Shahad and Al-Muthafar

Iraqi Journal of Science, 2022, Vol. 63, No. 7, pp: 3135-3140 DOI: 10.24996/ijs.2022.63.7.34

ISSN: 0067-2904

Small-Essentially Quasi-Dedekind *R*-Modules

Haithab A. Shahad^{*}, Nuhad S. Al-Muthafar

Department of Mathematics, Collage of Science, University of Baghdad, Baghdad, Iraq

Received: 26/9/2020 Accepted: 20/11/2021 Published: 30/7/2022

Abstract

In this research, we introduce a small essentially quasi–Dedekind R-module to generalize the term of an essentially quasi.–Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.

Keywords: Quasi-Ded. modules, Essentially quasi-Ded. modules, *K*-nonsingular modules.

المقاسات شبه – الديديكاندية الصغيرة الجوهربة

هيذب عبود شهد، نهاد سالم المظفر

قسم الرياضيات، كلية العلوم ، جامعة بغداد، بغداد، العراق

الخلاصة

في هذا البحث تم تعميم مفهوم المقاسات شبه الديديكاندية بواسطة تقديم ما يسمى بالمقاسات شبه-الديديكاندية الصغيرة الجوهرية . كما اعطينا بعض من الخواص الاساسية وعدد من الامثلة التي تحقق تلك الخواص.

1- Introduction

Throughout this research, all rings R are commutative with unity, and all R-modules \mathcal{A} are unitary. Recall that a non-zero sub-module $\mathcal H$ of R-module $\mathcal A$ is quasi-invertible if $Hom(\mathcal{A}/\mathcal{H},\mathcal{A}) = 0,[1]$. \mathcal{A} is said to be quasi.-Dedekind if all non-zero \mathcal{H} sub - mod. of \mathcal{A} is quasi-invertible that is $Hom(\mathcal{A}/\mathcal{H},\mathcal{A}) = 0$ for each non-zero \mathcal{H} sub-module of \mathcal{A} . quasi-Dedekind Equivalently, А is said to be if for each $f \in End(\mathcal{A}), f \neq 0$, then ker(f) = 0 [1]. As a generalization of quasi-Dedekind \mathcal{R} module, Inaam M. A. and Thaar Y. G. in [2] reviewed the notion essentially quasi.-Dedekind (briefly, ess.quasi.-Ded.) by restricting the definition of quasi.-Dedekind on essential sub - mod. The concept of essentially quasi.-Dedekind is equivalently to k-nonsingular which is introduced by Shyaa F. D. and Ali I. M., [3]. Where A is ess. quasi.-Ded. R-module if for all $f \in End(\mathcal{A})$, $ker(f) \leq_e \mathcal{A}$ implies f = 0.

In [5], Zhou introduced the concept s - essential sub - mod., where a sub-module \mathcal{H} of \mathcal{A} is called s-essential (denoted by $\mathcal{H} \leq_s \mathcal{A}$) if $\mathcal{H} \cap L \neq 0$ for each non-zero small sub-module *L* of \mathcal{A} .

^{*}Email: hshahad@uowasit.edu.iq

The outlines of this paper is to introduce the small essentially quasi.-Dedekind \mathcal{R} -module. We also discuss and give an equivalent notion to s - ess. quasi.-Ded. R-module that is an \mathcal{R} -module A is called sk-nonsingular if for all $f \in End(\mathcal{A})$, $ker(f) \leq_s \mathcal{A}$ implies f = 0. It is clear that every s - ess. Quasi.-Ded. R-module is essentially quasi-Dedekind, however the converse is not true. In addition, we show that every quasi.-Dedekind R-module is s - ess. Quasi.-Ded., but the converse does not hold. Several results are given in this work.

2- Small-Essentially Quasi-Dedekind Modules:

Definition(2-1): Let \mathcal{A} be an R-module, then we have

1- \mathcal{A} is said to be small essentially quasi-Dedekind(briefly s - ess. Quasi.-Ded.) if for each non-zero *s*-essential sub-module \mathcal{H} of \mathcal{A} is quasi.- invertible, that is if $Hom(\mathcal{A}/\mathcal{H}, \mathcal{A}) = 0$ for all non-zero *s*-essential sub-module \mathcal{H} of \mathcal{A} .

2- A ring \mathcal{R} is s - ess. quasi.-Ded., if it is s - ess. quasi.-Ded. R-module.

Remarks and Examples(2-2):

1- Every nonsingular R-module is an s - ess. quasi.-Ded.

