Mathematical Analysis of Peristaltic Pumps for Fene-P model subject to Hall and Joule impact

Saba S. Hasen¹*, Rabiha S. Kareem², Hayat A.Ali³
¹Department of Applied Science, University of Technology, Baghdad, Iraq
²University of Information Technology and Communications, Baghdad, Iraq
³Department of Applied Science, University of Technology, Baghdad, Iraq

Received: 6/10/2020 Accepted: 13/1/2022 Published: 30/7/2022

Abstract
A mathematical model is developed to discuss the impact of the Hall current and the Joule heating on the peristaltic flux of finitely extensible nonlinear elastic Peterlin (FENE-P) fluid in a tapered tube with mild stenosis. The fluid movement along the wall surface resulted from the sinusoidal wave flowing with constant speed. Conditions of velocity and thermal slip are applied. Lubrication approximation is adopted to modify the governing flow problem. To discover the solution to a system of equations, the regular perturbation approach is used. The effects of the different physical parameters are debated and graphically shown in a set of figures. It is discovered that as the Hall current parameter is increased and the Hartman number is decreased, the fluid velocity increases. It is also worth noting that the Dufour number causes the fluid temperature to rise, whilst the Hall current parameter causes the temperature to fall. In the meantime, both the Hall current parameter and the Soret number have the opposite effect on concentration. The trapping phenomenon is thoroughly investigated.

Keywords: FENE-P fluid, Hall effects, Joule heating, Peristalsis, Slip conditions.

التحليل الرياضي للضخ التمعجي لنموذج فاين - بي الخاضع لتأثير هول وجوول

صابي ستار حدن، رابحة سليم كريم، حياة عادل علي
¹قسم العلوم التطبيقية، الجامعة الكبورية، بغداد، العراق
²جامعة تكنولوجيا المعلومات والاتصالات، بغداد، العراق
³قسم العلوم التطبيقية، الجامعة الكبورية، بغداد، العراق

الخلاصة
تم تطوير نموذج رياضي لمناقشة تأثير هول وجوول على التدفق التمعجي لسائل بيتزئن
المرن غير الخطي (FENE-P) في أنبوب مدبو مع تضيق خفيف. نتجت حركة السوائل على طول سطح
الجدار عن تدفق الموجة الجيبية بسرعة ثابتة. تم تطبيق شروط السرعة والانزلاق الحراري. تم اعتماد تقريب
الن有一定的 للضبط مشكلة التدفق الحاكمة. لاكتشاف الحل لنظام المعادلات، تم استخدام نهج الاضطراب
المتنوع. تم مناقشة تأثيرات المعطيات الفيزيائية المختلفة وعرضها بيانياً عن طريق مجموعة من الأشكال. تم

*Email: saba.s.hasen@uotechnology.edu.iq
Hasen et al.  

اكتشف أنه مع زيادة معمسة تيار هقل وانخفاض رقم هارتسان، تزداد سرعة الدائل. وتجدر الإشارة أيضًا إلى أن رقم دوفر يتدبب في ارتفاع درجة حرارة الدائل. ولهذا، في غضون ذلك، يكون لكل من معمسة تيار هقل ورقم سيرت تأثير معكس على التركيز. يتم التحقيق بدقة في ظاهرة البمعة.

1. Introduction

Peristalsis is a vital system for transferring fluids through a tube by using a contractile ring above the tube to propel the material ahead. This mechanism is critical for the movement of fluids in living beings and industries. The peristaltic phenomenon is what makes dialysis and heart-lung machines work. The authors in [1–8] show recent attempts at peristaltic flow effects.

