

ISSN: 0067-2904

On Some Sandwich Results of Univalent Functions Related by Differential Operator

Sarab Dakhil Theyab 1*, Waggas Galib Atshan 2, Habeeb Kareem abdullah 1

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf-Iraq ²Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah -Iraq

Received: 25/9/2021 Accepted: 28/1/2022 Published: 30/11/2022

Abstract:

The goal of the present paper is to obtain some differential subordination and superordination theorems for univalent functions related by differential operator $S_{\alpha,\beta,\lambda,\delta}^k$. Also, we discussed some sandwich-type results.

Keywords: Univalent functions, Subordination, Superordination, Hadamard product, Sandwich theorems

حول بعض نتائج الساندوج للدوال احادية التكافؤ المرتبطة بمؤثر تفاضلي

سراب داخل ذياب * 1, وقاص غالب عطشان 2, حبيب كريم عبد الله 3

قسم الرياضيات, كلية التربية للبنات, جامعة الكوفة, النجف, العراق

2 قسم الرياضيات, كلية العلوم, جامعة القادسية, الديوانية, العراق

الخلاصة:

الهدف من هذا البحث هو الحصول على بعض مبرهنات التابعية التفاضلية والتابعية التفاضلية العليا للدوال احادية التكافؤ المرتبطة بالمؤثر التفاضلي $S^k_{\alpha B, \lambda, \delta}$ وايضا ناقشنا بعض النتائج من النوع الساندوج.

1-Introduction

Let M= M [U] be the class of analytic functions in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For j a positive integer and $a \in \mathbb{C}$, let $\mathcal{M}[a,j]$ be the subclass of the functions $f \in \mathcal{M}$ of the form:

$$f(z) = a + a_j z^j + a_{j+1} z^{j+1} + \dots \qquad (a \in \mathbb{C}, j \in \mathbb{N} = \{1, 2, 3, \dots\}). \tag{1.1}$$

Also, let B be the subclass of \mathcal{M} consisting of functions of the form:

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j,$$
 $(a_j \ge 0).$ (1.2)

For the function f which is given by (1.2) and $g \in B$ is given by

4928

^{*}Email sarabdakhil293@gmail.com

$$g(z) = z + \sum_{j=2}^{\infty} b_j z^j,$$

the Hadamard product (or Convolution) of f and g is defined by

$$(f * g)(z) = z + \sum_{j=2}^{\infty} a_j b_j z^j = (g * f)(z) .$$
 (1.3)

Let f and g are analytic functions in \mathbb{U} , we say that the function f is subordinate to g or g is said to be superordinate to f if there exists a Schwaz function w in U with w(0) = 0 $|w(z)| < 1(z \in \mathbb{C})$, where f(z) = g(w(z)). In such case, we write f < g or f(z) < g(z) ($z \in \mathbb{C}$). In particular, if the function g is univalent in \mathbb{U} then f < g if and only if f(0) = g(0), and $f(\mathbb{U}) = g(\mathbb{U})$ ([1,2]).

Definition1:([1,3]) Let $\Psi: \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ and let h(z) be analytic in \mathbb{U} . If p and $\Psi(p(z), zp'(z), z^2p''(z); z)$ are univalent in \mathbb{U} and if p satisfies the second-order differential $h(z) \prec \Psi(p(z), zp'(z), z^2p''(z); z),$

then p is called a solution of the differential superordination (1.4). An analytic function q(z) is called a subordinant of the solutions of the differential superordination (1.4) or more simply a subordinant, if q < p for all p satisfying (1.4). A univalent subordinant $\check{q}(z)$ that satisfies $q < \check{q}$ for all subordinants q of (1.4) is said to be the best Subordinant.

Definition 2: [1] Let $\Psi: \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ and let h be univalent functions in \mathbb{U} . If p is analytic in U and satisfies the second-order differential subordination,

$$\Psi(p(z), zp'(z), z^2p''(z); z) < h(z), \tag{1.5}$$

then p is called a solution of a differential subordination (1.5). The univalent function is called a dominant of the solution of the differential subordination (1.5), or more simply dominant if p \prec q for all p satisfying (1.5). A dominant $\check{q}(z)$ that satisfies $\check{q} \prec$ q for all dominant q of (1.5) is said to be the best dominant.