Proof: By [6, p.19], we know that every essential sub-module is quasi.—invertible with the fact that every s –essential sub-module is quasi.—invertible[5], so that \mathcal{A} is s - ess. quasi.—Ded.

2- Every s - ess. quasi.-Ded. R-module is ess quasi.-Ded. R-module. Because every essential sub-module is s-essential. Generally, the next example shows that the converse does not hold. Example: Consider $A = Z_6$ as Z-module is ess. quasi.-Ded. R module[6].However, it is not s - ess. quasi.-Ded, because of $Hom\left(\frac{Z_6}{\langle \overline{3} \rangle}, Z_6\right) \simeq Z_3 \neq 0$ and $\langle \overline{3} \rangle \ge_s Z_6$.

3- It is clear that every quasi.—Dedekind R-module is an s - ess. quasi.—Ded. R-module. But, the converse does not hold in general. One can see the following example. The Z-module $\mathcal{A} = Z \oplus Z$ is nonsingular, so it is s - ess. quasi.—Ded., but, \mathcal{A} is not quasi.—Dedekind, because of $Hom\left(\frac{\mathcal{A}}{Z \oplus \sqrt{0}}, \mathcal{A}\right) \simeq Hom(Z, Z \oplus Z) \neq 0$.

4- A homomorphic image of s - ess. quasi.-Ded. needs not to be s - ess. quasi-Ded. One can see the following example: Z as Z - m odule is s-ess. quasi-Ded., let $\pi: Z \to \frac{Z}{\langle \overline{8} \rangle} \cong Z_8$ be the natural epimorphism, hence $\pi(Z) = Z_8$ is not s - ess. quasi.-Ded. since $Hom\left(\frac{Z_8}{\langle \overline{2} \rangle}, Z_8\right) \neq 0$ and $\langle \overline{2} \rangle \ge_s Z_8$.

5- Every integral domain \mathcal{R} is an s - ess. quasi.-Ded. $\mathcal{R} - m$ odule, by [6, p 24] and Remark (3).

6- If \mathcal{A} is s - ess. quasi.-Ded., then $ann\mathcal{A} = ann\mathcal{H}$ for each $\mathcal{H} \trianglelefteq_s \mathcal{A}$. Since \mathcal{A} is s - ess. quasi.-Ded., then every $0 \neq \mathcal{H} \trianglelefteq_s \mathcal{A}$ is quasi-invertible sub - mod. Hence $ann\mathcal{A} = ann\mathcal{H}$ for each $0 \neq \mathcal{H} \trianglelefteq_s \mathcal{A}$.

7- $Z \oplus Z_2$ is not *ess*. quasi.-Ded. as Z-module,[2]. So that it is not s - ess. quasi.-Ded. as Z-module.

8- Next example shows that the direct sum of s - ess. quasi-Ded. R-module needs not to be an s - ess. quasi-Ded. R-module.

Example: $\mathcal{A} = Z \oplus Z_2$ is not s - ess. quasi-Ded. [2], but Z, Z_2 are s - ess. quasi.-Ded. R-module.

Proposition(2-3):

A direct summand of s - ess. quasi.-Ded. R-module \mathcal{A} is an s - ess. quasi.-Ded. **Proof:**-

Let $\mathcal{A} = \mathcal{A}_1 \bigoplus \mathcal{A}_2$ and let \mathcal{A}_1 be a direct summand of \mathcal{A} . To prove that \mathcal{A}_1 is an s - ess. quasi.-Ded. Let $0 \neq f \in End(\mathcal{A}_1)$. We have the following diagram:

$$\mathcal{A}_1 \oplus \mathcal{A}_2 \xrightarrow{\pi} \mathcal{A}_1 \xrightarrow{f} \mathcal{A}_1 \xrightarrow{i} \mathcal{A}_1 \oplus \mathcal{A}_2$$

 $i \circ f \circ \pi \in End(\mathcal{A}). \text{ If } i \circ f \circ \pi(\mathcal{A}) = i \circ f(\mathcal{A}_1) = i(f(\mathcal{A}_1)) = f(\mathcal{A}_1) \neq 0, \text{ then } Ker(i \circ f \circ \pi) \not \cong_s \mathcal{A}. \qquad Ker(i \circ f \circ \pi) = \{a_1 + a_2 : i \circ f \circ \pi(a_1, a_2) = 0\} = \{a_1 + a_2 : i \circ f(a_1) = 0\} = \{a_1 + a_2 : f(a_1) = 0\} = Kerf \oplus \mathcal{A}_2 \not \cong_s \mathcal{A}_1$

 $\oplus \mathcal{A}_2$. But $\mathcal{A}_2 \succeq_s \mathcal{A}_2$, so *Kerf* $\nvDash_s \mathcal{A}_1$ from [5 prop.(2-7)].

