AL-Jizani Iragi Journal of Science, 2022, Vol. 63, No. 11, pp: 4911-4917
DOI: 10.24996/ijs.2022.63.11.27

y e

fragi

1
JTournal of
Science

e ———
ISSN: 0067-2904

The Analytic Solutions of Nonlinear Generalized Pantograph Differential
Equations of Higher Order Via Coupled Adomian-Homotopy
Technique

Khalid Hammood AL-Jizani
Department of Mathematics, College of Science, Mustansiriyah University, Baghadad, Iraq

Received: 25/11/2021 Accepted: 12/2/2022 Published: 30/11/2022

Abstract

In this study, an efficient novel technique is presented to obtain a more accurate
analytical solution to nonlinear pantograph differential equations. This technique
combines the Adomian decomposition method (ADM) with the homotopy analysis
method concepts (HAM). The whole integral part of HAM is used instead of an
integral part of ADM approach to get higher accurate results. The main advantage of
this technique is that it gives a large and more extended convergent region of
iterative approximate solutions for long time intervals that rapidly converge to the
exact solution. Another advantage is capable of providing a continuous
representation of the approximate solutions, which gives better information over
whole time interval. Finally, selected examples are given to show the accuracy,
efficiency and effectiveness of this technique. This technique can be addressed and
applied to other non-linear problems.
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1.  Introduction

Many physics and engineering problems can be modelled by differential equations.
However, closed-form solutions to such equations, especially for nonlinear ones, are difficult
to obtain. In most cases, only approximate solutions (either analytical or numerical) can be
expected [1-4]. Extensively, pantograph differential equations have been discussed in many
fields of science and engineering in which these equations appear. The original name of the
pantograph comes from the dynamics of a current collection system for an electric locomotive
which was studied by Ockendon and Tayler [5]. These types of equations are raised in
modelling different problems in sciences and engineering such as economy, biology control
and other fields. For more details, we refer to several applications of these types of equations
[5-7], [8,9]. Many authors studied the analytic solutions, numerical approach and some
properties of these types of equations associated with the numerous applications [8,9], [10-
16]. In [12], the authors conducted the approximate solution by implementing the Taylor
method to a non-homogenous multipantograph equation with variable coefficients that is
expanded for this type which is given in [14],[17],

4

s(r) = as(r) + Zli (s(gir) +w(r),  r>0, (1)
i=1
with initial condition s(0) =y, «,y €R, with I,(s) and w(r) are analytic functions ;
0< g; <1. Additionally, with properties of numerical and analytical solutions of Eq.(1) with
w(r)=0,and I;(r) =1,,are considered in [14]. A solution of the general pantograph equations
associated with linear functional argument is numerically presented [8],[13]

vV p-1
P ()= Qu(ns® (oyr +a,)+w(r), @)
v=0 k=0
with stationary conditions
p-1
Zaiks(k)(O):gi, i=01,..,p-1 ©)
k=0

where Q, (r) and w(r)are analytic functions. o,,«,,s and a, are complex constants or
real. For our work , we consider the two cases of differential equations:
Case 1.

s'(r) =as(r) + w(r,s(r),s(oy(r)), s(o5 (1))..... s(o, (1)),
s(0) =s,.
Case 2.
s (r) =w(r,s(r), s(o1(r)), S(c5(r)), .., s(a, ()

(4)

p-1

Zaiks(k)(O):gi,i:0,1,..., p-1. ©)
k=0

where wand o;, i=12,...,z, are analytic functions; a,,s; and « are constants or real

complex.