The majority of fluids in nature have non-Newtonian properties. Under the stress, non-Newtonian fluids change their viscosity or flow behavior, when the stress is applied we note that not every non-newtonian fluids have the same response, some grow more solid, whereas others become more fluid. Some non-Newtonian fluids interact in response to the magnitude of the stress applied, whereas others react in response to the duration of the stress. The FENE-P model is a non-Newtonian model that has been widely used to correlate experimental data on shear and extensional viscosities, as well as transient and normal stress variations in polymer solutions. Paper pulps are the polymer solutions, while chyme, a biological fluid, is characterized as a pulpy acidic fluid. The FENE-P model is widely used rheological constitutive equation for polymeric liquids. Because chyme and pulps are similar, they can be used to represent the rheological properties of chyme while researching the peristaltic transpose of chyme. Furthermore, it is capable of simulating viscometric characteristics for a wide range of fluids and can forecast decreasing viscosity with shear. Ali et al.[9] studied the peristaltic motion of two fluids, namely the FENE-P and the Newtonian fluids in a flexible tube under the effect of electro-osmotic force. Asghar et al.[10] presented the heat and mass transfer impact on peristaltic flow of (FENE-P) fluid in the presence of chemical reaction. Refs.[11-14] contains several important assessments on the usage of the FENE-P fluid model in mathematical modeling and investigation of various flow circumstances.

The examination of Hall's influence becomes extremely important in the presence of a high magnetic field. These effects are most useful in a variety of industries, including power generators, magnetometers for measuring magnetic fields, transformers, the sensors of Hall current, car fuel level indicators, spacecraft propulsion, and magnetic situation monitoring in DC electric motors. Hayat et al. [15] investigated the Hall current influence on the peristaltic motion of Eyring–Powell fluid in an inclined symmetric tube. EL-Dabe et al. [16] studied the influence of the Hall current and Joule heating on the peristaltic transfer of a Sisko fluid through a porous medium. the Hall current effects are reported in Refs. [17-19]).

Heat transfer has an important role in peristaltic movements, in particular, the blood flows. Some of the most common uses of heat transfer are conduction of heat in tissues, radiative heat transfer between surface and environment, heat transfer by convection when the blood flux from pores of tissue, vasodilation and food preparation. Heat transfer is involved in peristalsis processes such as oxygenation and hemodialysis. In addition, it has several implementations in engineering encompassing high temperatures through variable thermal conductivity. Such operations include turbines, space vehicles, nuclear power plants, pumps operated at high temperatures and rockets. As the electric energy is transformed into heat, Joule heating happens. Soldering irons, electric stoves, electric heaters and cartridge heaters are all examples of Joule heating. Furthermore, electronic cigarettes mainly operate on the Joule heating principle. Many investigators and studies have presented discussions in [20-26]
The goal of this study is to look at how the Hall current, Joule heating, peristalsis and the Soret and Dufour impact affect a fully developed convection flow in a tapered tube with slight stenosis. Using the long wavelength and low Reynolds number presumptions, the governing equations of motion have been simplified. These equations are approximately resolved under the required boundary conditions by employing a perturbation method, see [27].

2. Problem formulation

Consider that an incompressible viscoelastic fluid bearing the peristaltic flow in a tapered tube. The motion of the fluid is created by sinusoidal wave train conduction along the walls of the tube with mild stenosis. The magnetic field of uniform strength \( B_0 \) is acting upon the fluid, however, the influence of the electric field is not applied. While it is taken into account the effect of the Hall and Joule heating. We consider a cylindrical polar coordinate \( (\vec{R}, \vec{\theta}, \vec{Z}) \) in such a way that the \( Z \)-axis synchronizes with the axis of the tubes. Hall's current presence creates a force in the \( \theta \)-direction. As the result, the flow of fluid becomes three dimensions, however, there is no influence on the fluid flow, concentration properties and heat transfer in \( \theta \) direction. The tube is convectively heated. Also, the condition of convective mass is applied in the physical Sketch of the situation of the problem that is illustrated in Figure -1.

