

ISSN: 0067-2904

Some Applications of Quasi-Subordination for Bi-Univalent Functions Using Jackson's Convolution Operator

Waggas Galib Atshan, Reaam Abd Al-sajjad *
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah-Iraq

Received: 29/9/2021 Accepted: 4/4/2022 Published: 30/10/2022

Abstract

In this paper, subclasses of the function class \sum of analytic and bi-univalent functions associated with operator $L_{q}^{k, \lambda}$ are introduced and defined in the open unit disk \triangle by applying quasi-subordination. We obtain some results about the corresponding bound estimations of the coefficients a_{2} and a_{3}.

Keywords: bi-univalent function, Quasi-subordination, coefficient estimates, subordination.

بعض تطبيقات شبه التابعية للدوال ثنائية التكافؤ باستخدام مؤثر الالتواء لجاكسون

```
    وقاص غالب عطشان , رئام عبد السجاد جبار"
قسم الرياضيات , كلية العوم , جامعة القادسية , الديوانية , العراق
```

```
الخلاصة
في هذا البحث تم تتديم أصناف جزئية لصنف الدالة \(\sum\) من الدوال التحليلية الثنائية التكافؤ المرتبطة بالمؤثر \(L_{q}^{k, \lambda}\) المعرف في قرص الوحدة المفتوح \(\triangle\) بواسطة تطبيق شبه التابعية . حصلنا على بعض
\[
\text { النتائج حول التخمينات المقيدة المقابلة للمعاملات a }{ }^{\text {a }} \text {. }
\]
```


1.Introduction

Let A be the class of normalized analytic functions in the open unit disk $\Delta=\{z \in C$: $|z|<1\}$ with Taylor series

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

Let S be the class of all univalent functions from A in Δ. According to the Koebe One Quarter Theorem [1,2], the inverse f^{-1} of every $f \in S$ satisfies :
$f^{-1}(f(z))=z \quad(z \in \Delta) \quad$ and $\quad f\left(f^{-1}(w)\right)=w \quad\left(w \in \Delta_{p}\right)$,
where $p \geq \frac{1}{4}$ denotes the radius of the image $f(\Delta)$ and $\Delta_{p}=\{z \in C:|z|<p\}$. It is recalled that

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

[^0]If both functions $f \in A$ and its inverse f^{-1} are univalent in Δ, then it is bi-univalent. Denote to the class of all bi-univalent functions $f \in A$ in Δ by \sum.

In 1967, Le [3] introduced the analytic and bi-univalent function and proved that $\left|a_{2}\right| \leq$ 1.51. Moreover, Br and $\mathrm{Cl}[4]$ conjectured that $\left|a_{2}\right| \leq \sqrt{2}$, Ne [5] obtained that $\left|a_{2}\right|=\frac{4}{3}$. Later, Styer and Wright [6] showed that there exists the function $f(z)$ so that $\left|a_{2}\right|>\frac{4}{3}$. However, the upper bound estimate $\left|a_{2}\right|<1.485$ of coefficient for any function in \sum by Tan [7] is the best. Based on the works of Br and Ta [8] and Sr et al. [9], many subclasses of analytic and bi-univalent functions class \sum were introduced and investigated and the nonsharp estimates of first two Taylor- Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Recently, Srivastava et al.[10, 11] gave some new subclasses of the function class \sum of analytic and bi-univalent functions to unify the works of Deniz [12].

Now we mention the concept of subordination between analytic functions. Let f and g are analytic functions in Δ. Then we state that the function f is subordinate to g, if there exists a Schwarz function w, such that $f(z)=g(w(z)),(z \in \Delta)$. This subordination is denoted by $f \prec g$ or $f(z) \prec g(z),(z \in \Delta)$. Specifically, if the function g is univalent in Δ, the above subordination is equivalent to the conditions $f(0)=g(0), f(\Delta) g(\Delta)$. In year 1970, the concept of the subordination was extended to quasi-subordination by Ro in [13]. We refer a function f quasi-subordinate to a function g in Δ if there exists the Schwarz function w and an analytic function φ satisfying $|\varphi(z)|<1$ such that $f(z)=\varphi(z) g(w(z))$ in Δ. We then write $f<_{q} g$. If $\varphi(z)=1$ then the quasi-subordination reduces to the subordination. If we set $w(z)=z$, then $f(z)=\varphi(z) g(z)$ and we say that f is majorized by g. It is denoted as $f(z) \ll g(z)$ in Δ. Therefore quasi-subordination is an extension of the definition of the subordination. In addition, the majorization emphasizes its significance. The related works of quasi-subordination can be found in [14,13]. See [15] for the subclasses of analytic and biunivalent associated with quasi-subordination. Ma- Minda [16] introduced the following classes using subordination:

$$
S^{*}(\phi)=\left\{f \in A: \frac{z f^{\prime}(z)}{f(z)}<\phi(z), z \in \Delta\right\},
$$

where ϕ is an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ on a starlike area with respect to 1 and which is symmetric consider to the real axis. A function $f \in S^{*}(\phi)$ is called Ma-Minda starlike. The class $S^{*}(\phi)$ contains various well - known subcategories of starlike function as private case.
Let $f \in A$ be given by (1.1) and g be given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} \quad z^{n} . \tag{1.3}
\end{equation*}
$$

Hadamard product of $f(z)$ and $g(z)$ is denoted by $(f * g)(z)$ and is defined as

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

For $\lambda>-1$ and $0<q<1$, El-Deeb et al. [17] defined the linear operator $H_{r}^{\lambda, q}: A \rightarrow A$ by $H_{\gamma}^{\lambda, q} f(z) * M_{q, \lambda+1}(z)=z D_{q}(f * \Upsilon)(z) \quad(z \in \triangle)$,
where the function $M_{q, \lambda}(z)$ is given by

$$
M_{q, \lambda}(z)=z+\sum_{n=2}^{\infty} \frac{[\lambda]_{q, n-1}}{[n-1]_{q}!} z^{n}, \quad(z \in \triangle)
$$

