

ISSN: 0067-2904

# Face Antimagic Labeling for Double Duplication of Barycentric and Middle Graphs 

Vasuki $\mathbf{B}^{\mathbf{1}}$, Shobana $\mathbf{L}^{\mathbf{2}}$, Mohammed Ali Ahmed ${ }^{\mathbf{3}^{*}}$<br>.${ }^{1,2}$ Department of Mathematics, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur,603203, Kanchipuram, Chennai, Tamilnadu, India.<br>${ }^{1}$ Department of Mathematics, SRM Valliammai Engineering College, Kattankulathur - 603 203, Tamilnadu, India<br>${ }^{3}$ Department of Mathematics, College of Education for Pure Sciences (Ibn AL Haitham), University of Baghdad, Baghdad, Iraq

Received: 13/10/2021 Accepted: 9/12/2021 Published: 30/9/2022


#### Abstract

This paper proves the existence of face antimagic labeling for $D D_{V V}\left(C_{n}\left(C_{n}\right)\right)$, $n \geq 4, D D_{V V}\left(C_{m} \odot 2 P_{n}\right), m \geq 4, n \geq 3, D D_{V V}\left(M\left(C_{n}\right), n \geq 4\right.$ and $D D_{V V}\left(G^{+}\right)$.


Keywords: Labeling, Graph, Function, Double duplication, Face antimagic Mathematics Subject Classification: 05C78.

## 1. Introduction

Let $G=(V, E, F)$ be a finite connected plane graph without loops and multiple edges, where $V, E$ and $F$ are its vertex set, edge set and face set, respectively. Labeling of type $(0,1,0)$ assigns labels from the set $\{1,2, \ldots,|E(G)|\}$ to the edges of a graph $G$. The weight of a face under this labeling is the sum of the labels of the edges surrounding that face.
Labeling of type $(0,1,1)$ assigns labels from the set $\{1,2, \ldots,|E(G)+F(G)|\}$ to the edges and faces of a graph $G$. The weight of a face under this labeling is the sum of the labels of the edges surrounding that face and also the label of the same face.
In [1], Baca defined a labeling of a plane graph $G$ which is called ( $a, d$ ) - antimagic if for every positive integer $s$, the set of $S$-sided face weight is $W_{s}=\left\{a_{s}, a_{s}+d, \ldots, a_{s}+\right.$ $(|F(G)|-1)$ \}for some integer $a_{s}$ and $d \geq 0$. We allow different sets $W_{s}$ for different 's'.The concept of the $(a, d)$ antimagic labeling of the plane graphs is defined in [2], where it was also proved that the problem $D_{n}$ has $d$-antimagic labeling of type ( $1,1,1$ )for $d \in\{2,3,4,6\}$ and $n \equiv 3(\bmod 4)$.
Definition 1.3 [3]: The double duplication of a vertex by an edge of a graph is defined as a duplication of a vertex $v_{k}$ by an edge $e=v_{k}{ }^{\prime} v_{k}{ }^{\prime \prime}$ in a graph $G$ produces a graph $G^{\prime}$ in which $N\left(v_{k}{ }^{\prime}\right)=\left\{v_{k}, v_{k}{ }^{\prime \prime}\right\}$ and $N\left(v_{k}{ }^{\prime \prime}\right)=\left\{v_{k}, v_{k}{ }^{\prime}\right\}$. Again duplication of vertices $v_{k}, v_{k}{ }^{\prime}$ and $v_{k}{ }^{\prime \prime}$ by edges $e^{\prime}=u_{k} w_{k}, e^{\prime \prime}=u_{k}{ }^{\prime} w_{k}^{\prime}$ and $e^{\prime \prime \prime}=u_{k}{ }^{\prime \prime} w_{k}{ }^{\prime \prime}$, respectively in $G^{\prime}$ produces a new graph $G^{\prime \prime}$ such that $N\left(u_{k}\right)=\left\{w_{k}, \quad v_{k}\right\}, \quad N\left(w_{k}\right)=\left\{\begin{array}{ll}u_{k}, & v_{k}\end{array}\right\}, \quad N\left(u_{k}{ }^{\prime}\right)=\left\{w_{k}^{\prime}{ }^{\prime} v_{k}^{\prime}\right\}, \quad N\left(w_{k}^{\prime}\right)=\left\{u_{k}^{\prime}, v_{k}^{\prime}\right\}, N\left(u_{k}{ }^{\prime \prime}\right)=$ $\left\{w_{k}{ }^{\prime \prime}, v_{k}{ }^{\prime \prime}\right\}, N\left(w_{k}{ }^{\prime \prime}\right)=\left\{u_{k}{ }^{\prime \prime}, v_{k}{ }^{\prime \prime}\right\}$. The double duplication of all vertices by edges, respectively of a graph $G$ is denoted by $D D_{V V}(G)$.

[^0]Definition 1.4[4]: Let $G=(V, E)$ be a graph. If every edge of graph $G$ is subdivided, then the resulting graph is called the barycentric subdivision of graph $G$. In other words, the barycentric subdivision is the graph obtained by inserting a vertex of degree 2 into every edge of the original graph.
Definition 1.5 [4]: Consider barycentric subdivision of cycle $C_{n}$ and join each newly inserted vertices of incident edges by an edge. It is denoted by $C_{n}\left(C_{n}\right)$ as it looks like $C_{n}$ inscribed in $C_{n}$.
Definition 1.6[5]: Bi-armed crown $C_{n} \odot 2 P_{m}$ is a graph obtained from a cycle $C_{n}$ by identifying the pendant vertices of two vertex disjoint paths of the same length $m-1$ at each vertex of the cycle.
Definition 1.7 [6]: The middle graph of a connected graph $G$ denoted by $M(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if
(i) They are adjacent edges of $G$, or
(ii) One is a vertex of $G$ and the other is an edge incident with it.

Definition 1.8: The graph $G^{+}$is obtained by joining exactly one pendant edge to every vertex of a graph $G$.

## 2. MAIN RESULTS

In this section, the existence of face antimagic labeling for some special graphs is discussed.
Theorem 2.1: The graph $D D_{V V}\left(C_{n}\left(C_{n}\right)\right), n \geq 4$ is face antimagic labeling of types $(0,1,0)$ and ( $0,1,1$ ).