![Figure 1-The geometry of the problem](image)

Travelling waves of small amplitudes propagating along tapered walls of the tube are taken as follows:

\[
R(Z,t) = R(\vec{Z}) + \vec{H}_1 \\
R(Z) = \begin{cases} 
R_1 - \delta m_1(\vec{Z} + \vec{L} + \vec{d}) & -\vec{L} \leq \vec{Z} < -\vec{Z}_0 \\
R_1 - \delta m_1(\vec{Z} + \vec{L} + \vec{d}) - \frac{H_0}{2}(1 + \cos \frac{\pi \bar{Z}}{Z_0}) & -\vec{Z}_0 \leq \bar{Z} \leq \vec{Z}_0 \\
R_1 - \delta m_1(\vec{Z} + \vec{L} + \vec{d}) & \bar{Z}_0 < \bar{Z} \leq \bar{Z}_0 
\end{cases}
\]

\[
\vec{H}_1 = \vec{c} \cos \frac{2\pi}{\lambda} (\vec{Z} - ct), \quad \vec{H}_0 = \vec{c} \cos \varphi.
\]

where \( R(Z) \) indicates the efficient radius of the tapered tube, \( \vec{H}_1 \) represents the peristaltic wall geometry, the radius of the tube is denoted by \( R_1 \), \( \vec{Z}_0 \) is the half-length of the stenosis, \( \delta \) is the wavelength, \( \lambda \) is the wavelength, \( \vec{c} \) is wave amplitude, \( c = \frac{k}{R_1} \) is the wave velocity, \( \varphi \) is the
angle of tapering, \( t \) is the time, \( m_1 = \tan \varphi \) is the slope of the tapered tube, \( \bar{H}_0 \) is the height of the stenosis in a tapered tube and \( \bar{h} \) is the maximum height of the stenosis.

In our study, the walls of the tube are supposed to be electrically insulated. When the electrically conducting fluid influxes through the tube in the existence of a magnetohydrodynamic field, the generalized Ohm’s law with the Hall effect can be expressed as

\[
J = \sigma [E + \bar{V} \times B - \frac{1}{en} (J \times B)]
\]  

(2)

where \( e \) is the electric charge of ions, \( n \) is the number density of electrons, and \( E = 0 \). the magnetic field represent as \( B = (0, \beta_0, 0) \), while the influx velocity of the fluid is given as follows \( \bar{V} = (\bar{U}, 0, \bar{W}) \), hence we have

\[
J \times B = -\frac{\sigma \beta^2_0}{1 + m^2_2} [(\bar{U} + m \bar{W}), 0, (\bar{W} - m \bar{U})]
\]  

(3)

where \( m = \frac{\sigma \beta_0}{en} \) is the Hall current parameter.

The four nonlinear partial differential equations that are connected (continuity, momentum, energy, and mass diffusion) describe the fluid flow in the frame \((\bar{R}, \bar{Z})\) are expressed by

\[
\frac{\partial \bar{U}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{U}}{\partial \bar{R}} + \bar{W} \frac{\partial \bar{U}}{\partial \bar{Z}} = -\frac{\partial P}{\partial \bar{R}} + \frac{1}{R} \frac{\partial}{\partial \bar{R}} (\bar{R} \bar{S}_R) + \frac{\partial}{\partial \bar{Z}} (\bar{S}_Z) - \frac{\bar{S}_R}{\bar{R}} - \frac{\beta^2_0}{1 + m^2_2} (\bar{U} + m \bar{W})
\]  

(4)

\[
\rho \left( \frac{\partial \bar{W}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{W}}{\partial \bar{R}} + \bar{W} \frac{\partial \bar{W}}{\partial \bar{Z}} \right) = -\frac{\partial P}{\partial \bar{Z}} + \frac{1}{R} \frac{\partial}{\partial \bar{R}} (\bar{R} \bar{S}_Z) + \frac{\partial}{\partial \bar{Z}} (\bar{S}_Z) - \frac{\beta^2_0}{1 + m^2_2} (\bar{W} - m \bar{U}),
\]  

(5)

\[
\rho c_p \left( \frac{\partial \bar{C}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{C}}{\partial \bar{R}} + \bar{W} \frac{\partial \bar{C}}{\partial \bar{Z}} \right) = K \left( \frac{\partial^2 \bar{C}}{\partial \bar{R}^2} + \frac{\partial^2 \bar{C}}{\partial \bar{Z}^2} \right) + \frac{mK_T}{c_s} \left( \frac{\partial^2 \bar{C}}{\partial \bar{R}^2} + \frac{\partial^2 \bar{C}}{\partial \bar{Z}^2} \right) + \frac{mK_T}{1 + m^2_2} \left( \frac{\partial^2 \bar{C}}{\partial \bar{R}^2} + \frac{\partial^2 \bar{C}}{\partial \bar{Z}^2} \right).
\]  