A simple calculation indicates that

$$
\begin{equation*}
H_{r}^{\lambda, q} f(z)=z+\sum_{n=2}^{\infty} \frac{[n]_{q}!}{[\lambda+1]_{q, n-1}} a_{n} \psi_{n} z^{n} \quad(\lambda>-1 ; 0<q<1 ; z \in \Delta) \tag{1.5}
\end{equation*}
$$

For the function $f \in A$, Jackson's q - derivative [18] $(0<q<1)$ is expressed by:

$$
D_{q} f(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0 \tag{1.6}\\
f^{\prime}(z), & z=0
\end{array}\right.
$$

and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. Thus, from Eq (1.6), we deduce that

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{2} z^{n-1}
$$

$$
\text { where }[n]_{q}=\frac{1-q^{n}}{1-q} \text {. If } q \rightarrow 1^{-}, \quad \text { we get }[n]_{q} \rightarrow n
$$

Lately, in [19] the Sălăgean type q-differential operator has been introduced and is given as follows :

$$
\begin{gather*}
D_{q}^{0} f(z)=f(z) \\
D_{q}^{1} f(z)=z D_{q} f(z) \\
D_{q}^{k} f(z)=z D_{q}\left(D_{q}^{k-1} f(z)\right) \\
D_{q}^{k} f(z)=z+\sum_{n=2}^{\infty}[n]_{q}^{k} a_{n} z^{n}, \quad\left(k \in N_{0}, z \in \Delta\right) . \tag{1.7}
\end{gather*}
$$

Hadamard product of the operators $H_{r}^{\lambda, q} f(z)$ and $D_{q}^{k} f(z)$ defined as

$$
\begin{gathered}
L_{q}^{k, \lambda} f(z)=H_{r}^{\lambda, q} f(z) * D_{q}^{k} f(z)=z+\sum_{n=2}^{\infty} \frac{[n]_{q}!}{[\lambda+1]_{q, n-1}}[n]_{q}^{k} a_{n} \psi_{n} z^{n} \\
L_{q}^{k, \lambda} f(z)=z+\sum_{n=2}^{\infty} \Omega_{n, q} a_{n} z^{n}
\end{gathered}
$$

where $\Omega_{n, q}=\left(\left(\frac{[n]_{q}!}{[\lambda+1]_{q, n-1}}\right)[n]_{q}^{k} \psi_{n}\right)$.
Several authors studied quasi-subordination of bi-univalent for another conditions, like, [20-38]. Throughout this idea, it is assumed $\phi(z)$ is analytic and univalent with positive real part in Δ and let

$$
\begin{equation*}
\phi(z)=1+G_{1} z+G_{2} z^{2}+\cdots, \quad\left(G \in R^{+}\right) \tag{1.8}
\end{equation*}
$$

Also, let $\Gamma(z)$ be an analytic function in Δ and

$$
\begin{equation*}
\Gamma(z)=C_{0}+C_{1} z+C_{2} z^{2}+\cdots, \quad(z \in \Delta) \tag{1.9}
\end{equation*}
$$

Lemma 1.1. (See $[39,40,41]$). Let P be class of all analytic functions p in U such that $\operatorname{Re}(p(z))>0$ and have the form $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ for $z \in \Delta$, then $\left|p_{i}\right| \leq 2$ for each $i \in N$.
2. Coefficient Estimates For The Class $B_{\Sigma, q}^{k, \lambda}(\rho, \sigma, \phi)$

Definition 2.1. For $0 \leq \rho \leq 1$ and $0 \leq \sigma \leq 1$, a function $f \in \sum$ defined in (1.1) is said to be in the class $B_{\Sigma, q}^{k, \lambda}(\rho, \sigma, \phi)$ if the following quasi-subordination holds:

$$
\begin{gathered}
{\left[(1+\rho)\left(\frac{z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\left(L_{q}^{k, \lambda} f(z)\right)}\right)-\rho\left(\frac{\sigma z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}+z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\sigma z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} f(z)\right)}\right)-1\right] \prec_{q}} \\
(\phi(z)-1),
\end{gathered}
$$

$$
\left[(1+\rho)\left(\frac{w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\left(L_{q}^{k, \lambda} g(w)\right)}\right)-\rho\left(\frac{\sigma w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}+w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\sigma w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k^{k, \lambda}} g(w)\right)}\right)-1\right]
$$

$$
<_{q}(\phi(w)-1),
$$

where the function g is the extension of f^{-1} in Δ.
Remark 2.1. For $\rho=0$, a function $f \in \sum$ defined in (1.1) is said to be in the class $B_{\Sigma, q}^{k, \lambda}(0, \sigma, \phi)$ if the following conditions are satisfied:

$$
\begin{aligned}
& {\left[\left(\frac{z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\left(L_{q}^{k, \lambda} f(z)\right)}\right)-1\right] \prec_{q}(\phi(z)-1)} \\
& {\left[\left(\frac{w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\left(L_{q}^{k, \lambda} g(w)\right)}\right)-1\right] \prec_{q}(\phi(w)-1)}
\end{aligned}
$$

