G of a digraph may be symmetric. 

Definition (4): The tour length is the number of edges which are connected at least two nodes. 

Definition (5): The cyclic tour is the tour which ends with same nodes with length L, s.t 2≤Ln. 

Definition (6): The complete tour is cyclic tour with length L=n. 

3. Concept of TSP and Applications 

     TSP is a hard problem which its solution has eluded many mathematicians for many years. 

Currently there is no specific solution to this problem that has satisfied mathematicians.  

     The most popular application of the TSP is finding a route that a travelling salesman would take to 

visit every geographical location in a specified list such that the minimum total distance is obtained 

[5]. 

     Consider a number of machines in an assembly line. There are some machines whose main 

purposes are to drill different holes in a piece of material. This material may be the frame of a vehicle, 

a circuit board, or a piece of wood to be used as a book shelf. The drill has a specific positions 

specified by motors that move along tracks such that the drill could move to any position within a 

specific area. Find a solution to the TSP could be useful to find the optimal or best order in which the 

all the holes should be drilled [5]. 

     Another application when a solution to the TSP can be useful to is mechanical or electronic 

connection placement.  Consider the wiring of a specific circuit board, or the electrical wiring for a 

large building, or even the plumbing layout for a building. In many of these samples, the connections 

must to be laid out such that all the components are connected in a cycle [5]. 

4. Mathematical Formulation of TSP 

     TSP model is defined by the number of n cities and the distance matrix ||dij||, i,j=1,…,n (dii=∞) be 

the distance between city i and city j. we defined the matrix X interpreted as follows [6]: 






otherewise,0

icity  from reached is jcity  if,1
x ij  

Then the Matrix X=[Xij]n×n is: 
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The TSP model is given as: 

Minimize 
 


n

1i

n

1j

ijijxdz

  
Subject to

 





n

1j

ij n,...,1i,1x                      …(1) 





n

1i

ij n,...,1j,1x  

xij=0, 1. 

 

     TSP can be classified into two types; symmetrical or asymmetrical. In the symmetrical one, the 

distance between the two nodes or cities does not depend on the distance of the travel. For instance, if 

we have the distance between two nodes called i and j by dij and if we have dji=dij TSP is symmetric 

otherwise it is asymmetrical [7]. In this work we deal with the issue of asymmetry in the distance 

matrix because it’s the general situation. 

     We discuss the solving of TSP according to existence of successive rules (SR), in this paper SR 

means precedence rules between two direct nodes exists or not. We choose a simple example and 

solve this example using the complete enumeration method (CEM) (or known brute force), which is to 

find all possible permutations of the path ((n-1)!). 

To describe this situation let solve the TSP by using CEM for the following example. 

 

Example (1): Let n=4 and for the following asymmetrical TSP: 

 A B C D 

A − 2 3 7 

B 1 − 3 4 

C 4 5 − 6 

D 1 2 5 − 

 

Remark (2): The table above can be represented by D=[dij] 

The probable solutions are: 

1. ABCDA, Z=12. 

2. ABDCA, Z=15. 

3. ACBDA, Z=13. 

4. ACDBA, Z=12. 

5. ADBCA, Z=16. 

6. ADCBA, Z=18. 

The optimal solution is Z=12 for the two path (1) and (4). 

Now suppose we have the following SR: (DC) for same example: 

1. ADCBA, Z=18. 

2. ABDCA, Z=15. 

The optimal solution is Z=15 for the path (2). 

Remark (3): In this paper the two symbols (∞) and (−) have the same meaning, where no path or rout 

is between the pair of nodes or it’s the same node. 

As special case for TSP we introduce the following proposition: 

Proposition (1): For TSP, if dij=d i,j=1,..,n, then any sequence will be an optimal sequence. 
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Proof: Since TSP has n cities and n edges, then 
 


n

1i

n

1j

ijijxdZ nd=xd
n

1i

n

1j

ij  
 

for any 

sequence.           ▄ 

5. Heuristic Methods for Solving TSP 

     The term "heuristics", in general, used for algorithms to find solutions among all possible ones. 

However, the heuristic algorithms do not guarantee that the best solution will be found; but they 

usually find a solution close to the best or the optimal one and they find it fast and easily. Sometimes 

these heuristics can be accurate, i.e. they may find the best solution, but the algorithm is still treated as 

heuristic algorithm until the best solution is proven to be optimal [8]. Among available heuristics are 

Greedy Method (GRM), Tree Type Heuristic Method (TTHM), Branch and Bound Method (BABM) 

and Minimizing Distance Method (MDM). 