3. Adomian-Homotopy Technique for Solving Equations 4 and 5

Firstly, we should review Adomian approach [2] to address these equations.
Consider the nonlinear differential equation

§'(r) = as(r) + w(r,s(r),s(oy(r)), s(o3(r)),.... s(o,(r))),
s(0) =s,.
We begin our analysis by rewriting equation (6) in operator form

(6)
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Ls(r) = as(r) +w(r,s(r),s(c3(r)), s(o7(r)),..., s(, (1)), ()

where L= j—:, we assume that L is invertible and the inverse operator L™is given by

t
L) = I(.)dx
0

So, applying L™ to both sides of (7) and using the initial condition give
s(r) = aL [s(n)]+ L w(r, 5(r), 5(3(1), (o (1), S(o; (NN] + 5o, 8
We next represent the linear term «s(r) by the decomposition series of components
s,» N>0, and we equate the nonlinear term w(r,s(r),s(c;(r)),s(c,(r)),....s(c,(r))) by the
series of Adomian polynomials A,, n>o, to get

isn (r)=so+ L‘l[isn (r)}r L‘l(i%} 9)
n=0 n=0 n=0

Now, the initial condition is s,and

Seur = LH(so) + LH(A), ¢ 0. (10)
and so on. Based on these calculations, we get the solution in a series form. Similarly, the
same procedure is applied to equation 5.

Secondly, we have to review the homotopy approach [1] for addressing these equations.
Consider the nonlinear differential equation

§'(r) = as(r) + w(r,s(r),s(oy(r)), s(o3(r)),.... s(o,(r))),
(11)
s(0) =s,.
By means of the homotopy analysis technique, the following linear operator may be chosen:
o¢(t, p)
L[4(t, p)]= "
[4(t, p)] p
the nonlinear operator is defined as:
og(t,
O R (12)
where ¢ = ¢(t, p) is known function. Using definition of the zero-order deformation
equation
(- p)LL4(t, p)—s(0)] = p7H ()N[4(t, p)]. (13)
We can construct with H (t) =1 and 7 = -1, the following (Liao, 2003):
(- p)L[4(t, p)]-s(0)]+ pN[4(t, p)] =0 (14)
with the initial condition:
¢(O, p) = SO
For p=0and p =1, inequation (14), we have:
L[#(t,0)—s(0)]=0 (15)
which implies
#(t,0) =s(0)
and also:
N[4(t, 1] =0 (16)

respectively. By the definition of the nonlinear matrix operator (12), the matrix equation (16)
is equivalent to the original matrix equation (11). Expanding the #(t, p) in Taylor series with

respect to the embedding parameter p, we get:
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4L D) =90+ Y LR
_1m p=0
from equation (15), we have:
At p)=5(0)+ D s, ) p" (17)
m=1
_ 1 9"¢(t, p)
S, (1) = moop |

If the auxiliary linear operator, the initial condition s(0), the auxiliary parameter # and
the auxiliary function H(t) are so properly chosen, such that the series (17) converges at
p =1, then due to equation (16), the matrix series (17) becomes:

s(t) =s(0) + ism (t)
=1

which satisfies the original matrix equation as proved by Liao (2003). Now, define the
vector:

sn(t) ={sp (1), 5 (1), -, S, (D)}

Differentiating matrix equation (14) m-times with respect to the embedding parameter p,
and then setting p=0. Finally, dividing them by m! ,we have the so-called mth-order
deformation equation which is given as follows:

LIS (1) = S 1 (D] = AH )R (Sm-1) (18)
where

1 a™IN[g(t, p)l|

Rm (Sm—l): (m—l)l 8pm_1 ‘pzoy
B oO,m<1,
Am =Y ms 1

05, Ll
RpSm_1 = amtl m1— D R (Sma) + A= 7n)(C)
i=0

Now, the solution of the m™order deformation matrix equation (18) after applying the
inverse operator to both sides with a given initial condition, for m>1, the result becomes:

t m-1
S ()= iS5 [s'm(r)—sm1(r>—ZRm(sm1>+<1—zm)(<:)}dr
0 i=0

t m-1
=zmsm_l+h[sm_1(t)—(1—zm>sm_l(0)]+hj{sm_1<r)A—ZRm(sm_l)+(1—zm)(<:)]dr (19)
0 i=0

Therefore, it should be emphasized that s, (t), m>1 which can be easily obtained by

computation software such as Mathematica or Maple. Similarly this procedure for equation 5.
Consequently, the general solution is given by

M
s(t) = s (1).
k=0

Now, in order to apply Adomian-HomotEpr (ADM-HAM), the whole integral for ADM
in equation (10) is replaced by the whole integral of HAM in equation (19). In this case, a
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more accurate solution, efficient, and more extended convergence area are obtained compared
with that obtained by equation 10 as we see in the numerical examples.