Theorem 2.1. Let $f(z)$ given by (1.1) be in the class $B_{\Sigma, q}^{k, \lambda}(\rho, \sigma, \phi)$. For $0 \leq \rho \leq 1$, $0 \leq \sigma \leq 1$, then
$\left|a_{2}\right|$
$\leq \min \left\{\frac{\left|C_{0}\right| G_{1}}{\left|(1-\rho \sigma) \Omega_{2, q}\right|}, \sqrt{\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho \sigma) \Omega_{3, q}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right|}}\right\}$,
$\left|a_{3}\right|$
$\leq \min \left\{\frac{\left(\left|C_{1}\right|+2\left|C_{\circ}\right|\right) G_{1}}{\left|4(1-2 \rho \sigma) \Omega_{3, q}\right|}+\frac{C_{\circ}^{2} G_{1}^{2}}{(1-\rho \sigma)^{2} \Omega_{2, q}^{2}}, \frac{\left(\left|C_{1}\right|+2\left|C_{\circ}\right|\right) G_{1}}{\left|4(1-2 \rho \sigma) \Omega_{3, q}\right|}\right.$
$\left.+\frac{\left|C_{\circ}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho \sigma) \Omega_{3, q}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right|}\right\}$.
Proof. Since $f \in B_{\Sigma, q}^{k, \lambda}(\rho, \sigma, \phi)$ and $g=f^{-1}$. Then, there are analytic functions $x, y: \Delta \rightarrow$ Δ with $x(z)=s_{1} z+\sum_{j=2}^{\infty} s_{j} z^{j}, y(w)=t_{1} w+\sum_{j=2}^{\infty} t_{j} w^{j}, x(0)=y(0)=0$, such that

$$
\begin{align*}
& {\left[(1+\rho)\left(\frac{z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\left(L_{q}^{k, \lambda} f(z)\right)}\right)-\rho\left(\frac{\sigma z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}+z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\sigma z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} f(z)\right)}\right)-1\right]=} \\
& \Gamma(z)(\phi(x(z)-1)) \tag{2.3}
\end{align*}
$$

$$
\begin{align*}
& {\left[(1+\rho)\left(\frac{w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\left(L_{q}^{k, \lambda} g(w)\right)}\right)-\rho\left(\frac{\sigma w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}+w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\sigma w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} g(w)\right)}\right)-1\right]=} \\
& \Gamma(w)(\phi(y(w)-1)) . \tag{2.4}
\end{align*}
$$

Define the functions $b(z)$ and $e(w)$ by

$$
\begin{align*}
& b(z)=\frac{1+x(z)}{1-x(z)}=1+s_{1} z+s_{2} z^{2}+\cdots \tag{2.5}\\
& e(w)=\frac{1+y(w)}{1-y(w)}=1+t_{1} w+t_{2} w^{2}+\cdots \tag{2.6}
\end{align*}
$$

Or equivalently,

$$
\begin{align*}
& x(z)=\frac{b(z)-1}{b(z)+1}=\frac{1}{2}\left[s_{1} z+\left(s_{2}-\frac{s_{1}^{2}}{2}\right) z^{2}+\cdots\right. \tag{2.7}\\
& y(w)=\frac{e(w)-1}{e(w)+1}=\frac{1}{2}\left[t_{1} w+\left(t_{2}-\frac{t_{1}^{2}}{2}\right) w^{2}+\cdots\right. \tag{2.8}
\end{align*}
$$

It is clear that $b(z)$ and $e(w)$ are analytic in Δ with $b(0)=e(0)=1$. Since $x, y: \Delta \rightarrow \Delta$, the functions $b(z)$ and $e(w)$ have a positive real part in Δ, and $\left|s_{i}\right| \leq 2$ and $\left|t_{i}\right| \leq 2$ ($i=1,2$).
In the view of (2.3), (2.4), (2.7) and (2.8) clearly we have

$$
\begin{align*}
& \quad\left[(1+\rho)\left(\frac{z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\left(L_{q}^{k, \lambda} f(z)\right)}\right)-\rho\left(\frac{\sigma z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}+z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\sigma z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} f(z)\right)}\right)-1\right]= \\
& \Gamma(z)\left[\phi\left(\left(\frac{b(z)-1}{b(z)+1}\right)-1\right)\right], \tag{2.9}\\
& {\left[(1+\rho)\left(\frac{w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\left(L_{q}^{k, \lambda} g(w)\right)}\right)-\rho\left(\frac{\sigma w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}+w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\sigma w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} g(w)\right)}\right)-1\right]=} \\
& \Gamma(w)\left[\phi\left(\left(\frac{e(w)-1}{e(w)+1}\right)-1\right)\right] . \tag{2.10}
\end{align*}
$$

Since $f \in \sum$ has the Maclaurin series given by (1.1), a computation shows that its inverse $g=f^{-1}$ has the expansion given by (1.2), hence, we get

$$
\begin{align*}
& {\left[(1+\rho)\left(\frac{z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\left(L_{q}^{k, \lambda} f(z)\right)}\right)-\rho\left(\frac{\sigma z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}+z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}}{\sigma z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} f(z)\right)}\right)-1\right]=} \\
& (1+\rho)\left[1+\Omega_{2, q} a_{2} z+\left(2 \Omega_{3, q} a_{3}-\Omega_{2, q}^{2} a_{2}^{2}\right) z^{2}\right] \\
& -\rho\left[1+(\sigma+1) \Omega_{2, q} a_{2} z+\left\{2(2 \sigma+1) \Omega_{3, q} a_{3}-(\sigma+1)^{2} \Omega_{2, q}^{2} a_{2}^{2}\right\} z^{2}\right]-1= \\
& (1-\rho \sigma) \Omega_{2, q} a_{2} z+\left[2(1-2 \rho \sigma) \Omega_{3, q} a_{3}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2} a_{2}^{2}\right] z^{2}, \tag{2.11}
\end{align*}
$$

$$
\begin{aligned}
& {\left[(1+\rho)\left(\frac{w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\left(L_{q}^{k, \lambda} g(w)\right)}\right)-\rho\left(\frac{\sigma w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}+w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}}{\sigma w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+(1-\sigma)\left(L_{q}^{k, \lambda} g(w)\right)}\right)-1\right]=} \\
& (1+\rho)\left[1-\Omega_{2, q} a_{2} w+\left\{4 \Omega_{3, q} a_{2}^{2}-\Omega_{2, q}^{2} a_{2}^{2}-2 \Omega_{3, q} a_{3}\right\} w^{2}\right]-\rho\left[1-(\sigma+1) \Omega_{2, q} a_{2} w\right. \\
& \left.+\left\{4(2 \sigma+1) \Omega_{3, q} a_{2}^{2}-(\sigma+1)^{2} \Omega_{2, q}^{2} a_{2}^{2}-2(2 \sigma+1) \Omega_{3, q} a_{3}\right\} w^{2}\right]-1= \\
& -(1-\rho \sigma) \Omega_{2, q} a_{2} w+\left[4(1-2 \rho \sigma) \Omega_{3, q} a_{2}^{2}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2} a_{2}^{2}\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.-2(1-2 \rho \sigma) \Omega_{3, q} a_{3}\right] w^{2} \tag{2.12}
\end{equation*}
$$