5.1 Greedy Method (GRM) 

     This algorithm starts by sorting the edges by length, and always adding the shortest remaining 

available edge to the tour. The shortest edge is available if it is not yet added to the tour and if adding 

it would not create a 3-degree vertex or a cycle with edges less than n. This heuristics can be applied 

to run in O(n
2
log(n)) time [9]. The main steps of the GRM are as follows: 

Greedy Method (GRM) Algorithm [10] 

Step 1: Input n, D=[dij], i, j=1,...,n. 

Step 2: From the first row, choose the lowest number (x), and delete the column x. 

Step 3: In the row x, find the least undeleted matrix cell entry (y) (except col. (1)) and identify the 

corresponding column (break tie randomly), y is the next city in the tour. 

Step 4: Delete the column y in D. 

Step 5: If (n-1) columns are deleted, goto Step 7, else goto Step 6. 

Step 6: Set x = y and goto Step 3. 

Step 7: Include the first city as the last city in the tour. 

Step 8: Calculate the total cost (Z) of the obtained tour. 

5.2 Tree Type Heuristic Method (TTHM) [11] 

     The main step in this method is the objective function evaluated at all nodes in each level of the 

search tree, then some of the nodes within each level (with minimum or maximum value) of the search 

tree are chosen from which to branch. Usually, one node is chosen with each level and stop at the first 

complete sequence of the nodes to be the solution. The algorithm of the TTHM is as follows: 

Tree Type Heuristic Method (TTHM) Algorithm  

Step 1: Input n, D=[dij], i,j=1,…,n , Cij=0. 

Step 2: Start with level i=1. 

Step 3: the minimum cost (zij) is evaluated at all nodes (j) in level (i), then branch from the all least 

cost nodes. 

Step 4: i=i+1, Cij=Cij+zij. 

Step 5: If i<=n goto Step 3. 

Step 6: Output Z=min(Cij). 

5.3 Branch and Bound Method (BABM)  

     The terms “Branch and Bound” represent  all the state space search methods such that all the 

children of E-node are generated any now nodes called line node when it became E-node. E-node is 

the node, which can be expended. The live-node is node generated all of whose children are not yet 

been expanded. A node which cannot be expanded called dead node, but this node can be useful for 

backtracking concept. If there are no more children to expand then we have to reach its parent and 

expand its children and we do so until we obtain the solution or complete tree path [12]. The algorithm 

of the BABM is as follows: 

Branch and Bound Method (BABM) Algorithm 

Step 1: Input n, D=[dij], i, j=1,...,n. 

Step 2: Reduce each row and column to ensure that be at least one zero on them (this done by finding 

the minimum value and then subtract it from each element in each row and column). 

Step 3: Calculate the total expected cost of expanding root node (Li). 

Step 4: L(node)=L(parent node)+Parent(i,j)+total cost of reduction. 

Step 5: Branch from minimum L(break the tie arbitrarily). 
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Step 6: If its remain one node goto Step 7, else goto Step 2. 

Step 7: Output the complete tour and the total cost Z. 

5.4 Minimizing Distance Method (MDM) [13] 

     This method is one of the best methods mentioned above in terms of results, we have to reduce 

matrix by subtracting the minimum element from each row and subtracting the minimum element 

from each column so that in each row and column there is zero. Then we calculate the penalties for 

each zero, we collect the smallest number in the row and column of this zero. Row and column are 

deleted. This zero is cancelled by the item with the opposite position of zero of the matrix and 

continued this process until the dimension of reduced matrix is 2.At the end we link the resulting paths 

and calculate the cost (see example (2)). The algorithm of the MDM is as follows: 

Minimizing Distance Method (MDM) Algorithm  

Step 1: Input n, D=[dij], i, j=1,...,n. 

Step 2: Reduce the matrix D s. t. must be at least one zero occurs in each row and column by do 

the following: Let Rk be the minimum element in rowi, then  

rowi=rowi-Rk, i=1,…,n, 1kn, and Ck be the minimum element in Colj, then Colj=Colj-Ck, j=1,…,n, 

1kn. 

Step 3: Calculate penalties Pij(0)=min(rowi)+min(colj) for all 0's. 

Step 4: Select the max(Pij(0)) (choose arbitrarily, if more than one Pij(0) are maximum) to 

obtain the single path ij, and delete the rowi and colj and set d(rowj,coli)= −, of the matrix D. 

Step 5: Check whether all the rows and columns of matrix D are deleted. If yes, go to Step 6; 

otherwise go to Step 2. 

Step 6: Link all resulting single paths together and calculate the total cost Z. 