Miller and Mocanu [1,2,4] studied the dual problem and determined conditions on Ψ such that (1.4) is satisfied, this implies q(z) < p(z) for all function $q \in \mathbb{Q}$, that satisfy the superordination (1.4). They also found conditions so that the function q is the largest function with this property, which is called the best subordinant of the superordination (1.4). They also considered the problem of determining conditions and admissible functions Ψ such that (1.5) is satisfied which implies p(z) < q(z), for all functions $p(z) \in \mathcal{M}$. Moreover, they found conditions so that q is the smallest function with this property which is called the best dominant of the subordination (1.5). See also [1,3,5-17].

Using the results (see [11,18-31]) to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) < \frac{z\mathfrak{f}'(z)}{\mathfrak{f}(z)} < q_2(z),$$

where q_1 and q_2 are given univalent functions in \mathbb{U} with $q_1(0) = q_2(0) = 1$.

Also, Al-Ameedee et al. [18,19] and El-Ashwah and Aouf [3] derived some differential subordination and superordination results for analytic functions in U. Recently, several researchers obtained sandwich theorems for subclasses of analytic functions (see [3,5-8,10,12-14,18,20,26-31]). In [32], Catas extended the multiplier transformation and defined the operator $S_{\alpha,\beta,\lambda,\delta}^k$ on B, which is $S_{\alpha,\beta,\lambda,\delta}^k f(z) = z + \sum_{n=2}^{\infty} ((\lambda - \delta)(\beta - \alpha)(n-1) + 1)^k a_n z^n$, $S_{\alpha,\beta,\lambda,\delta}^k$ defined follows: as

$$S_{\alpha,\beta,\lambda,\delta}^{k}f(z) = z + \sum_{n=2}^{\infty} ((\lambda - \delta)(\beta - \alpha)(n-1) + 1)^{k} a_{n}z^{n},$$
 where $\alpha, \beta, \delta, \lambda \ge 0, \lambda > \delta, \beta > \alpha$. (1.6)

We note that from (1.6), we have

$$(\lambda - \delta)(\beta - \alpha) \left(S_{\alpha,\beta,\lambda,\delta}^k f(z) \right)' = S_{\alpha,\beta,\lambda,\delta}^{k+1} f(z) - \left(1 - (\lambda - \delta)(\beta - \alpha) \right) S_{\alpha,\beta,\lambda,\delta}^k f(z). \tag{1.7}$$
See also [9].

The main object of this paper is to find sufficient conditions for certain normalized analytic functions h to satisfy:

$$q_1(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} < q_2(z),$$

and

$$q_1(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} < q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are given univalent functions in \mathbb{U} with $q_1(0) = q_2(0) = 1$.

2-Preliminaries

To prove our sudordination and superordination results, we need the following definitions and lemmas.

Definition2.1: [4] Let Q be the set of all functions t that are analytic and injective on $\overline{\mathbb{U}} \setminus E(t)$, where $\overline{\mathbb{U}} = \mathbb{U} \cup \{z \in \partial \mathbb{U}\}$, and

$$E(t) = \left\{ \zeta \in \partial U: \lim_{z \to \zeta} t(z) = \infty \right\},\tag{2.1}$$

such that $t'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(t)$. Further, let Q(a) be the subclass of Q for which t(0) = a, such that $Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$.

Lemma2.1: [2] Let t(z) be a convex univalent function in \mathbb{U} . Let $\sigma \in \mathbb{C}$, $\rho \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and suppose that

$$Re\left(1 + \frac{zt''(z)}{t'(z)}\right) > max\left\{0, -Re\left(\frac{\sigma}{\rho}\right)\right\}.$$

If r(z) is analytic in \mathbb{U} and

 $\sigma r(z) + \rho z r'(z) < \sigma t(z) + \rho z t'(z)$, then r(z) < t(z) and t is the best dominant.

Lemma 2.2: [1] Let t be univalent in \mathbb{U} and let ϕ and θ be analytic in the domain D containing $t(\mathbb{U})$ with $\phi(w) \neq 0$, when $w \in t(\mathbb{U})$. Set $Q(z) = zt'(z)\phi(t(z))$ and $h(z) = \theta(t(z)) + Q(z)$,

suppose that

1- Q is starlike univalent in \mathbb{U} .

2-
$$Re\left(\frac{zh'(z)}{O(z)}\right) > 0, z \in \mathbb{U}.$$

If r is analytic in \mathbb{U} with $r(0) = t(0), r(\mathbb{U}) \subseteq D$ and

 $\phi(r(z)) + zr'(z) \phi(r(z)) < \phi(t(z)) + zt'(z)\phi(t(z))$, then r < t, and t is the best dominant.