Using (2.7) and (2.8) together with (1.8), (1.9) it is evident that
$\Gamma(z)\left[\phi\left(\left(\frac{b(z)-1}{b(z)+1}\right)-1\right)\right]$

$$
\begin{equation*}
=\frac{1}{2} C_{0} G_{1} s_{1} z+\left[\frac{1}{2} C_{1} G_{1} s_{1}+\frac{1}{2} C_{0} G_{1}\left(s_{2}-\frac{s_{1}^{2}}{2}\right)+\frac{C_{0} G_{2}}{4} s_{1}^{2}\right] z^{2}+\cdots, \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
& \Gamma(w)\left[\phi\left(\left(\frac{e(w)-1}{e(w)+1}\right)-1\right)\right] \\
& \quad=\frac{1}{2} C_{0} G_{1} t_{1} w+\left[\frac{1}{2} C_{1} G_{1} t_{1}+\frac{1}{2} C_{0} G_{1}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\frac{C_{0} G_{2}}{4} t_{1}^{2}\right] w^{2}+\cdots \tag{2.14}
\end{align*}
$$

Now, using (2.11) and (2.13) in view of (2.9) and comparing the coefficients of z and z^{2}, we obtain

$$
\begin{align*}
& (1-\rho \sigma) \Omega_{2, q} a_{2}=\frac{1}{2} C_{0} G_{1} s_{1}, \tag{2.15}\\
& 2(1-2 \rho \sigma) \Omega_{3, q} a_{3}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2} a_{2}^{2} \\
& \quad=\frac{1}{2} C_{1} G_{1} s_{1}+\frac{1}{2} C_{0} G_{1}\left(s_{2}-\frac{s_{1}^{2}}{2}\right)+\frac{C_{0} G_{2}}{4} s_{1}^{2} . \tag{2.16}
\end{align*}
$$

Similarly it follows from (2.12) and (2.14) in (2.10) that

$$
\begin{align*}
& -(1-\rho \sigma) \Omega_{2, q} a_{2}=\frac{1}{2} C_{0} G_{1} t_{1}, \tag{2.17}\\
& 4(1-2 \rho \sigma) \Omega_{3, q}^{2}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2} a_{2}^{2}-2(1-2 \rho \sigma) \Omega_{3, q} a_{3} \\
& \quad=\frac{1}{2} C_{1} G_{1} t_{1}+\frac{1}{2} C_{0} G_{1}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\frac{C_{0} G_{2}}{4} t_{1}^{2} . \tag{2.18}
\end{align*}
$$

From the two equations are equal (2.15) and (2.17), we find that

$$
\begin{align*}
& a_{2}=\frac{C_{0} G_{1} s_{1}}{2(1-\rho \sigma) \Omega_{2, q}}=-\frac{C_{0} G_{1} t_{1}}{2(1-\rho \sigma) \Omega_{2, q}} \tag{2.19}\\
& s_{1}=-t_{1} \tag{2.20}
\end{align*}
$$

It follows that we multiply by 2 and square both sides, then we add the two equations (2.15) and (2.17)

$$
\begin{equation*}
8(1-\rho \sigma)^{2} \Omega_{2, q}^{2} a_{2}^{2}=C_{0}^{2} G_{1}^{2}\left(s_{1}^{2}+t_{1}^{2}\right) \tag{2.21}
\end{equation*}
$$

Adding (2.16) and (2.18) in light of (2.19), we get
$4\left[4(1-2 \rho \sigma) \Omega_{3, q}-2\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right] a_{2}^{2}$

$$
\begin{equation*}
=2 C_{0} G_{1}\left(s_{2}+t_{2}\right)+C_{0}\left(G_{2}-G_{1}\right)\left(t_{1}^{2}+s_{1}^{2}\right) \tag{2.22}
\end{equation*}
$$

Applying Lemma (1.1) for the coefficients s_{1}, s_{2}, t_{1} and t_{2}, it follows from (2.21) and (2.22) that

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{\left|C_{0}\right| G_{1}}{\left|(1-\rho \sigma) \Omega_{2, q}\right|} \\
\left|a_{2}\right| \leq \sqrt{\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho \sigma) \Omega_{3, q}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right|}}
\end{gathered}
$$

This yields the desired estimate on $\left|a_{2}\right|$ as asserted in (2.1).
Now, to find them bound on the coefficient $\left|a_{3}\right|$ by subtracting relations (2.18) from (2.16), we get

$$
\begin{equation*}
8(1-2 \rho \sigma) \Omega_{3, q}\left(a_{3}-a_{2}^{2}\right)=C_{1} G_{1} s_{1}+C_{0} G_{1}\left(s_{2}-t_{2}\right) \tag{2.23}
\end{equation*}
$$

In light of (2.21), (2.22) and putting (2.23), we have

$$
\begin{equation*}
a_{3} \leq \frac{C_{1} G_{1} s_{1}+C_{0} G_{1}\left(s_{2}-t_{2}\right)}{8(1-2 \rho \sigma) \Omega_{3, q}}+\frac{C_{0}^{2} G_{1}^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{8(1-\rho \sigma)^{2} \Omega_{2, q}^{2}} \tag{2.24}
\end{equation*}
$$

