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Abstract 

     In this study, an efficient novel technique is presented to obtain a more accurate 

analytical solution to nonlinear pantograph differential equations. This technique 

combines the Adomian decomposition method (ADM) with the homotopy analysis 

method concepts (HAM). The whole integral part of HAM is used instead of an 

integral part of ADM approach to get higher accurate results. The main advantage of 

this technique is that it  gives a large and more extended convergent region of 

iterative approximate solutions for long time intervals that rapidly converge to the 

exact solution. Another advantage is capable of providing a continuous 

representation of the approximate solutions, which gives  better information over 

whole time interval. Finally, selected examples are given to show the accuracy, 

efficiency and effectiveness of this technique. This technique can be addressed and 

applied to other non-linear problems. 
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مع  لادوميانا تقنيةلمعادلة بنتوكراف التفاضلية الغير خطية من رتب عليا بواسطة التحليلي الحل 
المدمجة الهوموتوبي  
 

 خالد حمود الجيزاني
العراق ،بغداد ، الجامعة المستنصرية ،كلية العلوم  ،قسم علوم الرياضيات   

 

     الخلاصة:                                                                                                                     
في هذا البحث استخدمنا تقنية جديدة لحل معادلة بنتوكراف التفاضلية الغير خطية ذات الرتب العليا      

بأستخدام طريقتي الادوميان مع الهوموتوبي مدمجة سوية للحصول على نتائج أكثر دقة . كما هو معروف 
الهوموتوبي  المستخدم في ء التكامل للجميع طريقة الادوميان و الهوموتوبي تتميزان بالدقة والفعالية العالية. جز 

أعلى للنتائج. تتميز هذه و  ةدقاكثر سيتم أسخدامه جميعه بدل الجزء الخاص ب الادوميان وذلك للحصول على 
. للحل المظبوط  بشكل سريع والوصول مع اكثر دقة للحل لفترة اكبر بالعملية التكرارية الطريقة أنها تزيد و 
رة الزمنية فتك الحل لكل اللو تعطينا القدرة على دراسة سدنا بدالة مستمرة فيتزو القدرة بميزة أخرى أنها لها 

المعطاة. وأخيرا تم عرض أمثلة للتحقق من دقة وفعالية هذه التقنية. يمكن أستخدام هذه التقنية لحل العديد من 
                                 المسائل الغير خطية.                                                   
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1. Introduction 

    Many physics and engineering problems can be modelled by differential equations. 

However, closed-form solutions to such equations, especially for nonlinear ones, are difficult 

to obtain. In most cases, only approximate solutions (either analytical or numerical) can be 

expected [1-4]. Extensively, pantograph differential equations have been discussed in many 

fields of science and engineering in which these equations appear. The original name of the 

pantograph comes from the dynamics of a current collection system for an electric locomotive 

which was studied by Ockendon and Tayler [5]. These types of equations are raised in 

modelling different problems in sciences and engineering such as economy, biology control 

and other fields. For more details, we refer to several applications of these types of equations 

[5-7], [8,9]. Many authors studied the analytic solutions, numerical approach and some 

properties of these types of equations associated with the numerous applications [8,9], [10-

16]. In [12], the authors conducted the approximate solution by implementing the Taylor 

method to a non-homogenous multipantograph equation with variable coefficients that is 

expanded for this type which is given in [14],[17], 
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       with initial condition (0) ,s  ,  R, with ( )il s and ( )w r  are analytic functions ;

0 1.ig  Additionally, with properties of numerical and analytical solutions of Eq.(1) with 

( ) 0,w r  and ( ) ,i il r l are considered in [14]. A solution of the general pantograph equations 

associated with linear functional argument is numerically presented [8],[13] 
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with stationary conditions 
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       where ( )vkQ r  and ( )w r are analytic functions.  , ,v v i    and ika are complex constants or 

real.  For our work , we consider the two cases of differential equations: 

Case 1. 