Recall that a non-zero R-module \mathcal{A} is said to be *u*niform, whenever all non-zero sub-module of is an essential[8].

Next function gives a new notion for uniform.

Definition(2-4):- A non-zero $\mathcal{R} - m$ odule \mathcal{A} is said to be *s*-*u*niform, if all non-zero *sub* - mod. of is s-essential [10].

Remark: Every uniform R-module is s- uniform R-module. But the converse is not true in general. As shown in the following example: Z_6 as Z-module does not represent a uniform R-module, while it is s- uniform R-module, since $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ are s-essential sub-modules of Z_6 , [5].

Proposition(2-5):-

Let \mathcal{A} be an *s*-*u*niform R-module. Then \mathcal{A} is a quasi.-Dedekind R-module if and only if is an *s* - *ess*. quasi.-Ded.

Proof:- It is clear.

Corollary(2-6):-

If \mathcal{A} be an *s*-uniform R-module, then the following statements are equivalent:

- 1- \mathcal{A} is a quasi-Dedekind R-module.
- 2- *A* is an s-ess. quasi.–Ded. R-module.

3- \mathcal{A} is an essentially quasi-Ded. R-module.

We point out that an R-module is k-nonsingular if for each $f \in End(\mathcal{A})$, $ker(f) \leq_e \mathcal{A}$ implies f = 0[3].

Below, we will introduce a new notion.

Definition(2-7):-

An \mathcal{R} – module \mathcal{A} is said to be *sk*-nonsingular if for each $f \in End(\mathcal{A})$, $ker(f) \trianglelefteq_s \mathcal{A}$ implies f = 0.

Theorem(2-8):-

Let \mathcal{A} be an R-module, then \mathcal{A} is an s - ess. quasi.-Ded. if and only if \mathcal{A} is a sk-nonsingular R-module.

Proof:- \Rightarrow) Suppose that \mathcal{A} is s - ess. quasi.—Ded. R-module and let $f \in End(\mathcal{A})$, $f \neq 0$. To prove that $Kerf \not\cong_s \mathcal{A}$, we assume that $Kerf \trianglerighteq_s \mathcal{A}$ and define $h: \frac{\mathcal{A}}{Kerf} \to \mathcal{A}$ by h(a + Kerf) = f(a) for all $a \in \mathcal{A}$. It is clear that h is well defined and $h \neq 0$, thus $Hom\left(\frac{\mathcal{A}}{Kerf}, \mathcal{A}\right) \neq 0$ that is a contradiction.

 $(=) Assume that there exists \quad h: \frac{\mathcal{A}}{\mathcal{H}} \to \mathcal{A}, h \neq 0, \text{ for some } \mathcal{H} \succeq_{s} \mathcal{A}. \text{ Consider the following :} \\ \mathcal{A} \xrightarrow{\pi} \frac{\mathcal{A}}{\mathcal{H}} \xrightarrow{h} \mathcal{A}, \text{ where } \pi \text{ is natural projective mapping. Let } \psi = f \circ \pi \in End(\mathcal{A}). \text{ Since } \\ \mathcal{H} \subseteq Ker\psi \text{ and } \mathcal{H} \succeq_{s} \mathcal{A}, \text{ it follows that } Ker\psi \succeq_{s} \mathcal{A}, [5] \quad \psi(\mathcal{A}) = f \circ \pi(\mathcal{A}) = f(\mathcal{A}/\mathcal{H}) \neq 0 \text{ which is a contradiction.}$

Remark: It is clear that every *sk*-nonsingular is *k*-nonsingular. The opposite does not hold in general. This is shown in the following example: Z_{10} as Z-module is *k*-nonsingular, since Z_{10} is an *ess*. quasi Ded. where $\langle \overline{5} \rangle$, $\langle \overline{2} \rangle$ are not essential sub-modules in Z_{10} , but it is not *sk*-nonsingular because it is not s - ess. quasi.–Ded., since $Hom\left(\frac{Z_{10}}{\langle \overline{5} \rangle}, Z_{10}\right) \cong Z_5 \neq 0$.