(6)

where \( \bar{U}, \bar{W} \) are the velocity components in \( \bar{R} \) and \( \bar{Z} \) directions, respectively and \( \bar{S}_{ij}, \bar{P}, \bar{T}, \bar{C}, K_T, D_m, T_m, \rho, c_p \) are \( \bar{S}_{ij} \) assigns the extra stress tensor over a phase whose normal is the \( i \)-direction and act on the face \( j \)-direction, pressure, fluid temperature, the concentration of fluid, thermal diffusion, coefficient of thermal diffusivity, the mean fluid temperature, the fluid density and the specific heat, respectively.

The partial slip condition together with the convective boundary conditions of the wall can be expressed as follows:

\[
\bar{U} = 0, \frac{\partial \bar{W}}{\partial \bar{R}} = 0, \frac{\partial \bar{C}}{\partial \bar{R}} = 0 \quad \text{at} \quad \bar{R} = 0
\]

\[
\bar{U} = \frac{\partial H}{\partial \bar{t}}, \quad \bar{W} = -\gamma \bar{S}_{RZ}, \quad K \frac{\partial \bar{T}}{\partial \bar{R}} = -h_c (\bar{T} - \bar{T}_0), \quad D_m \frac{\partial \bar{C}}{\partial \bar{R}} = -h_c (\bar{C} - \bar{C}_0) \quad \text{at} \quad \bar{R} = 0
\]  

(9)

where \( \gamma \) is the slip parameter, \( h_c \) stands for heat transfer coefficient, and it reflects the proportionality constant between the heat flux and the thermodynamic driving force for the flow of the heat. Meanwhile, the mass transfer coefficient, abbreviated as \( h_c \), is used to represent the relationship between the flux of actual mass of kinds into or out of moving fluid and the driving force for that flow.

The constitutional equations for a FENE-P fluid model are defined as

\[
f (tr(\bar{S})) \bar{S} + \lambda_p \bar{S} = 2b \mu D,
\]  

(10)

\[
\bar{S} = \frac{\partial \bar{S}}{\partial \bar{t}} + (\bar{V} \cdot \nabla) \bar{S} - \bar{S}(\nabla \bar{V})^T - (\nabla \bar{V}) \bar{S}.
\]  

(11)

And the functions \( f (tr(\bar{S})) \) and \( D \) are given by

\[
f (tr(\bar{S})) = 1 + \frac{3b + \frac{2p}{\mu} (tr(\bar{S}))}{L^2}, \quad D = \frac{1}{2} (\nabla \bar{V} + (\nabla \bar{V})^T)
\]  

(12)
where \( \text{tr} (\mathbf{S}) = \tilde{S}_{\tilde{R}\tilde{R}} + \tilde{S}_{\tilde{R}\tilde{\theta}} + \tilde{S}_{\tilde{R}\tilde{Z}} \), and the parameter \( b = 1/(1 - 3/\tilde{I}^2) \) is dependent on \( \tilde{I}^2 \) which is represented the extensibility parameter, \( \lambda_p \) is the relaxation time, \( \mu \) is the zero shear rate polymer viscosity.

The Galilean transformations are utilized to transform laboratory frame into periodic ones to facilitate the governing Eqs. (4)–(8), which are given as

\[
\begin{align*}
\ddot{r} &= \tilde{R}, \quad \dot{z} = \tilde{Z} - ct, \quad \ddot{w} = \tilde{W} - c, \quad \tilde{u} = \tilde{U} \quad (13)
\end{align*}
\]