Lemma2.3: [11] Let t(z) be a convex univalent in the unit disk \mathbb{U} and let θ and ϕ be analytic in a domain D containing $t(\mathbb{U})$. Suppose that

1-
$$Re\left\{\frac{\theta'(t(z))}{\phi(t(z))}\right\} > 0 \text{ for } z \in U,$$

2- $zt'(z)\phi(t(z))$ is starlike univalent in $z \in \mathbb{U}$.

If $r \in \mathcal{H}[t(0), 1] \cap Q$, with $r(U) \subseteq D$, and $\theta(r(z) + zr'(z)\phi(r(z)))$ is univalent in , and

$$\theta(t(z)) + zt'(z)\phi(t(z)) < \theta(r(z)) + zr'(z)\phi(r(z)), \tag{2.2}$$

then t < r, and t is the best subordinant.

Lemma2.4: [11] Let t(z) be a convex univalent in \mathbb{U} and t(0) = 1. Let $\alpha \in \mathbb{C}$, $\gamma \in \mathbb{C}^*$ that $Re\left\{\frac{\alpha}{\gamma}\right\} > 0$. If $r(z) \in \mathcal{M}[t(0),1] \cap Q$ and $r(z) + \gamma z r'(z)$ is univalent in U, then $\alpha t(z) + \gamma z t'(z) < \alpha r(z) + \gamma z r'(z)$, which implies that t(z) < r(z) and t(z) is the best subordinant.

3-Subordination Results

Theorem3.1: Let t(z) be a convex univalent in 0 with t(0) = 1, and Suppose that

$$Re\left\{1 + \frac{zt''(z)}{t'(z)}\right\} \ge max\{0, -Re(1)\}.$$
 (3.1)

If $h \in \mathcal{B}$ satisfies the subordination

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)Z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)Z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)Z} - 1 \right]$$

$$< q(z) + zq'(z),$$
then
$$(3.2)$$

пеп

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \prec t(z), \tag{3.3}$$

and t(z) is the best dominant.

Proof: Define a function k(z) by

$$k(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z},$$
(3.4)

then the function k(z) is analytic in \mathbb{U} and k(0) = 1. Therefore, differentiating (3.4) with respect to z and usin g the identity (1.7) in the resulting equation, we obtain

$$\frac{zk'(z)}{k(z)} = \frac{S_{\alpha,\beta,\lambda,\delta}^{k+2} f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1} f(z)}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1} f(z)} - 1.$$
(3.5)

Therefore.

$$zk'(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)} - 1 \right].$$

Thus the subordination (3.2) is equivalent to

$$k(z) + zk'(z) \prec t(z) + zt'(z)$$
.

Putting $t(z) = \frac{1+z}{1-z}$ in Theorem (3.1), we obtain the following:

Corollary 3.1: Suppose that

$$Re\left(1+\frac{2z}{1-z}\right) > max\{0, -Re(1)\}.$$

If $h \in \mathcal{B}$ is satisfy the following subordination condition:

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} - 1 \right]$$

$$< \left(\frac{1 - z^2 + 2z}{(1 - z)^2} \right),$$

Theyab et al.

then

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} < \left(\frac{1+z}{1-z}\right),$$

and $t(z) = \frac{1+z}{1-z}$ is the best dominant

Theorem 3.3: Let q(z) be univalent in \mathbb{U} , with q(0) = 1. Let $f \in \mathcal{B}$ and suppose that f and q satisfy the next conditions:

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} \neq 0$$
(3.6)

and

$$Re\left\{1 + \frac{zt''(z)}{t'(z)}\right\} \ge max\{0, -Re(1)\}.$$
 (3.7)

If

$$\chi(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)' + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)'}{2(\lambda - \delta)(\beta - \alpha)} - 1$$
(3.8)

and

$$\chi(z) < q(z) + \frac{zq'(z)}{q(z)},\tag{3.9}$$

then

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} < q(z)$$
(3.10)

and q(z) is the best dominant of (3.6)

Proof: Let
$$k(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1} f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2} f(z)}{2(\lambda - \delta)(\beta - \alpha)z}.$$
 (3.11)