## Proof

Let $G(V, E, F)$ denote $C_{n}\left(C_{n}\right), n \geq 4$ with vertex set $V=\left\{v_{i} \mid 1 \leq i \leq 2 n\right\}$,
$E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 2 n-1\right\} \cup\left\{v_{1} v_{2 n}\right\}$ and
$F=\left\{v_{2} v_{4} v_{6} \ldots v_{2 n} v_{2}\right\} \cup\left\{v_{2 i} v_{2 i+1} v_{2 i+2} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{1} v_{2} v_{2 n}\right\}$. Let $\quad G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained from $G$ by duplication of all vertices by edges of $G$ with $V^{\prime}=\left\{a_{i} b_{i} \mid 1 \leq\right.$ $i \leq 2 n\} \cup V, \quad E^{\prime}=\left\{v_{i} a_{i}, v_{i} \mathrm{~b}_{i}, a_{i} b_{i} \mid 1 \leq i \leq 2 n\right\} \cup E$
and $F^{\prime}=\left\{v_{i} a_{i} b_{i} \mid 1 \leq i \leq 2 n\right\} \cup F$.
Let $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}\right)$ be the graph that obtained from $G^{\prime}$ by duplication of all vertices by edges of $G^{\prime}$ with $V^{\prime \prime}=\left\{c_{i}, d_{i}, e_{i}, f_{i}, g_{i}, h_{i} \mid 1 \leq i \leq 2 n\right\} \cup V^{\prime}$,
$\left\{a_{i} c_{i}, a_{i} d_{i}, c_{i} d_{i}, b_{i} e_{i}, b_{i} f_{i}, e_{i} f_{i}, g_{i} h_{i}, v_{i} g_{i}, v_{i} h_{i} \mid 1 \leq i \leq 2 n\right\} \cup E^{\prime}$ and
$F^{\prime \prime}=\left\{a_{i} c_{i} d_{i}, b_{i} e_{i} f_{i}, g_{i} v_{i} h_{i} \mid 1 \leq i \leq 2 n\right\} \cup F^{\prime}$.
-Type (i)(0, 1, 0)
Define a mapping $\Gamma: E^{\prime \prime} \rightarrow\{1,2,3, \ldots, 27 n\}$ as follows:
For $1 \leq i \leq 2 n$,
$\Gamma\left(v_{i} a_{i}\right)=3 i-2 ; \quad \Gamma\left(v_{i} b_{i}\right)=3 i-1 ; \quad \Gamma\left(a_{i} b_{i}\right)=3 i ; \Gamma\left(a_{i} c_{i}\right)=6 n+3 i-2 ;$
$\Gamma\left(a_{i} d_{i}\right)=6 n+3 i-1 ; \quad \Gamma\left(c_{i} d_{i}\right)=6 n+3 i ; \quad \Gamma\left(b_{i} e_{i}\right)=12 n+3 i-2 ;$
$\Gamma\left(e_{i} f_{i}\right)=12 n+3 i ; \quad \Gamma\left(b_{i} f_{i}\right)=12 n+3 i-1 ; \quad \Gamma\left(g_{i} v_{i}\right)=18 n+3 i-2 ;$
$\Gamma\left(v_{i} h_{i}\right)=18 n+3 i-1 ; \quad \Gamma\left(g_{i} h_{i}\right)=18 n+3 i$.
For $1 \leq i \leq n-1$,
$\Gamma\left(v_{2 i} v_{1+2 i}\right)=24 n+3 i-2, \quad \Gamma\left(v_{2 i+1} v_{2 i+2}\right)=24 n+3 i-1, \quad \Gamma\left(v_{2 i} v_{2 i+2}\right)=24 n+3 i$, $\Gamma\left(v_{1} v_{2}\right)=27 n-2 ; \Gamma\left(v_{2} v_{2 n}\right)=27 \mathrm{n} ; \Gamma\left(v_{1} v_{2 n}\right)=27 \mathrm{n}-1$.
The following are the labeling types of face antimagic labeling. $f_{i j}$ denotes the faces of the graph G, $f_{i}{ }^{\prime}$ denotes the faces formed after the first duplication and $f_{i j}{ }^{\prime \prime}$ denotes the faces formed after the second duplication.
The calculated face weights are as follows:
$\beta\left(f_{i}^{\prime}\right)=\Gamma\left(v_{i} a_{i}\right)+\Gamma\left(a_{i} b_{i}\right)+\Gamma\left(v_{i} b_{i}\right)=9 i-3,1 \leq i \leq 2 n$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\Gamma\left(a_{i} c_{i}\right)+\Gamma\left(a_{i} d_{i}\right)+\Gamma\left(c_{i} d_{i}\right)=18 \mathrm{n}+9 i-3,1 \leq i \leq 2 n$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\Gamma\left(b_{i} e_{i}\right)+\Gamma\left(b_{i} f_{i}\right)+\Gamma\left(e_{i} f_{i}\right)=36 n+9 i-3,1 \leq i \leq 2 n$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\Gamma\left(g_{i} v_{i}\right)+\Gamma\left(v_{i} h_{i}\right)+\Gamma\left(g_{i} h_{i}\right)=54 n+9 i-3,1 \leq i \leq 2 n$
$\beta\left(f_{i 1}\right)=\Gamma\left(v_{2 i} v_{2 i+2}\right)+\Gamma\left(v_{2 i+1} v_{2 i+2}\right)+\Gamma\left(v_{2 i} v_{1+2 i}\right)=72 n+9 i-3,1 \leq i \leq n-1$ and $\beta\left(f_{n 1}\right)=\Gamma\left(v_{1} v_{2}\right)+\Gamma\left(v_{2} v_{2 n}\right)+\Gamma\left(v_{1} v_{2 n}\right)=81 n-3$ which forms an arithmetic progression $\{6,6+(1 \times 9), 6+(2 \times 9), \ldots, 6+(9 n-1) 9\}$ and the face weight of $C_{n}$ is $\frac{(51 n+3) n}{2}$.
-Type (ii) (0, 1, 1)
Define $\Gamma: E^{\prime \prime} \cup F^{\prime \prime} \rightarrow\{1,2,3, \ldots, 36 n+2\}$ as follows:
$\Gamma\left(f_{i}^{\prime}\right)=27 n+i, 1 \leq i \leq 2 n ; \quad \Gamma\left(f_{i 1}^{\prime \prime}\right)=29 n+i, 1 \leq i \leq 2 n ; \quad \Gamma\left(f_{i 2}{ }^{\prime \prime}\right)=31 n+i, 1 \leq i$
$\leq 2 n ; \quad \Gamma\left(f_{i 3}^{\prime \prime}\right)=33 n+i, 1 \leq i \leq 2 n ; \quad \Gamma\left(f_{i 1}\right)=35 n+i, 1 \leq i \leq n-1 ; \quad \Gamma\left(f_{n 1}\right)=36 n$
The labeling for the $n$ sided face is $36 n+1$ and the labeling for the external face is $36 n+$ 2. The calculated face weights are as follows:
$\beta\left(f_{i}^{\prime}\right)=\Gamma\left(v_{i} a_{i}\right)+\Gamma\left(a_{i} b_{i}\right)+\Gamma\left(v_{i} b_{i}\right)+\Gamma\left(f_{i}^{\prime}\right)=27 n+10 i-3 ; 1 \leq i \leq 2 n$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\Gamma\left(a_{i} c_{i}\right)+\Gamma\left(a_{i} d_{i}\right)+\Gamma\left(c_{i} d_{i}\right)+\Gamma\left(f_{i 1}^{\prime \prime}\right)=47 n+10 i-3 ; 1 \leq i \leq 2 n$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\Gamma\left(b_{i} e_{i}\right)+\Gamma\left(b_{i} f_{i}\right)+\Gamma\left(e_{i} f_{i}\right)+\Gamma\left(f_{i 2}^{\prime \prime}\right)=67 n+10 i-3 ; 1 \leq i \leq 2 n$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\Gamma\left(g_{i} v_{i}\right)+\Gamma\left(v_{i} h_{i}\right)+\Gamma\left(g_{i} h_{i}\right)+\Gamma\left(f_{i 3}^{\prime \prime}\right)=87 n+10 i-3 ; 1 \leq i \leq 2 n$
$\beta\left(f_{i 1}\right)=\Gamma\left(v_{2 i} v_{2 i+2}\right)+\Gamma\left(v_{2 i+1} v_{2 i+2}\right)+\Gamma\left(v_{2 i} v_{1+2 i}\right)+\Gamma\left(f_{i 1}\right)=107 n+10 i-3 ; 1 \leq i \leq$ $n-1, \beta\left(f_{n 1}\right)=\Gamma\left(v_{1} v_{2}\right)+\Gamma\left(v_{2} v_{2 n}\right)+\Gamma\left(v_{1} v_{2 n}\right)+\Gamma\left(f_{n 1}\right)=117 n-3$ which forms an arithmetic progression $\{27 n+7,27 n+7+1 \times 10,27 n+7+2 \times 10, \ldots, 27 n+7+(9 n-$ 1)10 $\}$ and the face weight of $n$ sided cycle is $\frac{1}{2}\left[51 n^{2}+75 n+2\right]$.