$a_{3} \leq \frac{C_{1} G_{1} s_{1}+C_{0} G_{1}\left(s_{2}-t_{2}\right)}{8(1-2 \rho \sigma) \Omega_{3, q}}+\frac{2 C_{0} G_{1}\left(s_{2}+t_{2}\right)+C_{0}\left(G_{2}-G_{1}\right)\left(t_{1}^{2}+s_{1}^{2}\right)}{8\left[2(1-2 \rho \sigma) \Omega_{3, q}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right]}$.
Applying Lemma (1.1) once again for the coefficients s_{1}, s_{2}, t_{1} and t_{2}, we find that

$$
\begin{gathered}
\left|a_{3}\right| \leq \frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4(1-2 \rho \sigma) \Omega_{3, q}\right|}+\frac{C_{0}^{2} G_{1}^{2}}{(1-\rho \sigma)^{2} \Omega_{2, q}^{2}}, \\
\left|a_{3}\right| \leq \frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4(1-2 \rho \sigma) \Omega_{3, q}\right|}+\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho \sigma) \Omega_{3, q}-\left\{(1+\rho)-\rho(\sigma+1)^{2}\right\} \Omega_{2, q}^{2}\right|} .
\end{gathered}
$$

The proof of Theorem (2.1) is now complete.
For $\sigma=1$ in Theorem 2.1, we get the following corollary.
Corollary 2.1. Let $f(z)$ given by (1.1) belong to the class $B_{\Sigma, q}^{k, \lambda}(\rho, 1, \phi)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\frac{\left|C_{0}\right| G_{1}}{\left|(1-\rho) \Omega_{2, q}\right|}, \sqrt{\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho) \Omega_{3, q}-\{(1+\rho)-4 \rho\} \Omega_{2, q}^{2}\right|}}\right\}, \\
\left|a_{3}\right| \leq \min \left\{\frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4(1-2 \rho) \Omega_{3, q}\right|}+\frac{C_{0}^{2} G_{1}^{2}}{(1-\rho)^{2} \Omega_{2, q}^{2}}, \frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4(1-2 \rho) \Omega_{3, q}\right|}\right. \\
\left.+\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2(1-2 \rho) \Omega_{3, q}-\{(1+\rho)-4 \rho\} \Omega_{2, q}^{2}\right|}\right\}
\end{gathered}
$$

Putting $\rho=1$ and $\sigma=0$ in Theorem 2.1, we have the following corollary.
Corollary 2.2. Let $f(z)$ given by (1.1) belong to the class $B_{\Sigma, q}^{k, \lambda}(1,0, \phi)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\frac{\left|C_{0}\right| G_{1}}{\left|\Omega_{2, q}\right|}, \sqrt{\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2 \Omega_{3, q}-\Omega_{2, q}^{2}\right|}}\right\}, \\
\left|a_{3}\right| \leq \min \left\{\frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4 \Omega_{3, q}\right|}+\frac{C_{0}^{2} G_{1}^{2}}{\Omega_{2, q}^{2}}, \frac{\left(\left|C_{1}\right|+2\left|C_{0}\right|\right) G_{1}}{\left|4 \Omega_{3, q}\right|}+\frac{\left|C_{0}\right|\left(G_{1}+\left|G_{2}-G_{1}\right|\right)}{\left|2 \Omega_{3, q}-\Omega_{2, q}^{2}\right|}\right\} .
\end{gathered}
$$

3. Coefficient Estimates For the Class $S_{\Sigma, q}^{k, \lambda}(\varrho, \zeta, \pi, \phi)$

Definition 3.1. A function $f \in \sum$ defined in (1.1) is said to be in the class $S_{\sum, q}^{k, \lambda}(\varrho, \zeta, \pi, \phi)$ if the following quasi-subordination holds:

$$
\begin{aligned}
& \frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} f(z)}{z}\right)+\varrho z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+\zeta z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime \prime}+2 \varrho\right. \\
& -1] \prec_{q}(\phi(z)-1), \\
& \frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} g(w)}{w}\right)+\varrho w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+\zeta w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime \prime}\right. \\
& \quad+2 \varrho-1] \prec_{q}(\phi(w)-1),
\end{aligned}
$$

where the function g is the extension of f^{-1} in Δ, for $\pi \in C /\{0\}, 0 \leq \varrho \leq 1,0 \leq$ $\zeta \leq 1$.

Remark 3.1. For $\varrho=0$, a function $f \in \sum$ defined in (1.1) is said to be in the class $S_{\sum, q}^{k, \lambda}(0, \zeta, \pi, \phi)$ if the following conditions are satisfied:

$$
\begin{gathered}
\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} f(z)}{z}\right)-\zeta\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+\zeta z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime \prime}-1\right] \prec_{q}(\phi(z)-1) \\
\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} g(w)}{w}\right)-\zeta\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+\zeta w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime \prime}-1\right] \prec_{q}(\phi(w)-1)
\end{gathered}
$$

Theoremv3.1. Let $f(z)$ givenoby (1.1) be in the class $S_{\sum, q}^{k, \lambda}(\varrho, \zeta, \pi, \phi)$. Then

$$
\begin{align*}
& \left|a_{2}\right| \tag{3.1}\\
& \leq\left\{\frac{\pi\left|C_{0}\right| G_{1} \sqrt{G_{1}}}{\sqrt{\left|\pi C_{0} G_{1}^{2}(1+4 \zeta) \Omega_{3, q}+\left(G_{1}-G_{2}\right)(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}\right|}}\right\} \tag{3.2}\\
& \left|a_{3}\right| \leq\left\{\frac{\pi^{2}\left|C_{0}\right|^{2} G_{1}^{2}}{(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}}+\frac{\pi G_{1}\left(\left|C_{1}\right|+2\left|C_{0}\right|\right)}{2(1+4 \zeta) \Omega_{3, q}}\right\}
\end{align*}
$$