4. Numerical examples

Example 4.1. Consider the pantograph equation of second order [13]

(s"(t) =%s(t) ; s[%}—tz 12,
s(0)=0,s'(0) =0,

With the exact solution s(t) =t?, then by applying Adomian-Homotopy which is explained
in section 3, firstly, it is solved by ADM:

0<t<y, (20)

X X 3 X
el [S3003n 5 e nz0 @
secondly, we solve the same equation by HAM:
X X 3
Yn () = ”( Y1 2 Yn-1(X) = Yna (gj +(L— 2D - 2)jdxdx, nx1, (22)
00

Now, to apply the suggested technique ADM-HAM , we replace the whole part integral of
equation (21) with the whole integral part of the equation (22), we get:

Y1 (X) = _f j(yz —% Yo (X) =¥, [gj +(1— #[n](t? - Z)dedx, n>0.
00

Simply by Maple or Mathematica software, we can obtain seven iterates approximate
solutions as in the following Table.

Table 1: Numerical results for Adomian-Homotopy of seventh iterate

0.00999999907592 0.01 9.02408 x10°
0.03999942316955 0.04 5.7683 x10
0.089993443010507 0.09 6.55699x10°°
0.15996326429320 0.16 3.67357 x10°
0.24986038183363 0.25 1.39618x10™
0.35958498497379 0.36 4.15015x10™
0.488959076732129 0.49 1.04092x107®
0.637694936724653 0.64 2.30506x10°
0.805359689305261 0.81 4.64031x10°
0.991336850847586 1. 8.66315x10

Example 4.2. Consider the pantograph equation of the third order [13] .
{s"(t) =—s(t) - s(t - 0.3) +e "%,
{5(0) =1,5'(0) =—1,5"(0) =1.
With the exact solution s(t)=e™"., we implement Adomian-Homotopy which is explained

in Section 3 and in Examplel, we can obtain seven iterates approximate solution as given in
Table 2.

0<t<l (23)
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Table 2: Numerical results for Adomian-Homotopy of seventh iterate
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0.90483986032836 0.90483741803596 2.44229 x10°
0.818745867814137 0.818730753077982 1.51147x10™°
0.740856480442197 0.740818220681718 3.82598x10°
0.670381440494918 0.670320046035639 6.13945 x107
0.606587287206899 0.606530659712633 5.66275x10°
0.548776641190715 0.548811636094027 3.49949%10°
0.496261732374315 0.49658530379141 3.23571x10"
0.448332551546541 0.449328964117222 9.96413x10™
0.404219877024632 0.406569659740599 2.34978x10°

0.3630532665298557 0.367879441171442 4.82618x10°

We can observe from the above examples that the results of this technique are excellent
although with few iterations. They showed that this technique with the fewest number of
iterations can converge to the correct results and will get a more accurate solution with a more
extended convergence area by increasing the number of iterations. This technique that is
developed in this work enables to solve different strong problems and second Painleve
equation is investigated in [18].

4.  Conclusion

The Adomian-Homotopy technique has been successfully implemented of nonlinear
generalized pantograph differential equations of higher order. Selected examples to investigate
the validity of this technique. Compared with other approaches, the results that are given
demonstrate that this technique is more accurate than the stated existing techniques and few
iterations are enough to obtain a highly accurate solution which converges rapidly to the exact
solution and extended the convergence region.
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