Theorem 2.2: The graph $\quad D D_{V V}\left(C_{m} \odot 2 P_{n}\right), m \geq 4, n \geq 3$ of $\quad$ types $(0,1,0)$ and $(0,1,1)$ is face antimagic.

## Proof:

Let $\quad G=\left(C_{m} \odot 2 P_{n}\right) m \geq 3, n \geq 4$ be a graph with
$V=\left\{v_{i} \mid 1 \leq i \leq m n\right\} \cup\left\{w_{i} \mid 1 \leq i \leq m n-m\right\}$,
$E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq m n-1\right.$ except for $\left.n, 2 n, 3 n, \ldots,(m-1) n\right\} \cup\left\{w_{i} w_{i+1} \mid 1 \leq \mathrm{i} \leq\right.$ $m(n-1)-1$ except for $(n-1),(2(n-1),(3(n-1), \ldots,(m-1)(n-1)\} \cup$ $\left\{v_{n i-n+1} v_{i n+1} \mid 1 \leq i \leq m-1\right\} \cup\left\{v_{n m-n+1} v_{1}\right\} \cup\left\{v_{n i-n+1} w_{(i-1)(n-1)+1} \mid 1 \leq i \leq m\right\}$
and $F=\left(v_{1} v_{\mathrm{n}+1} v_{2 n+1 \ldots \ldots} v_{(m-1) n+1} v_{1}\right)$.
Let $G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained from $G$ by duplication of all vertices by edges of $G$ with
$V^{\prime}=\left\{a_{i}, b_{i} \mid 1 \leq i \leq 2 m n-m\right\}$,
$E^{\prime}=\left\{v_{i} a_{i}, v_{i} b_{i}, a_{i} b_{i} \mid 1 \leq i \leq m n\right\} \cup\left\{w_{i} a_{m n+i} w_{i} b_{m n+i}, a_{m n+i} b_{m n+i} \mid 1 \leq i \leq\right.$
$m n-m\} \cup E$ and $F^{\prime}=\left\{v_{i} a_{i} b_{i} \mid 1 \leq i \leq m n\right\} \cup\left\{w_{i} a_{m n+i} b_{m n+i} \mid 1 \leq i \leq m n-m\right\} \cup F$
Let $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}\right)$ be the graph obtained from $G^{\prime}$ by the duplication of all vertices by edges of $G^{\prime}$ with $V^{\prime}=\left\{c_{i}, d_{i}, e_{i}, f_{i}, g_{i}, h_{i} \mid 1 \leq i \leq 2 m n-m\right\} \cup V^{\prime}$,
$E^{\prime \prime}=\left\{c_{i} d_{i}, e_{i} f_{i}, \quad c_{i} a_{i}, b_{i} f_{i}, d_{i} a_{i}, b_{i} e_{i} \mid 1 \leq i \leq 2 m n-m\right\} \cup\left\{g_{i} v_{i}, v_{i} h_{i}, g_{i} h_{i}\right.$
$\mid 1 \leq i \leq m n\} \cup\left\{w_{i} g_{m n+i}, w_{i} h_{m n+i}, g_{m n+i} h_{m n+i} \mid 1 \leq i \leq m n-m\right\} \cup E^{\prime}$ and
$\left.F^{\prime \prime}=\left\{a_{i} c_{i} d_{i}, b_{i} e_{i} f_{i} \mid 1 \leq i \leq 2 m n-m\right\} \cup\left\{g_{i} v_{i} h_{i} \mid 1 \leq i \leq m n\right\}\right\}$

