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Abstract 

     In this paper, subclasses of  the function class     of analytic and bi-univalent 

functions associated with operator    
    are introduced and defined in the open unit 

disk   by applying quasi-subordination. We obtain some results about the 

corresponding bound estimations of the coefficients      and    .  
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 بعض تطبيقات شبه التابعية لمدوال ثنائية التكافؤ باستخدام مؤثر الالتواء لجاكسون 
 

 * رئام عبد السجاد جبار ,  وقاص غالب عطشان

 قدم الرياضيات , كلية العلهم , جامعة القادسية , الديهانية , العراق
  

 الخلاصة
من الدوال التحليلية الثنائية  التكافؤ المرتبطة    قديم أصناف جزئية لصنف الدالة في هذا البحث تم ت     

  بالمؤثر
بهاسطة  تطبيق  شبه  التابعية . حصلنا على  بعض   المعرف  في قرص  الهحدة المفتهح      

  .     و    النتائج حهل  التخمينات المقيدة المقابلة للمعاملات 

 

1.Introduction

     Let    be the class of normalized analytic functions in the open unit disk    *    
| |      + with Taylor series 

    ( )          
 
                                                               (   ) 

Let   be the class of all univalent functions from   in  . According to the Koebe One Quarter 

Theorem [1,2], the inverse       of every        satisfies : 

   (  ( ))        (     )      and        (   ( ))       (      )   

     where     
 

 
  denotes the radius of the image   ( ) and     *       |   |     +. It is 

recalled that 

             ( )        
  (    

       ) 
   (    

            ) 
               (   ) 
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     If  both functions     and its inverse     are univalent in  , then it is bi-univalent. 

Denote to the class of all bi-univalent functions       in   by  . 

      In 1967, Le [3] introduced the analytic and bi-univalent function and proved that |  |  

        Moreover, Br and Cl [4] conjectured that |   |  √  , Ne [5] obtained that |   |  
 

 
    

Later, Styer and Wright [6] showed that there exists the function  ( ) so that |  |   
 

 
    

However,  the upper bound estimate |  |          of coefficient for any function in   by 

Tan [7] is the best. Based on the works of Br and Ta [8] and Sr et al. [9], many subclasses of 

analytic and bi-univalent functions class   were introduced and investigated and the non-

sharp estimates of first two Taylor- Maclaurin coefficients |  | and |  |. Recently, Srivastava 

et al.[10, 11] gave some new subclasses of the function class   of analytic and bi-univalent 

functions to unify the works of Deniz [12]. 

 

     Now we mention  the concept of subordination between analytic functions. Let   and   are 

analytic functions in  . Then we state that the function   is subordinate to  , if there exists a 

Schwarz function  , such that  ( )     (  ( )) (      ). This subordination is denoted by 

     or  ( )    ( ) , (    ). Specifically, if the function   is univalent in  , the above 

subordination is equivalent to the conditions  ( )    ( )   ( )    ( )  In year 1970, the 

concept of the subordination was extended to quasi-subordination by Ro in [13]. We refer a 

function   quasi-subordinate to a function   in   if there exists the Schwarz function   and 

an analytic function   satisfying | ( )|    such that  ( )   ( )  ( ( )) in  . We then 

write       . If  ( )    then the quasi-subordination reduces to the subordination. If we 

set  ( )   , then   ( )    ( )  ( )  and we say that   is majorized by  . It is denoted as 

 ( )   ( )  in  . Therefore quasi-subordination is an extension of the definition of the 

subordination. In addition, the majorization  emphasizes its significance. The related works of 

quasi-subordination can be found in [14,13]. See [15] for the subclasses of analytic and bi-

univalent associated with quasi-subordination. Ma– Minda [16] introduced the following 

classes using subordination: 

  (  )  ,       
    ( )

 ( )
    ( )     -  

 

     where   is an analytic function with positive real part on   with   ( )        ( )      

which maps the unit disk   on a starlike area with respect to   and which is symmetric 

consider to the real axis. A function     (  ) is called Ma–Minda starlike. The class   (  ) 
contains various well - known subcategories of starlike  function as private case. 