Proof. If $f \in S_{\sum, q}^{k, \lambda}(\varrho, \zeta, \pi, \phi)$ and $g=f^{-1}$. Then, there are analyticofunctions $x, y: \Delta \rightarrow$ Δ with $x(z)=s_{1} z+\sum_{j=2}^{\infty} s_{j} z^{j}, y(w)=t_{1} w+\sum_{j=2}^{\infty} t_{j} w^{j}, x(0)=y(0)=0$, such that $\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} f(z)}{z}\right)+\varrho z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+\zeta z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime \prime}+2 \varrho-\right.$ $1]=\Gamma(z)(\phi(x(z)-1))$,
$\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} g(w)}{w}\right)+\varrho w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+\zeta w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime \prime}+\right.$
$2 \varrho-1]=\Gamma(w)(\phi(y(w)-1))$,
where $x(z)$ and $y(w)$ are defined by (2.7) and (2.8) respectively.
Proceeding similarly as in Theorem (2.1), we obtain

$$
\begin{gather*}
\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} f(z)}{z}\right)+\varrho z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+\zeta z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime \prime}+2 \varrho\right. \\
-1]=\Gamma(z)\left[\phi\left(\left(\frac{b(z)-1}{b(z)+1}\right)-1\right)\right] \tag{3.5}\\
\frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} g(w)}{w}\right)+\varrho w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+\zeta w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime \prime}\right. \\
+2 \varrho-1]=\Gamma(w)\left[\phi\left(\left(\frac{e(w)-1}{e(w)+1}\right)-1\right)\right] \tag{3.6}
\end{gather*}
$$

where the right-hand sides of (3.5) and (3.6) given by (2.13) and (2.14), respectively.
Since

$$
\begin{align*}
& \frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} f(z)}{z}\right)+\varrho z\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} f(z)\right)^{\prime}+\zeta z^{2}\left(L_{q}^{k, \lambda} f(z)\right)^{\prime \prime \prime}+2 \varrho-\right. \\
& 1]=\frac{1}{\pi}(1-\zeta-2 \varrho) \Omega_{2, q} a_{2} z+\frac{1}{\pi}(1+4 \zeta) \Omega_{3, q} a_{3} z^{2}+\cdots, \tag{3.7}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{\pi}\left[(1+\zeta)\left(\frac{L_{q}^{k, \lambda} g(w)}{w}\right)+\varrho w\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime}-(2 \varrho+\zeta)\left(L_{q}^{k, \lambda} g(w)\right)^{\prime}+\zeta w^{2}\left(L_{q}^{k, \lambda} g(w)\right)^{\prime \prime \prime}\right. \\
& +2 \varrho-1] \\
& = \tag{3.8}\\
& -\frac{1}{\pi}(1-\zeta-2 \varrho) \Omega_{2, q} a_{2} w+\frac{1}{\pi}\left[2(1+4 \zeta) \Omega_{3, q} a_{2}^{2}-(1+4 \zeta) \Omega_{3, q} a_{3}\right] w^{2}+\cdots
\end{align*}
$$

Comparing the coefficient of (3.7) with (2.13) and (3.8) with (2.14), then, we have $2(1-\zeta-2 \varrho) \Omega_{2, q} a_{2}=\pi C_{0} G_{1} s_{1}$,
$4(1+4 \zeta) \Omega_{3, q} a_{3}=2 \pi C_{1} G_{1} s_{1}+2 \pi C_{0} G_{1}\left(s_{2}-\frac{s_{1}^{2}}{2}\right)+\pi C_{0} G_{2} s_{1}^{2}$,
$-2(1-\zeta-2 \varrho) \Omega_{2, q} a_{2}=\pi C_{0} G_{1} t_{1}$,
and
$\left[4(1+4 \zeta) \Omega_{3, q}\right]\left(2 a_{2}^{2}-a_{3}\right)=2 \pi C_{1} G_{1} t_{1}+2 \pi C_{0} G_{1}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\pi C_{0} G_{2} t_{1}^{2}$.
From (3.9) and (3.11), we find that

$$
\begin{gather*}
s_{1}=-t_{1} \tag{3.13}\\
8(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2} a_{2}^{2}=\pi^{2} C_{0}^{2} G_{1}^{2}\left(s_{1}^{2}+t_{1}^{2}\right) .
\end{gather*}
$$

Adding (3.10) and (3.12), by using (3.13) and (3.14), we get

$$
\begin{align*}
& {\left[8(1+4 \zeta) C_{0} G_{1}^{2} \Omega_{3, q}\right] a_{2}^{2}=2 \pi C_{0}^{2} G_{1}^{3}\left(s_{2}+t_{2}\right)+\left(G_{2}-G_{1}\right) \pi C_{0}^{2} G_{1}^{2}\left(s_{1}^{2}+t_{1}^{2}\right),} \tag{3.14}\\
& \quad\left[8(1+4 \zeta) C_{0} G_{1}^{2} \Omega_{3, q}\right] a_{2}^{2}=2 \pi C_{0}^{2} G_{1}^{3}\left(s_{2}+t_{2}\right)+\left(G_{2}-G_{1}\right) \frac{8(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2} a_{2}^{2}}{\pi} \tag{3.15}
\end{align*}
$$

which implies

$$
a_{2}^{2}=\frac{2 \pi^{2} C_{0}^{2} G_{1}^{3}\left(s_{2}+t_{2}\right)}{8\left[\pi C_{0} G_{1}^{2}(1+4 \zeta) \Omega_{3, q}+\left(G_{1}-G_{2}\right)(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}\right]} .
$$