Now, we are introducing non-dimensional scaling transformations as follows:

\[
\begin{align*}
& r = \frac{\tilde{r}}{R_1}, \quad z = \frac{\tilde{z}}{\lambda'}, \quad u = \frac{\tilde{u}}{c}, \quad w = \frac{\tilde{w}}{c}, \quad H_1 = \frac{\tilde{R}_1}{R_1}, \quad \delta = \frac{\tilde{S}}{\lambda}, \quad S = \frac{\tilde{R}_1 S}{c \mu}, \quad Z_0 = \frac{\tilde{z}_0}{\lambda}, \quad \epsilon = \frac{\tilde{e}}{R_1}, \\
& L = \frac{L}{\lambda'}, \quad h = \frac{\tilde{h}}{R_1}, \quad d = \frac{\tilde{d}}{\lambda'}, \quad R(z) = \frac{\tilde{R}(z)}{R_1}, \quad P = \frac{\tilde{R}_1^2 P}{c^2 \mu}, \quad T = \frac{\tilde{T}}{R_1^2 \mu}, \quad C = \frac{\tilde{C}}{c^2 \mu}, Y^* = \frac{\mu}{R_1^2} \\
H &= \sqrt{\frac{\sigma}{\mu}} R_1, \quad Q = \frac{\tilde{Q}}{2 \pi R_1^2 c}, \quad R_e = \frac{\sigma \tilde{R}_1^2 P}{\mu}, \quad B_r = P, \quad E_c, \quad D_e = \frac{\lambda_p c}{R_1}, \quad \lambda_c R_1 \quad (14)
\end{align*}
\]

where \( H \) is the Hartman number, \( Q \) is volumetric flow rate, \( R_e \) is Reynold’s number, \( \beta_t \) is the heat transfer Biot number, \( \beta_c \) is the mass transfer Biot number, \( B_r \) is the Brickman number, \( D_e \) is the Deborah number, \( S_c \) is the Schmidt number, \( P_e \) is the Prandtl number, \( D_u \) is the Dufour number, \( S_r \) is the Soret number, and \( \beta \) is the adverse temperature gradient.

Now by employment the above transformations Eqs. (13)-(14) into the nonlinear system (4-8), we get the following formulas

\[
\begin{align*}
& Re \frac{\partial^3 u}{\partial r^3} + (w + 1) \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} + \frac{\partial w}{\partial z} = 0, \\
& H^2 \frac{1 + m^2}{2} \delta m (w + 1), \quad (15)
\end{align*}
\]

\[
\begin{align*}
& Re \left( u \frac{\partial w}{\partial r} + \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left( r S_{rr} \right) + \frac{\partial^2}{\partial z^2} S_{zz} - \frac{\partial^2}{\partial z^2} S_{zz} - \frac{H^2}{1 + m^2} \delta u, \quad (16)
\end{align*}
\]

\[
\begin{align*}
& Re P \left( u \frac{\partial r}{\partial r} + \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left( r S_{rr} \right) + \frac{\partial^2}{\partial z^2} S_{zz} + \frac{D_u P}{\mu c_s \rho c_p} \left( \frac{\partial^2 c}{\partial r^2} + \frac{1}{r} \frac{\partial c}{\partial r} \right), \quad (17)
\end{align*}
\]

\[
\begin{align*}
& Re S_e \left( u \frac{\partial c}{\partial r} + \frac{\partial w}{\partial z} \right) = \frac{\partial^2 c}{\partial z^2} + \frac{1}{r} \frac{\partial c}{\partial r} + \frac{\partial^2}{\partial z^2} S_{zz} + \frac{S_r S_e \left( \frac{\partial^2 c}{\partial r^2} + \frac{1}{r} \frac{\partial c}{\partial r} \right)}{\partial r^2} + \frac{S_r S_e \delta^2}{\partial z^2} \quad (18)
\end{align*}
\]

And by reusing the previous transformations on Eq. (10), we get

\[
\begin{align*}
& f_{S_{rr}} + \delta D_e \left( u \frac{\partial S_{zz}}{\partial r} + \frac{\partial w}{\partial z} \right) = -2 D_e S_{zz} \frac{\partial u}{\partial r} - 2 S_{zz} \frac{\partial w}{\partial r} = 2b \delta \frac{\partial u}{\partial r}, \quad (20)
\end{align*}
\]

\[
\begin{align*}
& f_{S_{zz}} + \delta D_e \left( u \frac{\partial S_{zz}}{\partial r} + \frac{\partial w}{\partial z} \right) = -2 D_e S_{zz} \frac{\partial w}{\partial r} - 2 \delta D_e S_{zz} \frac{\partial w}{\partial z} = 2b \delta \frac{\partial w}{\partial z}. \quad (22)
\end{align*}
\]