Let       be given by (1.1) and     be given by 

       ( )         
 
                                                                     (   ) 

      

Hadamard  product of   ( ) and   ( ) is denoted by (     )( )  and is defined as 

                                               (      )( )         
 
         

                                      (   ) 

For      and      , El-Deeb et al. [17] defined the linear operator    
          by 

  
    ( )         ( )       (      )( )        (    )  

where the function      ( ) is given by 

     ( )     ∑
, -     
,   -  

 

   

                              (     )  

A simple calculation indicates that 

         
    ( )      

, -  

,   -     

 
            

        (                          )     (   ) 



Atshan and Al-sajjad                              Iraqi Journal of Science, 2022, Vol. 63, No. 10, pp: 4417-4428 
 

4419 

 

For  the function        Jackson’s q – derivative [18] (          ) is expressed by: 

                                           ( )  {

 ( )  (  )

(   ) 
                       

  ( )                                         
                                (   )  

and    
   ( )     .    ( )/  Thus, from Eq (1.6), we deduce that 

    ( )     ∑, - 

 

   

    
      

       , -   
    

    
                     , -                     

 Lately, in [19] the Sălăgean type q-differential operator has been introduced and is given as 

follows : 

  
   ( )   ( ) 

  
   ( )        ( ) 

  
   ( )      .   

     ( )/ 

  
   ( )       , - 

  
      

                   (         )                                                (   ) 

Hadamard product of the operators    
    ( )  and    

   ( )  defined as 

  
     ( )     

    ( )    
   ( )      

, -  

,   -     

 
     , - 

         
     

  
     ( )      ∑    

 

   

     
    

where        ((
, -  

,   -     
) , - 

    )   

 

       Several authors studied quasi-subordination of bi-univalent for another conditions, like, 

[20-38]. Throughout this idea, it is assumed   ( )   is analytic and univalent with positive real 

part in   and let 

                                   

      ( )           
                             (     )                                                       (   ) 

Also, let   ( ) be an analytic function in   and 

                               

                 ( )             
                              (    )                                            (   ) 

 

Lemma 1.1. (See [39,40,41]).  Let    be class of all analytic functions     in     such that 

  ( ( ))    and have the form   ( )           
     for     , then |   |     for  

 

each     . 

2. Coefficient Estimates For The Class      
   (     ) 

 

Definition 2.1. For         and       ,  a function       defined in (1.1)  is said to 

be in the class       
   (     ) if the following quasi-subordination holds: 

0(   ) .
 .  

      ( )/
 

.  
      ( )/

/     .
     .  

      ( )/
  

   .  
      ( )/

 

   .  
      ( )/

 

  (   ) .  
      ( )/

/    1     

(   ( )      )   
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0(   ) .
 .  

     ( )/
 

.  
     ( )/

/     .
    .  

     ( )/
  

   .  
     ( )/

 

   .  
     ( )/

 

  (   ) .  
     ( )/

/     1 

   (   ( )     )   

where the function     is the extension of              
 

Remark 2.1. For      a function      defined in (1.1) is said to be in the class 

    
    (     ) if the following conditions are satisfied: 

0.
  .  

      ( )/
 

 

.  
      ( )/

/   1    ( ( )   )  

0.
  .  

    ( )/
 

.  
    ( )/

/   1   ( ( )   )  

 

Theorem 2.1. Let   ( )  given  by (1.1) be in  the class      
    (     ). For       , 

     , then 

|  |

    2 
|  |   

|(    )    |
 √ 

|  | (   |      | )

| (     )     *(   )   (   ) +    
 |
 3               (   ) 

|  |  

    ,
( |  |   |   | )   

| (     )     |
  

  
   
 

(    )      
   

(|  |   |   |)  

| (     )     |

 
|   | (    |     | )

| (     )     *(   )   (   ) +    
 |
  -                                                              (   ) 

 

Proof. Since        
   (     )          . Then, there are analytic functions        

         ( )           
 
          ( )          

 
         ( )   ( )     such that 

0(   ) .
 .  

      ( )/
 

.  
      ( )/

/     .
     .  

      ( )/
  

   .  
      ( )/

 

   .  
      ( )/

 

  (   ) .  
      ( )/

/    1   

 ( ) (  (  ( )    ) )                                                                                                                  (   ) 
 

0(   ) .
 .  