$$
\cup\left\{w_{i} h_{m n+i} g_{m n+i} \mid 1 \leq i \leq m n-m\right\}
$$

Type (i) - ( $0,1,0$ )
Define $\Gamma: E^{\prime} \rightarrow\{1,2,3, \ldots, 26 m n-13 m\}$ as follows:
For $1 \leq i \leq m n$,
$\Gamma\left(v_{i} a_{i}\right)=3 i-2, \quad \Gamma\left(v_{i} b_{i}\right)=3 i-1, \quad \Gamma\left(a_{i} b_{i}\right)=3 i$.
For $1 \leq i \leq m n-m$,
$\Gamma\left(w_{i} a_{m n+i}\right)=3 m n+3 i-2 ; \quad \Gamma\left(w_{i} b_{m n+i}\right)=3 m n+3 i-1 ;$
$\Gamma\left(b_{i+m n} a_{m n+i}\right)=3 m n+3 i$.
For $1 \leq i \leq 2 m n-m$,
$\Gamma\left(c_{i} a_{i}\right)=6 m n-3 m+3 i-2 ; \quad \Gamma\left(d_{i} a_{i}\right)=6 m n-3 m+3 i-1 ;$
$\Gamma\left(c_{i} d_{i}\right)=6 m n-3 m+3 i ; \quad \Gamma\left(b_{i} e_{i}\right)=12 m n-6 m+3 i-2 ;$
$\Gamma\left(b_{i} f_{i}\right)=12 m n-6 m+3 i-1 ; \quad \Gamma\left(f_{i} e_{i}\right)=12 m n-6 m+3 i$.
For1 $\leq i \leq m n$,
$\Gamma\left(g_{i} v_{i}\right)=18 m n-9 m+3 i-2 ; \quad \Gamma\left(h_{i} v_{i}\right)=18 m n-9 m+3 i-1 ;$
$\Gamma\left(g_{i} h_{i}\right)=18 m n-9 m+3 i$.
For $1 \leq i \leq m n-m$,
$\Gamma\left(w_{i} g_{m n+i}\right)=21 m n-9 m+3 i-2 ; \quad \Gamma\left(w_{i} h_{m n+i}\right)=21 m n-9 m+3 i-1 ;$
$\Gamma\left(h_{m n+i} g_{m n+i}\right)=21 m n-9 m+3 i ;$
$\Gamma\left(v_{i} v_{i+1}\right)=\{24 m n-12 m+i, 1 \leq i \leq m n-1$ except for $n, 2 n, 3 n, \ldots,(m-1) n$
$\Gamma\left(v_{n i-n+1} v_{n i+1}\right)=24 m n-12 m+n i, 1 \leq i \leq m-1 \quad \Gamma\left(v_{1} v_{n m+1-n}\right)=25 m n-12 m$
$\Gamma\left(w_{i} w_{i+1}\right)=25 m n-12 m+i, 1 \leq \mathrm{i} \leq m(n-1)-1$ except for $(n-1),(2(n-$
1), $(3(n-1), \ldots,(m-1)(n-1)$
$\Gamma\left(v_{1+n i-n} w_{1+(i-1)(n-1)}\right)=25 m n-12 m+(n-1) i ; 1 \leq \mathrm{i} \leq m$.
The calculated face weights are as follows:
$\beta\left(f_{i 1}^{\prime}\right)=\Gamma\left(v_{i} a_{i}\right)+\Gamma\left(a_{i} b_{i}\right)+\Gamma\left(v_{i} b_{i}\right)=9 i-3 ; 1 \leq i \leq m n$
$\beta\left(f_{i 2}^{\prime}\right)=\Gamma\left(w_{i} a_{m n+i}\right)+\Gamma\left(w_{i} b_{m n+i}\right)+\Gamma\left(b_{i+m n} a_{m n+i}\right)=9 m n+9 i-3 ; 1 \leq i \leq m n-m$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\Gamma\left(c_{i} a_{i}\right)+\Gamma\left(d_{i} a_{i}\right)+\Gamma\left(c_{i} d_{i}\right)=18 m n-9 m+9 i-3 ; 1 \leq i \leq 2 m n-m$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\Gamma\left(b_{i} e_{i}\right)+\Gamma\left(b_{i} f_{i}\right)+\Gamma\left(f_{i} e_{i}\right)=36 m n-18 m+9 i-3 ; 1 \leq i \leq 2 m n-m$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\Gamma\left(v_{i} g_{i}\right)+\Gamma\left(v_{i} h_{i}\right)+\Gamma\left(g_{i} h_{i}\right)=54 m n-27 m+9 i-3 ; 1 \leq i \leq m n$
$\beta\left(f_{i 4}^{\prime \prime}\right)=\Gamma\left(w_{i} g_{m n+i}\right)+\Gamma\left(w_{i} h_{m n+i}\right)+\Gamma\left(h_{m n+i} g_{m n+i}\right)=63 m n-27 m+9 i-3 ; 1 \leq i \leq$ $m n-m$ which forms an arithmetic progression $\{6,6+(1 \times 9), 6+(2 \times 9), \ldots, 6+$ $[4(2 m n-m)-1] 9\}$.
The face weight of $m$ sided cycle is $\frac{m}{2}[49 m n-24 m+n]$.
Type (ii) - ( $0,1,1$ )
Define $\Gamma: E^{\prime \prime} \cup F^{\prime \prime} \rightarrow\{1,2,3, \ldots 34 m n-17 m+2\}$ as follows. $\Gamma\left(f_{i 1}^{\prime}\right)=26 m n-13 m+i$;
$1 \leq i \leq m n ; \quad \Gamma\left(f_{i 2}^{\prime}\right)=27 m n-13 m+i ; 1 \leq i \leq m n-m$
$\Gamma\left(f_{i 1}^{\prime \prime}\right)=28 m n-14 m+i ; 1 \leq i \leq 2 m n-m ;$
$\Gamma\left(f_{i 2}^{\prime \prime}\right)=30 m n-15 m+i ; 1 \leq i \leq 2 m n-m ;$
$\Gamma\left(f_{i 3}^{\prime \prime}\right)=32 m n-16 m+i ; 1 \leq i \leq m n ;$
$\Gamma\left(f_{i 4}^{\prime \prime}\right)=33 m n-16 m+i ; 1 \leq i \leq m n-m$
The face labeling of $m$ sided face is $34 m n-17 m+1$ and the labeling for the external face is $34 m n-17 m+2$.
The calculated face weights are as follows
$\beta\left(f_{i 1}^{\prime}\right)=\Gamma\left(v_{i} a_{i}\right)+\Gamma\left(a_{i} b_{i}\right)+\Gamma\left(v_{i} b_{i}\right)+\Gamma\left(f_{i 1}^{\prime}\right)=26 m n-13 m+10 i-3 ; 1 \leq i \leq m n$
$\beta\left(f_{i 2}^{\prime}\right)=\Gamma\left(w_{i} a_{m n+i}\right)+\Gamma\left(w_{i} b_{m n+i}\right)+\Gamma\left(b_{i+m n} a_{m n+i}\right)+\Gamma\left(f_{i 2}^{\prime}\right)=36 m n-13 m+10 i-3$;
$1 \leq i \leq m n-m$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\Gamma\left(c_{i} a_{i}\right)+\Gamma\left(d_{i} a_{i}\right)+\Gamma\left(c_{i} d_{i}\right)+\Gamma\left(f_{i 1}^{\prime \prime}\right)=56 m n-23 m+10 i-3 ; 1 \leq i \leq 2 m n-m$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\Gamma\left(b_{i} e_{i}\right)+\Gamma\left(b_{i} f_{i}\right)+\Gamma\left(f_{i} e_{i}\right)+\Gamma\left(f_{i 2}^{\prime \prime}\right)=66 m n-33 m+10 i-3 ; 1 \leq i \leq 2 m n-m$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\Gamma\left(v_{i} g_{i}\right)+\Gamma\left(v_{i} h_{i}\right)+\Gamma\left(g_{i} h_{i}\right)+\Gamma\left(f_{i 3}^{\prime \prime}\right)=86 m n-43 m+10 i-3 ; 1 \leq i \leq m n$
$\beta\left(f_{i 4}^{\prime \prime}\right)=\Gamma\left(w_{i} g_{m n+i}\right)+\Gamma\left(w_{i} h_{m n+i}\right)+\Gamma\left(h_{m n+i} g_{m n+i}\right)+\Gamma\left(f_{i 4}^{\prime \prime}\right)=96 m n-43 m+$
$10 i-3 ; 1 \leq i \leq m n-m$, which forms an arithmetic progression $\{26 m n-m+7$, $26 m n-m+7+(1 \times 10)$,
$26 m n-m+7+(2 \times 10), \ldots, 26 m n-m+7+[4(2 m n-m)-1] 10\}$ and the face weight of $m$ sided face is $\frac{m}{2}[49 m n-24 m+n]+34 m n-17 m+1$.
Theorem 2.3: The graph $D D_{V V}\left(M\left(C_{n}\right)\right), n \geq 4$ of types $(0,1,0)$ and ( $0,1,1$ ) is face antimagic labeling.