According to (3.2) the function p(z) is analytic in \mathbb{U} , and differentiating (3.11) with respect to z, we obtain

$$\frac{zk'(z)}{k(z)} = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)' + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)'}{2(\lambda - \delta)(\beta - \alpha)} - 1$$
(3.12)

and hence

$$zk'(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)' + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)'}{2(\lambda - \delta)(\beta - \alpha)} - 1.$$
 In order to prove our result, we have to use Lemma (2.2). In this Lemma consider

$$\theta(w) = w \text{ and } \varphi(w) = \frac{1}{w},$$

then θ is analytic in \mathbb{C} and $\varphi(w) \neq 0$ is analytic in $\mathbb{C}^* = \mathbb{C}\setminus\{0\}$. Also, if we

$$Q(z) = zq'(z)\varphi(q(z)) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)' + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)'}{2(\lambda - \delta)(\beta - \alpha)} - 1$$

$$h(z) = \theta(q(z)) + Q(z)$$

$$= \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}}{2(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)' + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)'}{2(\lambda - \delta)(\beta - \alpha)} - 1,$$

from (3.6), we see that $\mathbb{Q}(z)$ is a starlike function in \mathbb{U} . We also have

$$Re\left\{\frac{zh'(z)}{\mathbb{Q}'(z)}\right\} = Re\left\{2 + \frac{zt''(z)}{t'(z)}\right\} > 0, (z \in U)$$

and then, by using Lemma (2.2), we deduce that the subordination (3.9) implies p(z) < q(z).

4-Superordination Results:

Theorem 4.1:Let q(z) be a convex in \mathbb{U} with $q(0)=1, \alpha, \beta, \lambda, \delta \geq 0, \lambda \geq 0, \lambda > \delta, \beta > \alpha$, Re(1) > 0, If

$$f(z) \in \mathcal{B} \text{ such that } \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \in w[q(0), 1] \cap Q \text{ and}$$

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)} - 1 \right]$$

is univalent in \mathbb{U} , and satisfies the superordination

$$q(z) + zq'(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \right] - 1,$$

$$(4.1)$$

then

$$q(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z}$$

and q(z) is the best subordinant.

Proof: If we consider the analytic function

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z}, z \in U$$
(4.2)

Differentiating (4.2) with respect to z and using the identity (1.7) in the resulting equation, we have

$$\frac{zk'(z)}{k(z)} = \frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - ((\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z))}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)} - 1,$$

that is

$$zk'(z) = \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)} - 1 \right]. \tag{4.3}$$

Thus, the subordination (4.1) is equivalent to

$$q(z) + zq'(z) < p(z) + zp'(z)$$
.

Applying Lemma (2.3), with the proof of Theorem (4.1) is complete. Taking k = 0 in Theorem (4.1), we obtain the following result:

Corollary 4.1: Let q(z) be convex in \mathbb{U} , with q(0) = 1, $\beta \in \mathbb{C}$, $Re(\beta) > 0$, and suppose

that (3.1) holds. If
$$f(z) \in \mathcal{B}$$
, such that $\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^1f(z)}{(\lambda - \delta)(\beta - \alpha)z} \in w[q(0), 1] \cap Q$, and
$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^1f(z)}{(\lambda - \delta)(\beta - \alpha)z} + \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^1f(z)}{(\lambda - \delta)(\beta - \alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^2f(z) - (1 - (\lambda - \delta)(\beta - \alpha))S_{\alpha,\beta,\lambda,\delta}^1f(z)}{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^1f(z)} - 1 \right],$$

is univalent in U and satisfies the superordination

$$q(z) + zq'(z) \prec$$

$$\frac{(\lambda-\delta)(\beta-\alpha)S_{\alpha,\beta,\lambda,\delta}^{1}f(z)}{(\lambda-\delta)(\beta-\alpha)z} + \frac{(\lambda-\delta)(\beta-\alpha)S_{\alpha,\beta,\lambda,\delta}^{1}f(z)}{(\lambda-\delta)(\beta-\alpha)z} \left[\frac{S_{\alpha,\beta,\lambda,\delta}^{2}f(z) - (1 - (\lambda-\delta)(\beta-\alpha))S_{\alpha,\beta,\lambda,\delta}^{1}f(z)}{(\lambda-\delta)(\beta-\alpha)S_{\alpha,\beta,\lambda,\delta}^{1}f(z)} - 1 \right],$$

 $q(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{1}f(z)}{(\lambda - \delta)(\beta - \alpha)z}$ and q(z) is the best subordinant. then

5- Sandwich Results:

Combination Theorem (3.1) with Theorem (4.1), we obtain the following sandwich Theorem:

Theorem (4.3): Let q_1, q_1 are two convex functions in \mathbb{U} with $q_1(0) = q_2(0) = 1$ and q_2 satisfies (3.1), Re(1) > 0. If $f(z) \in \mathcal{B}$ such that

$$q_1(z) < \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)}{(\lambda - \delta)(\beta - \alpha)z} < q_2(z)$$

and q_1 , q_2 are the best subordinant and the best dominant of (5.1), respectively.