Applying Lemma (1.1) for the coefficients s_{2} and t_{2}, we can easily obtain

$$
\left|a_{2}\right| \leq\left\{\frac{\pi\left|C_{0}\right| G_{1} \sqrt{G_{1}}}{\sqrt{\left|\pi C_{0} G_{1}^{2}(1+4 \zeta) \Omega_{3, q}+\left(G_{1}-G_{2}\right)(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}\right|}}\right\}
$$

which is the bound on $\left|a_{2}\right|$ as asserted in (3.1).
Now, in order to find the bound on the coefficient $\left|a_{3}\right|$, by subtracting (3.12) from (3.10), in light of (3.13), we have

$$
\begin{align*}
& \quad\left[8(1+4 \zeta) \Omega_{3, q}\right]\left(a_{3}-a_{2}^{2}\right)=2 \pi C_{1} G_{1} s_{1}+2 \pi C_{0} G_{1}\left(s_{2}-t_{2}\right), \\
& a_{3}= \tag{3.16}\\
& a_{2}^{2}+\frac{2 \pi C_{1} G_{1} s_{1}+2 \pi c_{0} G_{1}\left(s_{2}-t_{2}\right)}{8(1+4 \zeta) \Omega_{3, q}} .
\end{align*}
$$

Upon substituting the value of a_{2}^{2} from (3.14), we obtain

$$
a_{3}=\frac{\pi^{2} C_{0}^{2} G_{1}^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{8(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}}+\frac{\pi G_{1}\left(C_{1} s_{1}+C_{0}\left(s_{2}-t_{2}\right)\right)}{4(1+4 \zeta) \Omega_{3, q}}
$$

Applying Lemma (1.1) once again for the coefficients s_{1}, s_{2}, t_{1} and t_{2}, we find that

$$
\left|a_{3}\right| \leq\left\{\frac{\pi^{2}\left|C_{0}\right|^{2} G_{1}^{2}}{(1-\zeta-2 \varrho)^{2} \Omega_{2, q}^{2}}+\frac{\pi G_{1}\left(\left|C_{1}\right|+2\left|C_{0}\right|\right)}{2(1+4 \zeta) \Omega_{3, q}}\right\}
$$

This completes the proof of Theorem (3.1).
Taking $\varrho=1$ and $\pi=1$ in Theorem 3.1, we have the following corollary.
Corollary 3.1. Let $f(z)$ given by (1.1) belong to the class $S_{\sum, q}^{k, \lambda}(1, \zeta, 1, \phi)$. Then

$$
\begin{aligned}
\left|a_{2}\right| \leq & \left\{\frac{\left|C_{0}\right| G_{1} \sqrt{G_{1}}}{\sqrt{\left|C_{0} G_{1}^{2}(1+4 \zeta) \Omega_{3, q}+\left(G_{1}-G_{2}\right)[-(1+\zeta)]^{2} \Omega_{2, q}^{2}\right|}}\right\} \\
& \left|a_{3}\right| \leq\left\{\frac{\left|C_{0}\right|^{2} G_{1}^{2}}{[-(1+\zeta)]^{2} \Omega_{2, q}^{2}}+\frac{G_{1}\left(\left|C_{1}\right|+2\left|C_{0}\right|\right)}{2(1+4 \zeta) \Omega_{3, q}}\right\}
\end{aligned}
$$

By putting $\varrho=1$ and $\zeta=0$ in Theorem 3.1, we have the following corollary.
Corollary 3.2. Let $f(z)$ given by (1.1) belongs to the class $S_{\sum, q}^{k, \lambda}(1,0, \pi, \phi)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq\left\{\frac{\pi\left|C_{0}\right| G_{1} \sqrt{G_{1}}}{\sqrt{\left|\pi C_{0} G_{1}^{2} \Omega_{3, q}+\left(G_{1}-G_{2}\right) \Omega_{2, q}^{2}\right|}}\right\} \\
& \left|a_{3}\right| \leq\left\{\frac{\pi^{2}\left|C_{0}\right|^{2} G_{1}^{2}}{\Omega_{2, q}^{2}}+\frac{\pi G_{1}\left(\left|C_{1}\right|+2\left|C_{0}\right|\right)}{2 \Omega_{3, q}}\right\}
\end{aligned}
$$

If we set $\Gamma(z)=1$ and $\varrho=0$ in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let $f(z)$ given by (1.1) belong to the class $S_{\sum, q}^{k, \lambda}(0, \zeta, \pi, \phi)$. Then

$$
\begin{aligned}
&\left|a_{2}\right| \leq\left\{\frac{\pi G_{1} \sqrt{G_{1}}}{\sqrt{\left|\pi G_{1}^{2}(1+4 \zeta) \Omega_{3, q}+\left(G_{1}-G_{2}\right)(1-\zeta)^{2} \Omega_{2, q}^{2}\right|}}\right\} \\
&\left|a_{3}\right| \leq\left\{\frac{\pi^{2} G_{1}^{2}}{(1-\zeta)^{2} \Omega_{2, q}^{2}}+\frac{\pi G_{1}}{2(1+4 \zeta) \Omega_{3, q}}\right\}
\end{aligned}
$$

Conclusion

In this paper, we introduced subclasses of the function class Σ of analytic and biunivalent functions associated with operator $L_{q}^{k, \lambda}$ defined in the open unit disk Δ by applying quasi-subordination have been introduced and studied. Some results and properties about the corresponding bound estimations of the coefficients a_{2} and a_{3} are given and investigated. Here, we opened some new windows to find the coefficients using quasi-subordination.