We note that Eqs. (15) - (22) are difficult to deal with, so through our observation of the literature, there is no attempt to address the peristaltic fluid problem of non-Newtonian fluids without applying some assumptions. Fortunately, because of the association of peristaltic movement with physiology, suitable assumptions can be used, for example, in the movement of the intestines where the fluid motion is peristaltic, the vessel radius is so small compared to the wavelength of the wave.

The above two assumptions are commonly referred to low Reynolds number and long wavelength and assumptions in the literature. The parameter characterizing the ratio of the channel radius to the wavelength of the peristaltic wave in our study is \( \delta \). Thus, for the flow under consideration, we assume \( \delta \approx 0 \) and \( R_e \approx 0 \). Under the above assumptions, Eqs. (16)-(22) have the following formula
And we can define the stream function as follows 

\[ f_{rr} = 0, \]
\[ f_{rr} - D_e S_{rr} \frac{\partial w}{\partial r} = b \frac{\partial w}{\partial r}, \]
\[ f_{zz} - 2 D_e S_{rz} \frac{\partial w}{\partial r} = 0, \]

With the final formula of the dimensionless boundary conditions 

\[ u = 0, \frac{\partial w}{\partial r} = 0, \frac{\partial T}{\partial r} = 0, \frac{\partial C}{\partial r} = 0 \quad \text{at} \quad r = 0 \]
\[ u = \frac{\partial H_z}{\partial t} = 2\pi \epsilon \sin 2\pi z, w = -1 - \gamma S_{rz}, \frac{\partial T}{\partial r} = -\beta_t T, \frac{\partial C}{\partial r} = -\beta_c C \quad \text{at} \quad r_2 \]

And we can define the stream \( \psi(r,z,t) \) function as follows 

\[ w = -\frac{1}{2} \frac{\partial \psi}{\partial z}, u = -\frac{1}{2} \frac{\partial \psi}{\partial r}. \]

### 3. Solution Methodology

In this section, we refuse to use the approximate method to get the solution of the system. The regular perturbation technique is employed to find accurate approximate to Eqs. (23)-(29).

First simplifying and solving the system (27)-(29) yield the normal components of the extra stress tensor

\[ S_{zz} = \frac{2D_e}{b} S_{rz}^2, \text{ and } S_{rr} = S_{\theta \theta} = S_{\phi \theta} = S_{\theta \phi} = 0 \]

So the system can be reduced to

\[ \left( b + \frac{2D_e^2}{bl^2} S_{rr}^2 \right) S_{rz} = b \frac{\partial w}{\partial r} \]

The used technique depends on choosing a small parameter, in our study, we choose a parameter \( H \) to solve the nonlinear system. The following expansions are used to obtain the perturbed solution

\[
\begin{align*}
\psi &= \psi_0 + H^2 \psi_1 + O(H^4) \\
S_{rz} &= S_{rz0} + H^2 S_{rz1} + O(H^4) \\
T &= T_0 + H^2 T_1 + O(H^4) \\
C &= C_0 + H^2 C_1 + O(H^4) \\
p &= p_0 + H^2 p_1 + O(H^4)
\end{align*}
\]