     ( )/
 

.  
     ( )/

/     .
    .  

     ( )/
  

   .  
     ( )/

 

   .  
     ( )/

 

  (   ) .  
     ( )/

/   1   

 ( ) ( (  ( )    ) )                                                                                                                (   ) 
 

Define the functions  ( ) and  ( ) by 

 ( )   
   ( )

   ( )
           

                                                   (   ) 

 ( )   
   ( )

   ( )
           

                                             (   ) 

Or equivalently, 
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 ( )   
 ( )   

 ( )   
   
 

 
 ,    (   

  
 

 
)                                     (   ) 

 ( )   
 ( )   

 ( )   
   
 

 
 ,    (   

  
 

 
)                                (   ) 

 

     It is clear that  ( ) and  ( ) are analytic in   with  ( )   ( )   . Since             
the functions  ( ) and   ( )  have a positive real part in      and  |  |            |  |     

(     )  
In the view of  (2.3), (2.4), (2.7) and (2.8) clearly we have 

0(   ) .
 .  

      ( )/
 

.  
      ( )/

/     . 
     .  

      ( )/
  

   .  
      ( )/

 

   .  
      ( )/

 

  (   ) .  
      ( )/

/     1    

 ( ) [  (( 
 ( )   

 ( )   
 )    )]                                                                                                      (   ) 

0(   ) .
 .  

     ( )/
 

.  
     ( )/

/     .
    .  

     ( )/
  

   .  
     ( )/

 

   .  
     ( )/

 

  (   ) .  
     ( )/

/   1   

 ( ) [  (( 
 ( )   

 ( )   
 )    )]                                                                                                    (    ) 

 

Since     has the Maclaurin series given by (1.1), a computation shows that its inverse 

      has the expansion given by (1.2), hence, we get 

 

0(   ) .
 .  

      ( )/
 

.  
      ( )/

/     . 
     .  

      ( )/
  

   .  
      ( )/

 

   .  
      ( )/

 

  (   ) .  
      ( )/

/     1    

(   )[           (             
   

  )  ] 

    [   (   )             {   (     )           (   )
     
    

  }    ]        

(    )         [ (     )       *(   )   (   )
 +    

    
 ]                   (    ) 

 

0(   ) .
 .  

     ( )/
 

.  
     ( )/

/     .
    .  

     ( )/
  

   .  
     ( )/

 

   .  
     ( )/

 

  (   ) .  
     ( )/

/   1   

(   ),          {        
      

   
          }  

 -   ,  (   )        

  {   (        )        
   (       )      

    
      (         )         }  

  -       

  (       )           ,  (        )        
   *(     )    (      )  +     

    
  

    (         )         -  
                                                                                                         (    ) 

Using (2.7) and (2.8) together with (1.8), (1.9) it is evident that 

 ( ) [ ((
 ( )   

 ( )   
)   )]

 
 

 
         *

 

 
       

 

 
    (   

  
 

 
)  

    
 
  
 +               (    ) 
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 ( ) [ ((
 ( )   

 ( )   
)   )]

 
 

 
         *

 

 
       

 

 
     (   

  
 

 
)  

     
 
  
 +           (    ) 

Now, using (2.11) and (2.13) in view of (2.9) and comparing the coefficients of    and    , we 

obtain 

(    )        
 

 
                                                                                                                (    ) 

 (     )         *(   )   (   )
  +     

    
 

 
 

 
        

 

 
     (   

  
 

 
)  

     
 
  
                                                    (    ) 

Similarly it follows from (2.12) and (2.14) in (2.10) that  

 (    )        
 

 
                                                                                                             (    ) 

  (         )        
    * (     )    (     )  +    

   
      (         )         

                  
 

 
       

 

 
     (   

  
 

 
)  

     
 
  
                                                                (    ) 

From the two equations are equal (2.15) and (2.17), we find that 

                                     
       

 (    )     
     

       
 (    )     

                                            (    ) 

                                                                                                                                                    (    ) 
It follows that we multiply by 2 and square both sides, then we add the two equations (2.15) 

and (2.17) 

                                      (    )     
    

     
   
 (  

    
 )                                                    (    ) 

Adding (2.16) and (2.18) in light of (2.19), we get 

 [ (     )        *(   )   (   )
 +    

 ]  
 

       (     )    (     )(  
    

 )                                                    (    ) 
 Applying Lemma (1.1) for the coefficients                   it follows from (2.21) and 

(2.22) that 

|  |   
|  |   

|(     )     |
   

|  |   √
|  | (    |      | ) 

|  (        )        * (      )     (      )  +     
  | 

     

This  yields the desired estimate on  |  | as asserted in (2.1). 