## Proof:

Let $G(V, E, F)$ be the graph $M\left(C_{n}\right), n \geq 4$ with $V=\left\{u_{i}, v_{i} \mid 1 \leq i \leq n\right\}$,
$E=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i+1} v_{i} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} u_{1}\right\}$ and $F=\left\{v_{i} v_{i+1} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1} u_{1}\right\} \cup\left\{v_{1} v_{2} v_{3} \ldots v_{n}\right\}$.
Let $G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained from $G$ by duplication of all vertices by edges of $G$ with $V^{\prime}=\left\{a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup V, E^{\prime}=\left\{v_{i} a_{i}, v_{i} b_{i}, a_{i} b_{i}, u_{i} a_{i}^{\prime}, u_{i} b_{i}^{\prime}\right.$,
$\left.a_{i}^{\prime} b_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup \mathrm{E}$ and $F^{\prime}=\left\{v_{i} a_{i} b_{i}, u_{i} a_{i}^{\prime} b_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup F$.
Let $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}\right)$ be the graph obtained from $G^{\prime}$ by the duplication of all vertices by edges of $G^{\prime}$ with,
$V^{\prime \prime}=\left\{c_{i}, d_{i}, e_{i}, f_{i}, g_{i}, h_{i}, c_{i}^{\prime}, d_{i}^{\prime}, e_{i}^{\prime}, f_{i}^{\prime}, g_{i}^{\prime}, h_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup V^{\prime}$,
$E^{\prime \prime}=\left\{c_{i} d_{i}, e_{i} f_{i}, c_{i} a_{i}, b_{i} f_{i}, d_{i} a_{i}, b_{i} e_{i}, g_{i} v_{i}, v_{i} h_{i}, g_{i} h_{i}, c_{i}{ }^{\prime} d_{i}{ }^{\prime}, e_{i}{ }^{\prime} f_{i}{ }^{\prime}, c_{i}{ }^{\prime} a_{i}{ }^{\prime}\right.$,
$\left.b_{i}{ }^{\prime} f_{i}{ }^{\prime}, \quad d_{i}{ }^{\prime} a_{i}{ }^{\prime}, b^{\prime}{ }_{i} e_{i}{ }^{\prime}, g^{\prime}{ }_{i} u_{i}{ }^{\prime}, u_{i}{ }^{\prime} h_{i}{ }^{\prime}, g^{\prime}{ }_{i} h^{\prime}{ }_{i} \mid 1 \leq i \leq n\right\} \cup E^{\prime}$ and
$F^{\prime \prime}=\left\{c_{i} a_{i} d_{i}, c_{i}^{\prime} a_{i}^{\prime} d_{i}^{\prime}, v_{i} g_{i} h_{i}, v_{i}^{\prime} g_{i}^{\prime} h_{i}^{\prime}, b_{i} e_{i} f_{i}, b_{i}^{\prime} e_{i}^{\prime} f_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup F^{\prime}$.
Type (i) $(0,1,0)$
Define $\alpha: E^{\prime \prime} \rightarrow\{1,2, \ldots, 27 n\}$ as follows:
For $1 \leq i \leq n$,
$\alpha\left(v_{i} a_{i}\right)=3 i-2 ; \quad \alpha\left(v_{i} b_{i}\right)=3 i-1 ; \quad \alpha\left(a_{i} b_{i}\right)=3 i$;
$\alpha\left(u_{i} a_{i}{ }^{\prime}\right)=3 n+3 i-2 ;$
$\alpha\left(u_{i} b_{i}{ }^{\prime}\right)=3 n+3 i-1 ;$
$\alpha\left(a_{i}{ }^{\prime} b_{i}{ }^{\prime}\right)=3 n+3 i$;
$\alpha\left(a_{i} c_{i}\right)=6 n+3 i-2$;
$\alpha\left(a_{i} d_{i}\right)=6 n+3 i-1$;
$\alpha\left(c_{i} d_{i}\right)=6 n+3 i$;
$\alpha\left(a^{\prime}{ }_{i} c_{i}{ }^{\prime}\right)=9 n+3 i-2$;
$\alpha\left(a_{i}^{\prime}{ }_{i}{ }^{\prime}{ }_{i}\right)=9 n+3 i-1$;
$\alpha\left(c_{i}{ }^{\prime} d_{i}{ }^{\prime}\right)=9 n+3 i$;
$\alpha\left(b_{i} e_{i}\right)=12 n+3 i-2$;
$\alpha\left(e_{i} f_{i}\right)=12 n+3 i$;
$\alpha\left(b^{\prime}{ }_{i} f_{i}^{\prime}\right)=15 n+3 i-1$;
$\alpha\left(b_{i} f_{i}\right)=12 n+3 i-1$;
$\alpha\left(b_{i}^{\prime} e_{i}{ }^{\prime}\right)=15 n+3 i-2$;
$\alpha\left(g_{i} v_{i}\right)=18 n+3 i-2 ; \quad \alpha\left(h_{i} v_{i}\right)=18 n+3 i-1$;
$\alpha\left(e^{\prime}{ }_{i} f_{i}^{\prime}\right)=15 n+3 i ;$
$\alpha\left(g_{i}{ }^{\prime} u_{i}\right)=21 n+3 i-2 ; \quad \alpha\left(h^{\prime}{ }_{i} u_{i}\right)=21 n+3 i-1$;
$\alpha\left(v_{i+1} u_{i+1}\right)=24 n+3 i-1 ; 1 \leq i \leq n-1$;
$\alpha\left(v_{i} u_{1+i}\right)=24 n+3 i-2 ; 1 \leq i \leq n-1 ; \alpha\left(v_{i} v_{1+i}\right)=24 n+3 i ; 1 \leq i \leq n-1$;
$\alpha\left(v_{1} u_{1}\right)=27 n-1 ; \alpha\left(v_{n} u_{1}\right)=27 n-2 ; \quad \alpha\left(v_{n} v_{1}\right)=27 n$.
For $1 \leq i \leq n$,
$\beta\left(f_{i 1}^{\prime}\right)=\alpha\left(v_{i} a_{i}\right)+\alpha\left(a_{i} b_{i}\right)+\alpha\left(v_{i} b_{i}\right)=9 i-3$
$\beta\left(f_{i 2}^{\prime}\right)=\alpha\left(u_{i} a_{i}{ }^{\prime}\right)++\alpha\left(u_{i} b_{i}{ }^{\prime}\right)+\alpha\left(a_{i}{ }_{i} b_{i}^{\prime}\right)=9 n+9 i-3$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\alpha\left(a_{i} c_{i}\right)+\alpha\left(a_{i} d_{i}\right)+\alpha\left(c_{i} d_{i}\right)=18 n+9 i-3$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\alpha\left(a_{i}{ }^{\prime} c^{\prime}{ }_{i}\right)+\alpha\left(a^{\prime}{ }_{i} d_{i}{ }^{\prime}\right)+\alpha\left(c^{\prime}{ }_{i} d_{i}{ }^{\prime}\right)=27 n+9 i-3$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\alpha\left(b_{i} e_{i}\right)+\alpha\left(b_{i} f_{i}\right)+\alpha\left(e_{i} f_{i}\right)=36 n+9 i-3$
$\beta\left(f_{i 4}^{\prime \prime}\right)=\alpha\left(b^{\prime}{ }_{i} e_{i}^{\prime}\right)+\alpha\left(b^{\prime}{ }_{i} f_{i}^{\prime}\right)+\alpha\left(e_{i}{ }^{\prime} f_{i}^{\prime}\right)=45 n+9 i-3$
$\beta\left(f_{i 5}^{\prime \prime}\right)=\alpha\left(v_{i} g_{i}\right)+\alpha\left(v_{i} h_{i}\right)+\alpha\left(g_{i} h_{i}\right)=54 n+9 i-3$
$\beta\left(f_{i 6}^{\prime \prime}\right)=\alpha\left(u_{i} g_{i}^{\prime}\right)+\alpha\left(u_{i} h^{\prime}{ }_{i}\right)+\alpha\left(g_{i}{ }^{\prime} h^{\prime}{ }_{i}\right)=63 n+9 i-3$
$\beta\left(f_{i 1}\right)=\alpha\left(v_{i} u_{i+1}\right)+\alpha\left(v_{i+1} u_{i+1}\right)+\alpha\left(v_{i} v_{1+i}\right)=72 n+9 i-3 ; 1 \leq i \leq n-1$
$\beta\left(f_{n 1}\right)=\alpha\left(v_{1} u_{1}\right)+\alpha\left(v_{n} u_{1}\right)+\alpha\left(v_{n} v_{1}\right)=81 n-3$ which forms an arithmetic progression $\{6,6+(1 \times 9), 6+(2 \times 9), \ldots, 6+(9 n-1) 9\}$ and the face weight of $n$ sided face is $(51 n+3) \frac{n}{2}$.
Type (ii) - $(0,1,1)$
Define $\alpha: E^{\prime \prime} \rightarrow\{1,2,3, \ldots, 36 n+2\}$ as follows:
$\alpha\left(f_{i 1}^{\prime}\right)=27 n+i ; 1 \leq i \leq n$;

$$
\begin{gathered}
\alpha\left(f_{i 2}^{\prime}\right)=28 n+i ; 1 \leq i \leq n \\
\alpha\left(f_{i 2}^{\prime \prime}\right)=30 n+i ; 1 \leq i \leq n \\
\alpha\left(f_{i 4}^{\prime \prime}\right)=32 n+i ; 1 \leq i \leq n
\end{gathered}
$$

$\alpha\left(f_{i 1}^{\prime \prime}\right)=29 n+i ; 1 \leq i \leq n ;$
$\alpha\left(f_{i 3}^{\prime \prime}\right)=31 n+i ; 1 \leq i \leq n$;
$\alpha\left(f_{i 5}^{\prime \prime}\right)=33 n+i ; 1 \leq i \leq n$
$\alpha\left(f_{i 1}\right)=35 n+i ; 1 \leq i \leq n-1 ; \quad \alpha\left(f_{n 1}\right)=36 n$