Recall that a ring \mathcal{R} is called semi-prime if < 0 > is a semi-prime ideal of \mathcal{R} ; in other word \mathcal{R} does not contain non-zero nilpotent ideal. And an ideal I of \mathcal{R} is semi-prime if for all ideal *J* of *R* with $J^2 \subseteq I$, then $J \subseteq I[7]$.

Proposition(2-9):-

Let \mathcal{R} be a ring. The following sentences are equipollent:-

 \mathcal{R} is a semi-prime ring. 1-

2- $Z(\mathcal{R}) = 0$ (\mathcal{R} is a non-singular ring).

 \mathcal{R} is an s-essential quasi-Dedekind ring. 3-

Proof:-

- \Leftrightarrow 2): It achieves from [7]. 1)
- 2) \Rightarrow 3) : It follows from Remarks and Examples (2-2)(1).
- 1) \Rightarrow 3)

Let $h \in End(\mathcal{R})$ with $kerh \ge_{s} \mathcal{R}$, to prove h = 0. We say that $h \neq 0$, then we have $0 \neq r \in \mathcal{R}$ and h(a) = ra for every $a \in \mathcal{R}$. Since kerh $\geq_s \mathcal{R}$ and $0 \neq r \in \mathcal{R}$, there exists $0 \neq s \in \mathcal{R}$ such that $0 \neq rs \in kerh$, it follows that $0 = f(rs) = rf(s) = r^2s$, implies that $(rs)^2 = 0 \Rightarrow rs = 0$ (since \mathcal{R} is semi-prime) that is a contradiction. Therefore, h = 0 and \mathcal{R} is an s - ess. quasi-Ded.

3) \Rightarrow 1) It follows that from [7 prop.(1.2.6)].

Recall that an R-module \mathcal{A} is called a non-singular if $Z(\mathcal{A}) = 0$, such that $Z(\mathcal{A}) =$ $\{a \in \mathcal{A} : ann(a) \leq_e R\}, [7]$

Now, we have the following notion:

Definition (2-10): A sub-module C of a R-module \mathcal{A} is called s - c losed if $\frac{\mathcal{A}}{c}$ is nonsingular,[8].

Proposition(2-11):-

Let \mathcal{A} be an R-module, then $\frac{\mathcal{A}}{c}$ is s - ess. quasi.-Ded. for each s-closed sub-module C of А.

Proof: Since C is an s-closed sub-module, then by definition(2-10), $\frac{\mathcal{A}}{C}$ is nonsingular. By Remark and Example (2-2) (1), we have $\frac{\mathcal{A}}{c}$ is an s - ess. quasi.-Ded. R-module. Remark(2-12):-

Let \mathcal{A} be an R-module and let $\mathcal{H} \leq \mathcal{A}$. If $\frac{\mathcal{A}}{\mathcal{H}}$ is an s - ess. quasi.-Ded. $\mathcal{R} - m$ odule, then \mathcal{A} is not necessary to be an s - ess. quasi.-Ded. R-module. As shown in the following example:- Let $A = Z_8$ as Z-module and $H = \langle \overline{4} \rangle \leq Z_8$, then $\frac{Z_8}{\langle \overline{4} \rangle} \simeq Z_4$ is an s - ess. quasi.-Ded., but $A = Z_8$ is not an s - ess. quasi.-Ded. Z-module. **Proposition**(2-13):-

Let \mathcal{A} be an R-module and let $\overline{\mathcal{R}} = \mathcal{R}/J$ where J is an ideal of \mathcal{R} and $J \subseteq ann(\mathcal{A})$. \mathcal{A} is an s - ess. quasi.-Ded. R-module if and only if A is an s - ess. quasi.-Ded. \overline{R} -module. **Proof:** We have $Hom_{\Re}\left(\frac{\mathcal{A}}{\mathcal{H}}, \mathcal{A}\right) = Hom_{\tilde{\Re}}\left(\frac{\mathcal{A}}{\mathcal{H}}, \mathcal{A}\right)$, for all $\mathcal{H} \leq \mathcal{A}$ [7]. Thus, if is an s - ess. quasi.-Ded. R-module, then $Hom_{\Re}\left(\frac{\mathcal{A}}{\mathcal{H}}, \mathcal{A}\right) = \{0\}$ for all $\mathcal{H} \succeq_{s} \mathcal{A}$, $Hom_{\overline{\Re}}\left(\frac{\mathcal{A}}{\mathcal{H}},\mathcal{A}\right) = \{0\}$ for all $\mathcal{H} \succeq_s \mathcal{A}$. It follows that \mathcal{A} is an s - ess. quasi.-Ded. Rmodule. Similarly, we can prove the direction.