Now we will employ these physical quantities into Eqs. (23)-(26) and boundary conditions (30), and then gathering the like powers of \( H^2 \), we obtain the corresponding zero- and first-order systems. By solving the system, we get the solution as below:

\[
\begin{align*}
\psi_0 &= \frac{1}{46080b^4 l^4(1 + m^2)^2} r^2 \left( 120b^4 L^4 (9r_2 ^4 + r_4 + 36r_2 ^3 \gamma - 12hr_2^2 \gamma - 6r_2^2 (r_2^2 - 2\gamma^2))p_0 + 20b^2 D_e^2 L^2 (52r_2^6 - 9r_2^4 \gamma - 18r_2^2 \gamma^2 + 5\gamma + 132r_2 \gamma - 36r_2 \gamma^2) \psi_0 + 9D_e^4 (-5r_2^4 + r_4)^2 p_0^3 - 2880b^4 L^4 (1 + m^2)(2r_2^2 - r^2 + 4r_2 \gamma)p_1 - 1440b^2 D_e^2 L^2 (1 + m^2)(3r_2^4 - r^4)p_0 p_1 \right), \\
T_0 &= 0,
\end{align*}
\]
Based on the above equations, the velocity of the fluid is:

\[
T_1 = -\frac{1}{460800 b^4 L^4(1+m^2)\beta_t(-1+D_w r_1 S_1 S_2)} B_r p_0 (400 b^4 L^4 (11 r_2^6 \beta_t - 2 r_2^6 \beta_t + 18 h r^4 \beta_t \gamma - 72 r_2^3 (r^2 \beta_t - 2 \gamma) \gamma + 6 r_2^5 (2 + 9 \beta_t \gamma) + 9 r_2^2 r^2 \beta_t (r^2 - 8 \gamma^2) - \cdots, \tag{38}
\]

\[
C_0 = 0, \tag{39}
\]

\[
C_1 = \frac{1}{460800 b^4 L^4(1+m^2)\kappa(-1+D_u r_1 S_1 S_2)} (4800 b^4 B_r r_2^5 L^4 p_0^2 S_1 S_2 + 28800 b^4 B_r r_2^4 L^4 \gamma p_0^2 S_1 S_2 + 57600 b^4 B_r r_2^3 L^4 \gamma^2 p_0^2 S_1 S_2 + \cdots), \tag{40}
\]

Based on the above equations, the velocity of the fluid is:

\[
w = \frac{1}{4608 b^4 L^4(1+m^2)} (72 b^4 L^4 (3 h^4 H^2 + r^2 (16 + 16 m^2 + H^2 r^2) + 12 h^3 H^2 \gamma - 8 h(4 + 4 m^2 + H^2 (r^2 - 4 \gamma^2))) p_0 + \cdots. \tag{41}
\]

4. Results and discussion

The solution of a non-Newtonian viscoelastic fluid with a tapered tube is dealt with in this section. The expression for the velocity, temperature, concentration and stream function is computed approximately for various flow parameters. Mathematica program (version 11.0) has been employed to calculate the influence of embedded parameters on the hydrodynamic and thermal behavior which are represented by the Hartman number \(H\), the Hall current \(m\), the Deborah number \(D_e\), the slip parameter \(\gamma\), the Brickman number \(B_r\), the Dufour number \(D_u\), the Soret number \(S_r\), the mass transfer Biot number \(\beta_c\). Figures 2 and 3 show the magnetic field and the Hall effect on the velocity profile for values of \(H\) and \(m\). It is depicted that the velocity with the increase in the magnetic field, velocity profile decreases at tube sides while Figure-3 depicts that the Hall current enhances the flow of fluid. Figure-4 illustrates the velocity variation vs \(r\)-axis for various values of \(D_e\). It is clear that the velocity of the fluid is reduced when \(D_e\) increases. Figure-5 indicates that the velocity profile decreases for the larger value of momentum slip parameter \(\gamma\). Figure-6 shows the evolution in temperature for different values of \(H\), it is exhibited that for large values of \(H\) the temperature distribution increases at the center of the tube whereas it is the opposite at the sides. Figure-7 indicates that by increasing \(m\) the temperature increases at the edges of the channel while decreasing at the center. The difference of temperature for various values of \(B_r\), is demonstrated in Figure-8. It is observed that The temperature rises with \(B_r\). This position can be interpreted as the thermal energy generated as a result of the dissipation of the viscous. So, the temperature of fluid increases. In Figure-9, the impact of \(D_u\) on temperature is clarified. It can be observed that the heat enhances with the boost of \(D_u\) value. In Figures-10-13 the profiles of concentration are shown for different values of the parameters of interest where it is found in Figure-10 that the concentration of fluid rises with \(H\) near the wall but decreases at the center of the tube. Figure-11 shows that concentration gets increasing function in \((-1.5 \leq r \leq 1.5)\) while it gets the opposite attitude at the walls. Figure-12 shows that an increase in \(S_r\) leads to a decrease in the concentration of fluid. Figure-13 indicates that the mass diffusion increases for the larger value of \(\beta_c\). The formation of a bolus by internally splitting streamlines is called trapping. The bolus proceeds forward through a peristaltic wave with the same speed. Figure-14 depicts the streamlines for the various magnitude of \(H\), it is clear that by increasing the value of \(H\) the number of the trapped bolus is increasing while the size of trapping decreases. Figure-15 illustrates that by increasing the value of \(D_e\), the number of the trapped bolus is decreasing whereas the size increases. The impact of the slip parameter \(\gamma\) on the trapping is displayed in Figure-16. The bolus increases in number while the decrease in size by the increase of \(\gamma\).
Figure 2 - Velocity variation vs. $H$ at $m = 10, \lambda = 1, b = 0.1, D_e = 1, \gamma = 0.1$