The label of $n$ sided face is $36 n+1$ and the label for the external face is $36 n+2$.
$\beta\left(f_{i 1}^{\prime}\right)=\alpha\left(v_{i} a_{i}\right)+\alpha\left(a_{i} b_{i}\right)+\alpha\left(v_{i} b_{i}\right)+\alpha\left(f_{i 1}^{\prime}\right)=27 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 2}^{\prime}\right)=\alpha\left(u_{i} a_{i}{ }^{\prime}\right)+\alpha\left(a_{i}^{\prime} b_{i}^{\prime}\right)+\alpha\left(u_{i} b_{i}^{\prime}\right)+\alpha\left(f_{i 2}^{\prime}\right)=37 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\alpha\left(a_{i} c_{i}\right)+\alpha\left(a_{i} d_{i}\right)+\alpha\left(c_{i} d_{i}\right)+\alpha\left(f_{i 1}^{\prime \prime}\right)=47 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\alpha\left(a_{i}{ }^{\prime} c_{i}{ }^{\prime}\right)+\alpha\left(a_{i}{ }^{\prime} d_{i}{ }^{\prime}\right)+\alpha\left(c_{i}{ }^{\prime} d_{i}{ }^{\prime}\right)+\alpha\left(f_{i 2}^{\prime \prime}\right)=57 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\alpha\left(b_{i} e_{i}\right)+\alpha\left(b_{i} f_{i}\right)+\alpha\left(e_{i} f_{i}\right)+\alpha\left(f_{i 3}^{\prime \prime}\right)=67 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 4}^{\prime \prime}\right)=\alpha\left(b^{\prime}{ }_{i} e_{i}^{\prime}\right)+\alpha\left(b_{i}^{\prime} f_{i}^{\prime}\right)+\alpha\left(e_{i}^{\prime} f_{i}^{\prime}\right)+\alpha\left(f_{i 4}^{\prime \prime}\right)=77 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 5}^{\prime \prime}\right)=\alpha\left(v_{i} g_{i}\right)+\alpha\left(v_{i} h_{i}\right)+\alpha\left(g_{i} h_{i}\right)+\alpha\left(f_{i 5}^{\prime \prime}\right)=87 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 6}^{\prime \prime}\right)=\alpha\left(u_{i} g_{i}^{\prime}\right)+\alpha\left(u_{i} h_{i}^{\prime}\right)+\alpha\left(g_{i}^{\prime} h_{i}^{\prime}\right)+\alpha\left(f_{i 6}^{\prime \prime}\right)=97 n+10 i-3 ; 1 \leq i \leq n$
$\beta\left(f_{i 1}\right)=\alpha\left(v_{i} u_{i+1}\right)+\alpha\left(v_{i+1} u_{i+1}\right)+\alpha\left(v_{i} v_{1+i}\right)+\alpha\left(f_{i 1}\right)$
$=107 n+10 i-3 ; 1 \leq i \leq n-1$
$\beta\left(f_{n 1}\right)=\alpha\left(v_{1} u_{1}\right)+\alpha\left(v_{n} u_{1}\right)+\alpha\left(v_{n} v_{1}\right)+\alpha\left(f_{n 1}\right)=117 n-3$
which forms an arithmetic progression\{27n $+7,27 n+7+(1 \times 10), 27 n+7+(2 \times$
10), $\ldots, 27 n+7+(9 n-1) 10\}$ and the face weight of $n$ sided cycle is $\frac{1}{2}\left[51 n^{2}+75 n+2\right]$.