Proposition(2-14):-

Let \mathcal{A} and $\overline{\mathcal{A}}$ are two isomorphic R-modules. Then \mathcal{A} is an s - ess. quasi.-Ded. module if and only if \overline{A} is an s - ess. quasi.–Ded. module.

Proof: Let \mathcal{A} is an s - ess. quasi.-Ded. R-module and let : $\mathcal{A} \to \overline{\mathcal{A}}$, ρ is an isomorphism. To achieve that \overline{A} is an s - ess. quasi.-Ded. R-module, we take $f \in End(\overline{A})$ such that $f \neq 0$. Hence, there exists $\stackrel{\rho}{\to} \bar{\mathcal{A}} \stackrel{f}{\to} \bar{\mathcal{A}} \stackrel{\rho^{-1}}{\to} \mathcal{A}$, let $h = \rho^{-1} of o\rho \in End(\mathcal{A})$, thus $h \neq 0$, it implies $kerh \not \cong_s \mathcal{A}$. To prove that $kerf \not \cong_s \bar{\mathcal{A}}$, we claim that $kerf = \{y \in \bar{\mathcal{A}}: \rho^{-1}(y) \in kerh\}$. The assertion will be installed as follows: let $y \in kerf$, f(y) = 0, $h(\rho^{-1}(y)) = (\rho^{-1}of o\rho)(\rho^{-1}(y)) = (\rho^{-1}of)(y) = \rho^{-1}(f(y)) = \rho^{-1}(0) = 0$. Therefore, for each $y \in kerf$, $\rho^{-1}(y) \in kerh$, so $\rho^{-1}(kerf) \subseteq kerh \not \cong_s \mathcal{A}$ which follows that $\rho^{-1}(kerf) \not \cong_s \mathcal{A}$. Thus $kerf \not \cong_s \bar{\mathcal{A}}$ and $\bar{\mathcal{A}}$ is an s - ess. quasi.–Ded. R-module. Similarly, the other direction is obtained.

Remark(2-15):-

Let \mathcal{A} be an s - ess. quasi.-Ded. R-module and let $\mathcal{H} \leq \mathcal{A}$. Then it is not necessary that to be an s - ess. quasi.-Ded. For this, one can see the following example: Consider $\mathcal{A} = Z \oplus Z$ as a Z-module is s - ess. quasi.-Ded., but $\mathcal{H} = Z \oplus 2Z$ is not s - ess. quasi.-Ded. R-module. Since $Hom\left(\frac{Z \oplus Z}{Z \oplus 2Z}, Z \oplus Z\right) \approx Hom(Z_2, Z \oplus Z) \neq 0$.

Now, we will give a proposition that explains a condition that makes a sub-module of an s - ess. quasi-Ded. R-module is s - ess. quasi.-Ded. sub-module. But before that, we need to know the concept of a quasi-injective as follows:

An R-module \mathcal{A} is called a quasi-injective, if for all monomorphism $f: \mathcal{H} \to \mathcal{A}$, $\mathcal{H} \leq \mathcal{A}$ and any homomorphism $g: \mathcal{H} \to \mathcal{A}$, there exists a homomorphism $h: \mathcal{A} \to \mathcal{A}$ where $h \circ f = g$ [2].

Proposition(2-16):

Let \mathcal{A} be an s - ess. quasi-Ded. and quasi-injective R-module. If $\mathcal{H} \leq_s \mathcal{A}$, then \mathcal{H} is an s - ess. quasi.-Ded. R sub-module.