Figure 3 - Velocity variation vs. $m$ at $H = 0.3, \lambda = 1, b = 0.1, D_e = 1, \gamma = 0.1$

Figure 4 - Velocity variation vs. $D_e$ at $H = 0.3, m = 10, \lambda = 1, b = 0.1, \gamma = 0.1$

Figure 5 - Velocity variation vs. $\gamma$ at $H = 0.3, m = 10, \lambda = 1, b = 0.1, D_e = 1$

Figure 6 - Temperature variation vs. $H$ at $m = 10, B_r = 0.5, D_u = 0.3, \beta_t = 0.6$

Figure 7 - Temperature variation vs. $m$ at $H = 0.1, \beta_t = 0.6, B_r = 0.5, D_u = 0.3$

Figure 8 - Temperature variation vs. $B_r$ at $H = 0.1, m = 10, \beta_t = 0.6, D_u = 0.3$

Figure 9 - Temperature variation vs. $D_u$ at $H = 0.1, m = 10, B_r = 0.5, \beta_t = 0.6$
Figure 10 - Concentration variation vs. $H$ at $S_c = 0.1$, $m = 0.2$, $\beta_c = 0.6$, $S_r = 0.6$

Figure 11 - Concentration variation vs. $m$ at $H = 0.1$, $S_c = 0.1$, $\beta_c = 0.6$, $S_r = 0.6$

Figure 12 - Concentration variation vs. $S_r$ at $S_c = 0.1$, $m = 0.2$, $\beta_c = 0.6$, $H = 0.1$

Figure 13 - Concentration variation vs. $\beta_c$ at $H = 0.1$, $S_c = 0.1$, $m = 0.2$, $S_r = 0.6$

Figure 14 - Stream function variation vs. $r$ $H$ at $m = 10$, $b = 0.1$, $D_e = 1$, $y = 0.1$
5. Conclusions

In this article, we have analyzed the role of the Hartman number, the Hall current, the Deborah number, the slip parameter, the Brickman number, the Dufour number, the Soret number, and the mass transfer Biot number on the peristaltic motion of a non-Newtonian Fene-P fluid flow in the tapered tube. Based on what was previously mentioned, it can be concluded that an increase in the Hartman number $H$, the Deborah number $D_e$, and the slip parameter $\gamma$ show a deceleration in the velocity of the fluid while the velocity exhibits an accelerated attitude as the Hall current $m$ increases. The Hartman number $H$ and the Hall current $m$ show opposite behavior for temperature distribution and mass diffusion, and we show that the temperature profile rises as the Brickman number $B_r$ and the Dufour number $D_u$ increase. An increase in the values of the Soret number $S_r$ leads to a reduction in mass diffusion. Whereas a boost in the mass transfer Biot number $\beta_c$ leads to a rise in concentration. The Hartman number $H$ and the slip parameter $\gamma$ cause a reduction in the size of the trapping bolus, but the number of trapping bolus increases.
References