Example (2): Lets have the following TSP: 

 A B C D E F 

A − 8 9 3 6 6 

B 3 − 5 10 2 9 

C 9 1 − 3 2 10 

D 4 8 6 − 1 4 

E 9 1 3 4 − 3 

F 3 7 8 3 9 − 

 

     After applying MDM we obtain the following routs: 

AD, FA, BE, CB 
 While the last reduce matrix is:  

 C F 

D 2 0
2 

E 0
2 

0
0 

 

By MDM rules we have to DF and EC. 

Then when linking the above routs, we obtain the following cyclic route: ADFA, thus we have 

a cyclic path with length less then n=6 and that is one of the weak points of MDM. 

6. Improving Minimizing Distance Method (IMDM) 

     The method MDM is an efficient method for finding a good solution, but through this paper we 

discover some weak points. These weak points can summarize as follows: The general weak point of 

the MDM is: the cyclic in the obtained path by MDM with length L < n (Table-1)). The number of 

cyclic paths increased as n increased. We mentioned before that if many equal max(Pij(0)) occurred, 

we choose one of them arbitrary. The chosen one may cause  cyclic path and this may be known in the 

end of applying MDM. 

     In order to manipulate this weak point of MDM we suggest an improving for MDM to increase its 

achievement and efficiency. The manipulate of the MDM weak points can be summarized  as follows: 

first when more than one Pij(0) are maximum, we choose one arbitrary and link it with obtained path(s) 

previously it produces a path δ(L), L≥2. If this choice not leads to cyclic path δ(L) with L<n, we have 

to set d((L+1),(m))= −, for m=1,…,L-1. If this choice leads to cyclic path we set it as dij= −, then 

re-choose another one; if all choices lead to a cyclic path we will choose direct less value than the 
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penalty cost of last max(Pij(0)) we stopped at. If all 0’s in D leads to cyclic path with L<n, we re-

reduce the matrix D. This new procedure continues until get non-cyclic path (complete path) until 

complete all nodes (cities) of the given matrix D (see Table-1) and example (3)). The algorithm of the 

improved MDM (IMDM) is as follows: 

Improved Minimizing Distance (IMDM) Algorithm  

Step 1:  Input n, D=[dij], i, j=1,...,n, path  = with length L=0. 

Step 2: Reduce the matrix D must be obtaining at least one zero in each row and column by do 

the following: Let Rk be the minimum element in rowi, then rowi=rowi-Rk, i=1,…,n, 1kn, and Ck be 

the minimum element in Colj, then Colj=Colj-Ck,  j=1,…,n, 1kn. 

Step 3: Calculate penalties Pij(0)=min(rowi)+min(colj) for all 0's. 

Step 4: Select the max(Pij(0)) (choose arbitrarily, if more than one Pij(0) are maximum) to 

obtain the single path ij, =+ij, L=L+1. 

Step 5: If  cyclic and if L < n, set dij=,  = - ij, L=L-1. 

Step 6: If all 0's of D imply to  with L < n then goto step 2, else goto step 4. 

Step 7: If  cyclic and if L = n, goto step 9. 

Step 8: If  not cyclic then delete the rowi and colj and d(rowj,coli)= − of the matrix D, and set 

d((L+1),(m))= −, for m=1,…,L-1, goto step 2. 

Step 9: Calculate the total cost Z().  

The block diagram of IMDM is shown in Figure-1. 

 
 

Figure 1-The block diagram of IMDM. 
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Example (3): Recall example (2): 
1

st
 step: we have to minimize row and column. 

 A B C D E F 

A − 5 4 0 3 1 

B 1 − 1 8 0 5 

C 8 0 − 2 1 7 

D 3 7 3 − 0 1 

E 8 0 0 3 − 0 

F 0 4 3 0 6 − 

     2
nd

 step: calculate penalties of all 0's (min(rowi)+min(colj)). All rows and columns have at least one 

zero (choose maximum penalty if equal choose arbitrarily). 

 A B C D E F 

A − 5 4 0
1 

3 1 

B 1 − 1 8 0
1 

5 

C 8 0
1 

− 2 1
 

7 

D 3 7 3 − 0
1 

1 

E 8 0
0 

0
1 

3 − 0
1 

F 0
1 

4 3 0
0 

6 − 

     Maximum penalty is 1, for more than path, we choose AD arbitrary. 

Cross out row A and column D. So we have the following reduced matrix (set cell D-A to (−)). 