Proof :-

Let $f \in End(\mathcal{H})$ such that $f \neq 0$ to achieve that $kerf \trianglelefteq_s \mathcal{H}$. We say that $kerf \trianglelefteq_s \mathcal{H}$. Since \mathcal{A} is quasi injective, then we have $g \in End(\mathcal{A})$ with goi = iof, where *i* is an inclusion mapping. It follows that $g \neq 0$. Thus, $kerg \oiint_s \mathcal{A}$, since \mathcal{A} is an s - ess. quasi-Ded. and $kerf \subseteq kerg$, we get $kerf \oiint_s \mathcal{A}$. Since by hypothesis $kerf \trianglelefteq_s \mathcal{H}$ and $\mathcal{H} \trianglelefteq_s \mathcal{A}$, then $kerf \oiint_s \mathcal{A}$. To explain that, since $\mathcal{H} \trianglelefteq_s \mathcal{A}$ for every $C \ll \mathcal{A}$, $C \neq 0$, then $\mathcal{H} \cap C \neq 0$ and $\mathcal{H} \cap C \leq \mathcal{H}$. But, $kerf \trianglelefteq_s \mathcal{H}$, so we have $kerf \cap (\mathcal{H} \cap C) \neq 0$ that means $(kerf \cap C) \cap \mathcal{H} \neq 0$, which implies $kerf \cap C \neq 0$ and this is a contradiction. Thus, $kerf \oiint_s \mathcal{H}$ and hence \mathcal{H} is an s - ess. quasi-Ded. R-sub-module.

Recall that an injective R-module $E(\mathcal{A})$ is called an injective hull (injective envelope) of an R-module \mathcal{A} if there exists a monomorphism $f: \mathcal{A} \to E(\mathcal{A})$, where $Imf \leq_e E(\mathcal{A})[8]$. **Corollary (2-17):-**

Let \mathcal{A} be an R-module. If an R-module $E(\mathcal{A})$ is an s - ess quasi-Ded., then \mathcal{A} is an s - ess. quasi-Ded. R-module.

Proof:- The proof is clear, so it is omitted.

In general, the converse of corollary(2-18) does not hold. For example:-

Consider $\mathcal{A} = Z_2$ as Z-module is an s - ess. quasi.-Ded. Z-module. But $E(Z_2) = Z_2^{\infty}$ is not an s - ess. quasi.-Ded. Z-module, because Z_2^{∞} is not ess. quasi.-Ded.,[2].

Proposition(2-18):-

If is an R-module with $f \neq 0$ for all $f \in Hom(\mathcal{A}, E(\mathcal{A}))$ such that $kerf \not =_s \mathcal{A}$, then \mathcal{A} is an s - ess. quasi.-Ded. R-module.

Proof:-

Let $0 \neq h \in End(\mathcal{A})$, then $0 \neq i \circ h \in Hom(\mathcal{A}, E(\mathcal{A}))$, where *i* is an inclusion mapping. It implies that $ker(i \circ h) \not \bowtie_s \mathcal{A}$. Since $kerh = ker(i \circ h)$. Therefore, $kerh \not \bowtie_s \mathcal{A}$ and \mathcal{A} is an s - ess. quasi.—Ded. R-module.

Conclusions

This work aims to generalize the essentially quasi.–Dedekind R-module. The generalized module is called a small essentially quasi–Dedekind R-module. Some basic properties of the new generalized module are given and illustrated by many examples. Also, the relationship with other modules is investigated and discussed, namely with quasi.–Dedekind R-module. Several results are provided in this work

References

- [1] E. A. Mohamed-Ali, " On Ikeda Nakayama Modules " Ph. D. Thesis, University of Baghdad, College of Education Ibn Al-Haitham, 2017.
- [2] T. Y. Ghawi, "Some Generalization of Quasi-Dedekind Modules" M.Sc. Thesis, University of Baghdad, College of Education Ibn Al-Haitham, 2010.
- [3] I. M. Ali and T. Y. Ghawi, "Some Results on Essentially Quasi-Dedekind Modules" Iraqi Journal of Science, Vol. 56, No. 2A, pp:1130-1139, Nov. 2015.
- [4] F. D. Shyaa and I. M. Ali, "S-K-nonsingular Modules "Iraqi Journal of Science, Vol. 62, No. 4, pp:1314-1320. 2021.
- [5] D.X. Zhou and X.R. Zhang, "Small-essential submodules and Morita duality" Southeast Asian Bull.Math., Vol. 35, pp:1051-1062. 2011.
- [6] A. S. Mijbass, "Quasi-Dedekind Modules" Ph. D. Thesis, University of Baghdad, College of Science, 1997.
- [7] G. Desale, and W. K. Nicholson, "Endoprimetive Rings", J. Algebra, Vol.70, pp. 548-560, 1981.
- [8] F. Kasch, "Modules and Rings", London, Academic press, 1982.
- [9] Y. Durgun and S. Ozdemir, "On S-closed Submodules" J. Korean Math. Soc., No. 4, pp.1281-1299, 2017.
- [10] F. H. Mohammed, "Generalizations of Extending Modules and Related Topics" M.Sc. Thesis, University of Al-Mustansiriya, College of Science, 2016.