1 2
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Case 2. 
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                                                               (5) 

where wand ,i  1,2,..., ,i z  are analytic functions; ,ik ia   and  are  constants or real 

complex. 

3.  Adomian-Homotopy Technique for Solving Equations 4 and  5 

  Firstly, we should review Adomian approach [2] to address these equations.  

Consider the nonlinear differential equation 
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We begin our analysis by rewriting equation (6) in operator form  
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                               1 2( ) ( ) ( , ( ), ( ( )), ( ( )),..., ( ( ))),zLs r s r w r s r s r s r s r                            (7) 

where ,
ds

L
dr

 we assume that L  is invertible and the inverse operator 1L is given by 

                                                           1

0

(.) (.)

t

L dx    

So, applying 1L  to both sides of (7) and using the initial condition give 

            1 1
1 2 0( ) [ ( )] [ ( , ( ), ( ( )), ( ( )),..., ( ( )))] ,zs r L s r L w r s r s r s r s r s                               (8) 

We next represent the linear term ( )s r by the decomposition series of components 

 ,ns  0,n  and we equate the nonlinear term 1 2( , ( ), ( ( )), ( ( )),..., ( ( )))zw r s r s r s r s r    by the 

series of Adomian polynomials ,nA ,n o  to get 
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Now, the initial condition is 0s and  

                                                         
1 1

1 ( ) ( ),c c cs L s L A 
   0.c                                (10) 

and so on. Based on these calculations, we get the solution in a series form. Similarly, the 

same procedure is applied to equation 5. 

     Secondly, we have to review the homotopy approach [1] for addressing these equations. 

Consider the nonlinear differential equation  
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By means of the homotopy analysis technique, the following linear operator may be chosen: 
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the nonlinear operator is defined as: 
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     where ( , )t p  is known function. Using definition of the zero-order deformation 

equation 

                                        [ ( , ) (0)(1 ) [ (] )( ) , ]p p Nt p s t t pH  L .                      (13) 

We can construct with ( ) 1H t   and 1,   the following (Liao, 2003): 

                                       [ ( , )] (0)](1 ) [ ( , )] 0p pN tt p s p   L                            (14) 

with the initial condition: 

                                                                 0(0, )p s   

For 0p   and 1,p   in equation (14), we have: 

                                                    ( ,0) (0)] 0[ t s  L                                                  (15) 

which implies 

                                                                   ( ,0) (0)t s                                                       

and also: 

                                                              [ ( ,1)] 0N t  ,                                                 (16) 

respectively. By the definition of the nonlinear matrix operator (12), the matrix equation (16) 

is equivalent to the original matrix equation (11). Expanding the ( , )t p  in Taylor series with 

respect to the embedding parameter ,p  we get: 
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       If the auxiliary linear operator, the initial condition (0)s , the auxiliary parameter  and 

the auxiliary function ( )H t are so properly chosen, such that the series (17)  converges at 

1,p   then due to equation (16), the matrix series (17) becomes: 

                                                                       
1

( ) (0) ( )m

m

s t s s t




                                               

      which satisfies the original matrix equation as proved by Liao (2003). Now, define the 

vector:  

                                                                  0 1( ) { ( ), ( ),..., ( )}.n ns t s t s t s t
 

       

Differentiating matrix equation (14) m-times with respect to the embedding parameter ,p  

and then setting 0p  . Finally, dividing them by m! ,we have the so-called mth-order 

deformation equation which is given as follows: 
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     Now, the solution of the thm order deformation matrix equation (18) after applying the 

inverse operator to both sides with a given initial condition, for 1m , the result becomes:
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      Therefore, it should be emphasized that  ( ),ms t 1m  which can be easily obtained by 

computation software such as Mathematica or Maple. Similarly this procedure for equation 5. 

Consequently, the general solution is given by  
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s t s t
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       Now, in order to apply Adomian-Homotopy (ADM-HAM), the whole integral for ADM 

in equation (10) is replaced by the whole integral of HAM in equation (19). In this case, a 
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more accurate solution, efficient, and more extended convergence area are obtained compared 

with that obtained by equation 10 as we see in the numerical examples. 