References

[1] W. K. Hayman. Univalent functions. Grundlehren der Mathematischen Wissenschaften 259, New York, Springer, 1983.
[2] P. L. Duren, Univalent Functions, Springer - Verlag, New York, 1983
[3] M. Lewin, On a coefficient problem for bi- univalent functions, Proc. Amer. Math.Soc., 18: 63681967.
[4] D. A. Brannan and J. G. Clunie. 1980. Aspect of contemporary complex analysis, Academi Press, New York, London.
[5] E. Netanyahau, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|\mathrm{z}|<1$, Archive for Rotional Mechanic and Analysis, 32(2): 100-112, 1969.
[6] H. M. Srivastava, A. K. Mishra and P. Gochhayat. Certain subclasses of analytic and bi- univalent functions, Appl. Math. Lett., 23(10): 1188-1192, 2010.
[7] D. Styer and J. Wright, Result on bi-univalent functions, Proc. Amer. Math. Soc., (82): 243-248, 1981.
[8] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ .BabeşBolyai Math., 31(2): 70-77, 1986.
[9] H. M. Srivastava, S. Gaboury and F. Ghanim. Coefficient estimates for some general subclasses of analytic and bi- univalent functions, Afr. Math., (28): 693-706, 2017.
[10] M. S. Robertson,. Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76: 1-9, 1970.
[11] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi- univalent functions of the Ma-Minda type, Rev. Ser. Math., (112): 1157-1168, 2018.
[12] E. Deniz, Certain subclasses of bi- univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1): 49-60, 2013.
[13] F. Y. Ren, S. Owa and S. Fukui. Some inequalities on quasi- subodrdinate functions, Bull. Aust. Math. Soc., 43(2): 317-324, 1991.
[14] M. Hajimohd and M. Darus, Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal. Art., ID 192956, 1-14, 2012.
[15] S. P. Goyal, O. Singh and R. Mukherjee,. Certain results on a subclass of analytic and biunivalent functions associated with coefficient estimates and quasi-subordination, Palest. J.Math., 5(1): 79-85, 2016.
[16] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proc. Conf. on complex analysis, (Tianjin,1992), Conference Proceedings Lecturer Notes Analysis, International Press, Cambridge, Mass., USA, 157-169, 1994.
[17] S. M. El-Deeb, T. Bulboaca and B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative, Mathematics, (8): 1-14, 2020.
[18] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, (46): 253 - 281, 1980.
[19] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-Calculus, Analysis Math., 43(3): 475-487, 2017.
[20] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Coefficients estimates of bi-univalent functions defined by new subclass function, Journal of Physics: Conference Series, 1530: 012105, 1-8, 2020.
[21] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Second Hankel determinant for certain subclasses of bi-univalent functions, Journal of Physics: Conference Series, 1664:012044, 1-8, 2020.
[22] W. G. Atshan and E. I. Badawi, Results on coefficient estimates for subclasses of analytic and bi-univalent functions, Journal of Physics: Conference Series, 1294: 032025, 1-10, 2019.
[23] W. G. Atshan, S. Yalcin and R. A. Hadi, Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions, Mathematics for Applications, 9: 83-90, 2020.
[24] S. Yalcin, W. G. Atshan and H. Z. Hassan.,Coefficients assessment for certain subclasses of biunivalent functions related with quasi-subordination, Publications De L'Institut Mathematique, Nouvelle seffie, tome 108(122): 155-162, 2020.
[25] W. G. Atshan, I. A. R. Rahman and A. A. Lupas, Some results of new subclasses for biunivalent functions using quasi-subordination, Symmetry, 13(9): 1653, 1-12, 2021.
[26] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operator, Iraqi Journal of Science, 62(7): pp: 2376-2383, 2021.
[27] A. A. Hussein and K. A. Jassim, Some geometric properties of generalized Class of meromorphic functions associated with higher Ruscheweyh derivatives, Iraqi Journal of Science, 60(9): pp: 2036-2042, 2019.
[28] S. K. Hussein, K. A. Jassim, On a class of meromorphic multivalent functiions convoluted with higher derivatives of fractional calculus operator, Iraqi Journal of Science, $\mathbf{6 0 (1 0)}$: pp: 22372245, 2019.
[29] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions inolving Noor-Sălăgean operator. Advances in Mathematics: Scientific Journal. 9(10): 8455-8467, 2020.
[30] M. A. Sabri , W. G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry, 14: 931, 1-11, 2022.
[31] I. A. Rahman, W. G. Atshan and G. I. Oros, New concept on fourth Hankel determinant of a certain subclass of analytic functions, Afrika Mat., 33(1): 1-15, 2022.
[32] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p -valent functions with positive coefficients defined by linear operator ,Journal of Inequalities in Pure and Applied Mathematics, 10(2): 53, 11 pp, 2009.
[33] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of pvalent functions defined by differential operator, Journal of Physics: Conference Series, 1664: 012043, 1-15, 2020.
[34] W. G. Atshan, A. H. Battor and A. F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3): 579-591, 2021.
[35] S. D. Theyab, W. G. Atshan, A. A. Lupaș and H. K. Abdullah, New results on higher-order differential subordination and superordination for univalent analytic functions using a new operator, Symmetry, 14(8): 1576, 1-12, 2022
[36] B. K. Mihsin, W. G. Atshan, S. S. Alhily and A. A. Lupas, New results on fourth- order differential subordination and superordination for univalent analytic functions involving a linear operator, Symmetry, 14(2): 324, 1-12, 2022.
[37] W. G. Atshan , R. A. Hiress and S. Altinkaya, On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator, Symmetry 14(2): 418, 1-17, 2022.
[38] A. M. Darweesh, W. G. Atshan, A. H. Battor and A. A. Lupaş, Third-order differential subordination results for analytic functions associated with a certain differential operator, Symmetry, 14(1): 99, 1-15, 2022.
[39] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[40] D. L. Tan, Coefficient estimates for bi-univalent functions, Chin. Ann. Math. Ser. A., (5): 559568, 1984.
[41] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generealized hypergometric function. Appl. Math. Comput., (103): 1-13, 1990.

[^0]: *Email: sci2021@uoanbar.edu.iq