Now, to find them bound on the coefficient |  | by subtracting relations (2.18) from (2.16), 

we get 

                            (     )     (      
  )              (     )                             (    ) 

In light of (2.21), (2.22) and  putting (2.23), we have 

                                
             (     ) 

 (     )    
  
  
   
 (  

    
 )

 (    )     
                                     (    ) 

   
           (     ) 

 (     )    
  

      (       )       (       )(  
      

  )

 [ (     )     *(   )   (   ) +     
 ]
    (    ) 

Applying Lemma (1.1) once again for the coefficients                  we find that 
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|  |   
( |  |   |   | )   

| (     )     |
  

  
   
 

(    )     
     

|  |   
( |  |   |  | )  

| (     )     |
 

|   | (    |     | )

| (     )       *(   )   (   ) +     
 |
   

The proof of Theorem (2.1) is now complete. 

For      in Theorem 2.1, we get the following corollary. 

 

Corollary 2.1. Let    ( )  given by  (1.1) belong  to  the class      
    (     ). Then 

|  |     2
|  |   

|(    )    |
  √

|  | (    |      | )

|  (       )        * (      )       +     
  |
  3   

 

|  |     ,
( |  |   |  | )   

| (    )     |
  

  
   
 

(   )     
   

( |  |   |  | )  

| (    )     |

  
|  | (    |     | )

| (    )       *(   )    +     
 |
  -   

 

Putting       and      in Theorem 2.1, we have the following corollary. 

 

Corollary 2.2. Let    ( )  given by  (1.1)  belong  to  the  class      
    (     ). Then 

|  |     2
|  |   

|    |
  √
|  | (    |      | )

|              
  |

  3   

|  |     ,
( |  |   |  | )   

|       |
  
  
    

 

    
    

( |  |   |  | )  

|       |
  
|  | (    |     | )

|             
 |

  -   

 

 

3. Coefficient Estimates For the Class     
    (       ) 

 

Definition 3.1. A function         defined  in  (1.1)  is  said  to  be  in  the  class 

     
    (        ) if  the following quasi-subordination holds: 

 

 
[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
    ( )/

   

   

  ]   ( ( )   )   

 

 
[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
    ( )/

   

     ]   ( ( )   )  

where the function     is  the  extension  of               for        * +               
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Remark 3.1. For      a function      defined in (1.1) is said to be in the class 

    
     (       )  if the following conditions are satisfied: 

 

 
 [(   ) (

  
     ( )

 
)   .  

     ( )/
 

    .  
     ( )/

   

  ]   ( ( )   )  

 

 
 [(   ) (

  
     ( )

 
)   .  

     ( )/
 

    .  
     ( )/

   

   ]   ( ( )   )  

 

Theoremv3.1. Let   ( ) givenهby (1.1) be  in  the  class      
    (       ). Then 

|  |

 

{
 

 
  |  |    √  

√|        
  (    )      (     ) (      )     

  |
}
 

 

                                      (   ) 

|  |   ,
  |   |

    
 

(      )     
   

     ( |   |    |   | )

 (    )     
-                                                         (   ) 

 

Proof. If        
    (       )           . Then, there are analyticهfunctions        

          ( )          
 
          ( )          

 
         ( )   ( )     such that 

 

 
[(   ) (

  
     ( )

 
)    .  

     ( )/
  

 (    ) .  
    ( )/

 

    .  
     ( )/

   

    

 ]   ( )( ( ( )   ))                                                                                                                (   )                                                                                            

 

 
[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
     ( )/

   

 

    ]   ( )( ( ( )   ))                                                                                                   (   )                           

where  ( ) and  ( ) are defined by (2.7) and (2.8) respectively. 