Theorem 2.4: If the graph $G^{+}$except for 3 - sided faces is ( $a, d$ ) -face antimagicof types $(0,1,0)$ and $(0,1,1)$, then $D D_{V V}\left(G^{+}\right)$is also a ( $a, d$ ) - face antimagic labeling of types $(0,1,0)$ and $(0,1,1)$.
Proof: Let $G$ be the graph with vertex set $V=V=\left\{v_{i} \mid 1 \leq i \leq m\right\}$, edge set $E=$ $\left\{e_{i} \mid 1 \leq i \leq n\right\}$ and $F=\left\{f_{i} \mid 1 \leq i \leq r\right\}$.
Let $G^{+}$be the graph obtained from $G$ by attaching a pendant edge to each vertex of G with vertex set $V^{+}=\left\{v_{i} \mid 1 \leq i \leq 2 m\right\}$ edge set $E^{+}=\left\{e_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+m} \mid 1 \leq i \leq m\right\}$ and face set $F^{+}=\left\{f_{i} \mid 1 \leq i \leq r\right\}$. Let $G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained from $G^{+}$by duplication of all vertices by edges of $G^{+}$with $V^{\prime}=\left\{a_{i}, b_{i} \mid 1 \leq i \leq 2 m\right\} \cup V, E^{\prime}=$ $\left\{v_{i} a_{i}, v_{i} \mathrm{~b}_{i}, a_{i} b_{i} \mid 1 \leq i \leq 2 m\right\} \cup E$ and $F^{\prime}=\left\{f_{i 1}^{\prime}: v_{i} a_{i} b_{i} \mid 1 \leq i \leq 2 m\right\} \cup F$. Let
$G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}\right)$ be the graph obtained from $G^{\prime}$ by duplication of all vertices by edges of $G^{\prime}$ with. $V^{\prime \prime}=\left\{\mathrm{a}, c_{i}, d_{i}, e_{i}, f_{i}, g_{i}, h_{i} \mid 1 \leq i \leq 2 m\right\} \cup \mathrm{V}^{\prime}$,
$E^{\prime \prime}=\left\{v_{i} a_{i}, v_{i} b_{i}, a_{i} b_{i}, a_{i} c_{i}, a_{i} d_{i}, c_{i} d_{i}, b_{i} e_{i}, b_{i} f_{i}, e_{i} f_{i}, g_{i} h_{i}, v_{i} g_{i}, v_{i} h_{i} \mid 1 \leq i \leq 2 m\right\} \cup \mathrm{E}^{\prime}$ and $F^{\prime \prime}=\left\{f_{i 1} ": a_{i} c_{i} d_{i}, f{ }^{\prime}{ }_{i 2}: b_{i} e_{i} f_{i}, f_{i 3} ": v_{i} g_{i} h_{i} \mid 1 \leq i \leq 2 m\right\} \cup \mathrm{F}^{\prime}$.
Define $\alpha: E^{\prime \prime} \rightarrow\{1,2,3, \ldots, 25 m\}$ as follows:
$\alpha\left(v_{i} a_{i}\right)=3 i-2 ; 1 \leq i \leq 2 m ; \quad \alpha\left(v_{i} b_{i}\right)=3 i-1 ; 1 \leq i \leq 2 m ;$
$\alpha\left(a_{i} b_{i}\right)=3 i ; 1 \leq i \leq 2 m ; \quad \alpha\left(a_{i} c_{i}\right)=6 m+3 i-2 ; 1 \leq i \leq 2 m ;$
$\alpha\left(a_{i} d_{i}\right)=6 m+3 i-1 ; 1 \leq i \leq 2 m ;$
$\alpha\left(c_{i} d_{i}\right)=6 m+3 i ; 1 \leq i \leq 2 m ;$
$\alpha\left(b_{i} e_{i}\right)=12 m+3 i-2 ; 1 \leq i \leq 2 m ;$
$\alpha\left(b_{i} f_{i}\right)=12 \mathrm{~m}+3 i-1 ; 1 \leq i \leq 2 m$
$\alpha\left(e_{i} f_{i}\right)=12 \mathrm{~m}+3 i ; 1 \leq i \leq 2 m ;$
$\alpha\left(v_{i} g_{i}\right)=18 m+3 i-2 ; 1 \leq i \leq 2 m ;$
$\alpha\left(v_{i} h_{i}\right)=18 m+3 i-1 ; 1 \leq i \leq 2 m ;$
$\alpha\left(g_{i} h_{i}\right)=18 m+3 i ; 1 \leq i \leq 2 m$.
$\alpha\left(v_{i} v_{i+m}\right)=24 \mathrm{~m}+\mathrm{i} ; 1 \leq i \leq m$
We calculate the face weights as follows:
For1 $\leq i \leq 2 m$,
$\beta\left(f_{i 1}^{\prime}\right)=\alpha\left(v_{i} a_{i}\right)+\alpha\left(a_{i} b_{i}\right)+\alpha\left(v_{i} b_{i}\right)=9 i-3$
$\beta\left(f_{i 1}^{\prime \prime}\right)=\alpha\left(a_{i} c_{i}\right)+\alpha\left(a_{i} d_{i}\right)+\alpha\left(c_{i} d_{i}\right)=18 m+9 i-3$
$\beta\left(f_{i 2}^{\prime \prime}\right)=\alpha\left(b_{i} e_{i}\right)+\alpha\left(b_{i} f_{i}\right)+\alpha\left(e_{i} f_{i}\right)=36 m+9 i-3$