4.    Numerical examples 

Example 4.1.  Consider the pantograph equation of second order [13]  

                                       
 23

( ) ( ) 2,
4 2

(0) 0, (0) 0,

t
s t s t s t

s s

  
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  

       0 1,t                               (20) 

    With the exact solution 2( ) ,s t t then by applying Adomian-Homotopy which is explained 

in section 3, firstly, it is solved by ADM: 
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secondly, we solve the same equation by HAM: 
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    1,n                      (22) 

     Now, to apply the suggested technique ADM-HAM , we replace the whole part integral of 

equation (21) with the whole integral part of the equation (22), we get: 

                          2
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Simply by Maple or Mathematica software, we can obtain seven iterates approximate 

solutions as in the following Table.  

 

Table 1: Numerical results for Adomian-Homotopy of seventh iterate  

 

t 

 

Adomian-Homotopy 

 

Exact Solution 

 

Absolute Error 

0.1 0.00999999907592 0.01 9.02408 ×10
-9

 

0.2 0.03999942316955 0.04 5.7683 ×10
--7

 

0.3 0.089993443010507 0.09 6.55699×10
-6

 

0.4 0.15996326429320 0.16 3.67357 ×10
-5

 

0.5 0.24986038183363 0.25 1.39618×10
-4

 

0.6 0.35958498497379 0.36 4.15015×10
-4

 

0.7 0.488959076732129 0.49 1.04092×10
-3

 

0.8 0.637694936724653
 

0.64
 

2.30506×10
-3 

0.9 0.805359689305261 0.81 4.64031×10
-3

 

1. 0.991336850847586 1. 8.66315×10
-3

 

 

Example 4.2.  Consider the pantograph equation of the third order [13] . 

                                               
 0.3( ) ( ) ( 0.3) ,

(0) 1, (0) 1, (0) 1.

ts t s t s t e

s s s

       


    

     0 1,t                            (23) 

    With the exact solution ( ) .ts t e , we implement Adomian-Homotopy which is explained 

in Section 3 and in Example1, we can obtain seven iterates approximate solution as given in  

Table 2.  
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Table 2: Numerical results for Adomian-Homotopy of seventh iterate  

 

t 

 

Adomian-Homotopy 

 

Exact Solution 

 

Absolute Error 

0.1 0.90483986032836 0.90483741803596 2.44229 ×10
-6

 

0.2 0.818745867814137 0.818730753077982 1.51147×10
--5

 

0.3 0.740856480442197 0.740818220681718 3.82598×10
-5

 

0.4 0.670381440494918 0.670320046035639 6.13945 ×10
-5

 

0.5 0.606587287206899 0.606530659712633 5.66275×10
-5

 

0.6 0.548776641190715 0.548811636094027 3.49949×10
-5

 

0.7 0.496261732374315 0.49658530379141 3.23571×10
-4

 

0.8 0.448332551546541
 

0.449328964117222
 

9.96413×10
-4 

0.9 0.404219877024632 0.406569659740599 2.34978×10
-3

 

1. 0.3630532665298557 0.367879441171442 4.82618×10
-3

 

 

    We can observe from the above examples that the results of this technique are  excellent 

although with few iterations. They showed that this technique with the fewest number of 

iterations can converge to the correct results and will get a more accurate solution with a more 

extended convergence area by increasing the number of iterations. This technique that is 

developed in this work enables to solve different strong problems and second Painleve 

equation is investigated in [18]. 

 

4.     Conclusion 

      The Adomian-Homotopy technique has been successfully implemented of nonlinear 

generalized pantograph differential equations of higher order. Selected examples to investigate 

the validity of this technique. Compared with other approaches, the results that are given 

demonstrate that this technique is more accurate than the stated existing techniques and few 

iterations are enough to obtain a highly accurate solution which converges rapidly to the exact 

solution and extended  the convergence region.  
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