Proceeding similarly as in Theorem (2.1), we obtain 

 

 
[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
    ( )/

   

   

  ]   ( ) [ ((
 ( )   

 ( )   
)   )]                                                            (   ) 

 

 
[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

     .  
     ( )/

   

     ]    ( ) [ ((
 ( )   

 ( )   
)   )]                                              (   ) 

where the right-hand sides of (3.5) and (3.6) given by (2.13) and (2.14), respectively. 

Since 

 

 
[(   ) (

  
     ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
    ( )/

   

    

 ]   
 

 
 (      )             

 

 
 (     )          

                                            (   )                                                              
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[(   ) (

  
    ( )

 
)    .  

    ( )/
  

 (    ) .  
    ( )/

 

    .  
    ( )/

   

     ] 

  
 

 
(      )        

 

 
[ (    )      

  (    )      ] 
                  (   ) 

Comparing the coefficient of  (3.7) with (2.13) and (3.8) with (2.14), then, we have 

 (      )                                                                                                       (   ) 

 (     )                          .    
  
 

 
 /            

                                   (    ) 

   (      )                                                                                                    (    ) 
and 

[ (     )     ](     
    )                     .    

  
 

 
 /             

            (    ) 

From (3.9) and (3.11), we find that 

                                                                                                                                    (    ) 
                                                  (      )     

    
       

   
 (  

    
 )                            (    ) 

Adding (3.10) and (3.12), by using (3.13) and (3.14), we get 

[ (    )    
     ]   

        
   
 (     )  (     )     

   
 (  

    
 )                  

        [ (    )     
     ]   

         
   
 (     )  (     ) 

 (      )     
    

 

 
      (    ) 

which implies 

   
  

       
    

  (     )

  [        
  (    )      (     ) (      )     

 ] 
  

Applying Lemma (1.1) for the coefficients    and    , we can easily obtain 

|  |   

{
 

 
  |  |    √  

√|        
  (    )      (     ) (      )     

 |
}
 

 

   

which is the bound on |  | as asserted in (3.1). 

Now, in order to find the bound on the coefficient |  |, by subtracting (3.12) from (3.10), in 

light of (3.13), we have 

[ (    )     ] (       
  )                      (      )   

                     

   
   

                      (      )

  (    )     
                                                                                                    (    )  

Upon substituting the value of    
   from (3.14), we obtain 

    
    

   
 (  

    
 )

 (      )     
     

     (            (     ) ) 

  (    )     
   

Applying Lemma (1.1) once again for the coefficients                     we find that 

|  |   ,
  |   |

    
 

(      )     
   

     ( |   |    |   | )

 (    )     
-   

This completes the proof of Theorem (3.1). 

Taking       and      in Theorem 3.1, we have the following corollary. 

 

Corollary 3.1. Let   ( ) given by (1.1) belong to the class       
     (       ). Then 
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|  |  

{
 

 
 |  |    √  

√|       
  (    )      (     ) , (   )-      

 |
}
 

 

    

|  |   ,
|   |

    
 

, (   )-     
    

    ( |   |    |   | )

 (    )     
-   

 

By putting       and       in Theorem 3.1, we have the following corollary. 

 

Corollary 3.2. Let    ( ) given by (1.1) belongs to the class       
     (       ). Then 

|  |   

{
 

 
  |  |    √  

√|        
       (     )     

 |
}
 

 

   

|  |   ,
  |   |

    
 

    
   

     ( |   |    |   | )

      
-   

 

If we set    ( )     and      in Theorem 3.1, we get the following corollary. 

 

Corollary 3.3. Let    ( ) given by (1.1) belong to the class       
     (       ). Then 

|  |   

{
 

 
      √  

√|     
  (    )      (     ) (   )     

 |
}
 

 

   

|  |   ,
     

 

(   )     
   

     

 (    )     
-   

 

Conclusion 

     In this paper, we introduced subclasses of the function class  ∑  of analytic and bi-

univalent functions associated with operator    
     defined in the open unit disk   by applying 

quasi-subordination have been introduced and studied. Some results and properties about the 

corresponding bound estimations of the coefficients     and     are given and investigated. 

Here ,we opened some new windows to find the coefficients using quasi-subordination. 
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