$\beta\left(f_{i 3}^{\prime \prime}\right)=\alpha\left(v_{i} g_{i}\right)+\alpha\left(v_{i} h_{i}\right)+\alpha\left(g_{i} h_{i}\right)=54 m+9 i-3$
which is forming an arithmetic progression $\{6,6+(1 \times 9), 6+(2 \times 9), \ldots, 6+(8 m-1) 9\}$.
Type (ii) ( $0,1,1$ )
Define $\alpha: E^{\prime \prime} \cup F^{\prime \prime} \rightarrow\{1,2, \ldots, 33 m+1\}$ as follows:
$\alpha\left(f_{i 1}^{\prime}\right)=25 m+i ; 1 \leq i \leq 2 m ; \quad \alpha\left(f_{i 2}^{\prime}\right)=27 m+i ; 1 \leq i \leq 2 m$
$\alpha\left(f_{i 3}^{\prime}\right)=29 m+i ; 1 \leq i \leq 2 m$;
$\alpha\left(f_{i 4}^{\prime}\right)=31 m+i ; 1 \leq i \leq 2 m$
and the labeling for the external face is $33 m+1$.
The face weights are calculated as follows:
For $1 \leq i \leq 2 m$,
$\beta\left(f_{i 1}{ }^{\prime \prime}\right)=\alpha\left(a_{i} c_{i}\right)+\alpha\left(a_{i} d_{i}\right)+\alpha\left(c_{i} d_{i}\right)+\alpha\left(f_{i 2}^{\prime}\right)=45 m+10 i-3$
$\beta\left(f_{i 1}^{\prime}\right)=\alpha\left(v_{i} a_{i}\right)+\alpha\left(a_{i} b_{i}\right)+\alpha\left(v_{i} b_{i}\right)+\alpha\left(f_{i 1}^{\prime}\right)=25 m+10 i-3$
$\beta\left(f_{i 2}{ }^{\prime \prime}\right)=\alpha\left(b_{i} e_{i}\right)+\alpha\left(b_{i} f_{i}\right)+\alpha\left(e_{i} f_{i}\right)+\alpha\left(f_{i 3}^{\prime}\right)=65 m+10 i-3$
$\beta\left(f_{i 3}{ }^{\prime \prime}\right)=\alpha\left(v_{i} g_{i}\right)+\alpha\left(v_{i} h_{i}\right)+\alpha\left(g_{i} h_{i}\right)+\alpha\left(f_{i 4}^{\prime}\right)=85 m+10 i-3$
which is forming an arithmetic progression $\{45 m+7,45 m+7+(1 \times 10), 45 m+7+$ $(2 \times 10), \ldots, 45 m+7+(8 m-1) 10\}$.

## Conclusion

The ( $a, d$ ) antimagic labeling for the biarmed crown graphs, the barycentric subdivision of a cycle graph and middle graph of a cycle are proved. If the graph $G^{+}$except for 3-sided faces is $(a, d)$ - face antimagicof types $(0,1,0)$ and $(0,1,1)$ then $D D_{V V}\left(G^{+}\right)$is also of the same a ( $a, d$ ) - face antimagic. Recently, the face antimagic labeling of double duplication graphs are applied to encrypt and decrypt secret messages and numbers in communication networks.

## References

[1] Martin Baca, Ljiljana Brankovic Marcela Lascsakova, Oudone Phanalasy, Andrea SeminicovaFenovcikova, On d-antimagic labeling of plane graphs, Electronic Journal of Graph Theory and Applications Vol.1, no.1, 28-39, 2013.
[2] M. Baca and M. Miller, On d-antimagic labeling of type (1, 1, 1) for prisms, J. Combin. Math. Combin. Comput, Vol.44, 199 - 207, 2003.
[3] L. Shobana and B. Roopa, On face magic labeling of double duplication of some families of graphs, International Journal of Pure and Applied Mathematics, Vol.114, no.6, 49-60, 2017.
[4] S. K. Vaidya, K. K. Kanani, Some Cordial Graphs in the Context of Barycentric Subdivision, J. Contemp. Math. Sciences, Vol. 4, no. 30, 1479 -1492, 2009.
[5] P. Jeyanthi, D. Ramya, P. Thangavelu, On Super mean graphs, AKCE J . Graphs. Combin., Vol.6, no. 1, pp.103-112, 2009.
[6] B. Thenmozhi, Dr. R. Prabha, Power Domination of Middle graph of path, cycle and star, International Journal of Pure and Applied Mathematics Vol. 114,no. 5, 13-19, 2017.
[7] J. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, \#DS6, 2020.
[8] M. Baca, Face antimagic labeling of convex polytypes, Utilitas, Math, Vol.55, 221 - 226, 1999.


[^0]:    *Email: mohammad.a.a@ihcoedu.uobaghdad.edu.iq