 A B C E F 

B 1 − 1 0
 

5 

C 8 0
 

− 1 7 

D − 7 3 0
 

1 

E 8 0
 

0
 

− 0
 

F 0
 

4 3 6 − 

     Since at least one zero occurs in each row and column condition is satisfied, then finds the 

maximum penalty: 

 A B C E F 

B 1 − 1 0
1 

5 

C 8 0
1 

− 1 7 

D − 7 3 0
1 

1 

E 8 0
0 

0
1 

− 0
1 

F 0
4 

4 3 6 − 

    Maximum penalty is 4. Choose FA. 

 B C E F 

B − 1 0
1 

5 

C 0
1 

− 1 7 

D 7 3 0
1 

1 

E 0
0 

0
1 

− 0
1 

     Since at least one zero occurs in each row and column condition is satisfied, then finds the 

maximum penalty which is 1, we have BE, (set the cell E-B to (−)), now the reduced matrix is: 

 

 B C F 

C 0
13 

− 7 

D 6 2 0
2 

E −
 

0
2 

0
0 

 

     After applying IMDM steps we obtain the following reduced matrix: 

 B C F 

C 0
13 

− 7 

D 6 2 0
2 

E −
 

0
2 

0
0 



Ali and Jassim                                  Iraqi Journal of Science, 2018, Vol. 59, No.4C, pp: 2289-2300 

 

2296 

     We have CB. Now we will link the current path with the remaining paths that are linkable to it, 

CBE, So set d(E,C) = −. 

 C F 

D 2 0
 

E −
 

0
 

     We must choose DC and EF. 

     So we have the following routs: AD, FA, BE, CB, DC and EF. 

Then we obtain the following complete route: ADCBEFA, Z=18. 

Table-1shows the comparison results between MDM and IMDM. 

Table 1- Comparison results between MDM and IMDM. 

n 
MDM IMDM 

Cost Time Cyclic length Cost Time 

5 37 R - 37 R 

6 49 R - 49 R 

7 63 R - 63 R 

8 61 R - 61 R 

9 - - 7 57 R 

10 39 R - 39 R 

11 - - 4 69 R 

12 40 R - 40 R 

20 - - 17 71 R 

50 - - 12 77 R 

70 - - 45 92 1.1 

100 - - 56 116 3.3 

No. of solved problem 6 12 

Ratio of solved problem 50% 100% 

7. Practical Examples 

     In the practical examples we will choose different n such that 5≤n≤500 with integer distance such 

that dij[1,30] for 5≤n≤30, dij[1,100] for 40≤n≤90 and dij[1,150] for 100≤n≤500. All these 

examples are tested by heuristic methods (BABM, TTHM and GRM) adding to IMDM, all the tested 

methods are compared with CEM for 5≤n≤12. The most used important notations are: 

n: number of cities 

Av-C: Average of costs.  

Av-T: Average of time.  

AE: absolute error between best method and other methods. 

Av-all: Average of all Av-C or Av-T. 

Table-2 shows the comparison results between CEM from one side and IMDM, BABM, TTHM and 

GRM from another side for n=5…12. 

Table 2-Comparison results between CEM with IMDM, BABM, TTHM and GRM for n=5…12. 

n 

CEM IMDM BABM TTHM GRM 

Av-

C 
Av-T 

Av-

C 

Av-

T 
AE 

Av-

C 

Av-

T 
AE 

Av-

C 

Av-

T 
AE 

Av-

C 

Av-

T 
AE 

5 51 R 51.7 R 0.7 51.7 R 0.7 58.7 R 7.7 58.7 R 7.7 

6 46.3 R 50.3 R 4 55 R 8.7 59.7 R 13.4 59.7 R 13.4 

7 53 R 53 R 0 53 R 0 67 R 14 67 R 14 

8 56.7 R 56.7 R 0 68.3 R 11.6 83 R 26.3 83 R 26.3 

9 43.3 R 43.3 R 0 43.3 R 0 69.3 R 26 69.3 R 26 

10 52.7 3.8 52.7 R 0 53.3 R 0.6 63.3 R 10.6 61.7 R 9 

11 61.7 37.1 63.7 R 2 67.3 R 5.6 78.3 R 16.6 77.7 R 16 

12 41.7 409.1 43.7 R 2 52.7 R 11 70 R 28.3 73.7 R 32 

Av-

all 
50.8 56.6 51.9 R 1.1 55.6 R 4.8 68.7 R 17.9 68.9 R 18.1 
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     From the results of Table-1 we notice that IMDM is the best method for accuracy from other 

methods so it can be compared with other methods for n > 12. 

Figure-2) shows the comparison results of Table-2. 

 
Figure 2-Comparison results between CEM with IMDM, BABM, TTHM and GRM for n=5…12. 

 

Table-3 shows the comparison results between IMDM from one side and BABM, TTHM and GRM 

from another side for n=20:10:90. 

Table 3-Comparison results between IMDM with BABM, TTHM and GRM for n=20:10:90. 

n 
IMDM BABM TTHM GRM 

Av-C Av-T Av-C Av-T AE Av-C Av-T AE Av-C Av-T AE 

20 60 R 79 R 19 101.3 R 41.3 68.7 R 8.7 

30 58 R 66.7 R 8.7 109 R 51 117.3 R 59.3 

40 182 R 260 R 78 382 R 200 340 R 158 

50 201.3 R 292 R 90.7 450 R 248.7 334.3 R 133 

60 227 R 292.7 R 65.7 416 R 189 426.3 R 199.3 

70 233.3 R 295.3 1.3 62 474.3 R 241 462.7 R 229.4 

80 236.7 1.4 311 1.9 74.3 497.7 R 261 520.7 R 284 

90 247 1.9 314 2.8 67 472.7 R 225.7 503.3 R 256.3 

Av-all 180.7 0.8 238.8 1.1 58.2 362.9 R 182.2 346.7 R 166 

 

Figure-3 show the comparison results of Table-3. 
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Figure 3-Comparison results between IMDM with BABM, TTHM and GRM for n=20:10:90. 

 

Table-4 shows the comparison results of IMDM from one side with BABM and GRM from another 

side for n=100:100:500.  

Table 4-Comparison results of IMDM with BABM and GRM for n=100:100:500. 

n 
IMDM BABM GRM 

Av-C Av-T Av-C Av-T AE Av-C Av-T AE 

100 308.3 2.9 415.3 3.9 107 691.3 R 383 

200 387 18.4 523.7 41.5 136.7 915.3 R 528.3 

300 436.7 62.5 664 174.8 227.3 1152 1.1 715.3 

400 522.7 316.8 656.3 554.4 133.6 1213.3 1.9 690.6 

500 568.3 761.4 831.3 1283.5 263 1262.7 3.2 694.4 

Av-all 444.6 232.4 618.1 411.6 173.5 1046.9 1.4 602.3 

     In this table we exclude the TTHM because it takes high CPU time to solve the experimental 

examples. 

Figure-4 shows the comparison results of Table-4.  

 
Figure 4-Comparison results of IMDM with BABM and GRM for n=100:100:500. 
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All the above tables are considered without successive rules (WOSR).  

     Table-5 describes the results of comparing of BABM, TTHM and GRM WOSR or with successive 

rule (WSR) for n=70:10:100, and 100:100:500 and shows the number of SR (NSR). 

 

Table 5-Comparing of BABM, TTHM and GRM WORS or WSR for n=70:10:100, and 100:100:500. 

n NSR 
BABM WOSR WSR TTHM WOSR WSR GRM WOSR WSR 

Av-C Av-T Av-T Av-C Av-T Av-T Av-C Av-T Av-T 

70 14 295.3 1.3 R 474.3 R R 462.7 R R 

80 16 311 1.9 1.1 497.7 R R 520.7 R R 

90 18 314 2.8 1.6 472.7 R R 503.3 R R 

100 20 415.3 3.9 2.3 672 R R 691.3 R R 

200 40 523.7 41.5 24.3 936.3 8.8 1.7 915.3 R R 

300 60 664 174.8 105.3 - - - 1152 1.1 R 

400 80 656.3 554.4 360.4 - - - 1213.3 1.9 R 

500 100 831.3 1283.5 838.7 - - - 1262.7 3.2 R 

 

Figure-5 shows the comparison results of Table-5 for CPU time. 

 
Figure 5-Comparing of BABM, TTHM and GRM with or without SR for n=70:10:100, and 

100:100:300. 

 

8. Conclusions 

1. The present study manipulates some weak points, in MDM to improve the achieving and that is 

clear from the ratio of solved problem for MDM is 50% while for IMDM is 100% (see Table-1)). 

2. The cost results of Tables-(2, 3, 4) describe the good efficiency of IMDM for different number of 

cities (n). 

3. For the time criterion, we notice that GRM is the best method from the other approximated 

methods. 

4. The existence of SR gives improved just in time without any effect on cost results (see Table-5). 

5. As future work, we recommend to use exact methods (Branch and Bound Technique and Dynamic 

programing) and local search methods (Genetic Algorithm, Particle Swarm Optimization, Bees 

Algorithm,… etc.) to solve TSP.      
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