Theorem (4.4): Let q_1, q_2 be two convex functions in U, with $q_1(0) = q_2(0) = 1$, Re(1) > 10. Let $f \in \mathcal{B}$ and suppose that f satisfies the following conditions:

$$\frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta,f}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} \neq 0$$

$$\frac{(\lambda-\delta)(\beta-\alpha)S_{\alpha,\beta,\lambda,\delta}^{k+1}f(z)+(\lambda-\delta)(\beta-\alpha)S_{\alpha,\beta,\lambda,\delta}^{k+2}f(z)}{2(\lambda-\delta)(\beta-\alpha)z}\in\mathcal{M}[p(0),1].$$
 If the function $\chi(z)$ given by (3.8) is univalent in \mathbb{U} and,

$$q_1(z) + \frac{zq_1'(z)}{q_1(z)} < \chi(z) < q_2(z) + \frac{zq_2'(z)}{q_2(z)}$$
, (5.2)

then

$$q_1(z) \prec \frac{(\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta,p}^{k+1}f(z) + (\lambda - \delta)(\beta - \alpha)S_{\alpha,\beta,\lambda,\delta,p}^{k+2}f(z)}{2(\lambda - \delta)(\beta - \alpha)z} \prec q_2(z)$$

and q_1, q_2 are the best subordinate and the best dominant of (5.2), respectively.

Conclusion

In this work, some differential subordination and superordination theorems for univalent functions related by differential operator $S^k_{\alpha,\beta,\lambda,\delta}$ are obtained and investigated. Futher, some results of sandwich-type are studied and discussed. Finally, many properties and important outcomes are given.

References

- [1] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, **225**, Marcel Dekker, New York and Basel, 2000.
- [2] S. S. Miller and P. T. Mocanu, Subordinant of differential inequalities superordinations, Complex Variables Theory Appl., **48**: 815-826, 2003.
- [3] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for Certain subclasses of p-valent functions, Math. Comput. Model., **51**(**5-6**): 349-360, 2010.
- [4] S. S. Miller and P. T Mocanu, Briot-Bouquet differential superardoinations Sandwich theorems, J. Math. Anal. Appl., **329**(1): 327-335, 2007.
- [5] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential Sandwich theorems for Certain analytic functions, Far East J. Math. Sci., 15: 87-94, 2004.
- [6] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions involving Noor-Sălăgean operator, Advances in Mathematics: Scientific Journal, 9(10): 8455-8467, 2020.
- [7] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi Journal of Science, 62(7): pp: 2376-2383, 2021.
- [8] W. G. Atshan, A. H. Battor and A. F. Abass, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3): 579-591, 2021.
- [9] W. G. Atshan and R. H. Buti, Fractional calculus of a class of univalent functions with negative coefficients defined by Hadamard product with Rafid –operator, European Journal of Pure and Applied Mathematics, 4(2): 162-173, 2011.
- [10] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, Journal of Physics: Conference Series, 1664: 012043, 1-15, 2020.
- [11] T. Bulboacă, Classes of first order differential superordinations, Demonstration Math., 35(2): 287-292, 2002.
- [12] P. Gochhayat, Sandwich-type results for a class of functions defined by a generalized differential operator, Mat. Vesink, **65(2)**: 178–186, 2013.
- [13] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3: Article 8, 1–11, 2006.
- [14] M. A. Sabri, W. G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry, 14(5): 931, 1-11, 2022.
- [15] S. D. Theyab, W. G. Atshan, A. A. Lupaş and H. K. Abdullah, New results on higher-order differential subordination and superordination for univalent analytic functions using a new operator, Symmetry, 14(8): 1576, 1-12, 2022.
- [16] A. M. Darweesh, W. G. Atshan, A. H. Battor and A. A. Lupas, Third-order differential subordination results for analytic functions associated with a certain differential operator, Symmetry, 14(1): 99, 1-15, 2022.
- [17] B. K. Mihsin, W. G. Atshan, S. S. Alhily and A. A. Lupas, New results on fourth-order differential subordination and superordination for univalent analytic functions involving a linear operator, Symmetry, 14(2): 324, 1-12, 2022.
- [18] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics, 23 (4) ,803 –809, 2020.
- [19] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Some new results of differential subordinations for higher order derivatives of multivalent functions , Journal of Physics: Conference Series, 1804: 12111,1-11, 2021.
- [20] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, 10(2): Article 53,11pp, 2009.

- [21] T. Bulboacă, Differential subordinations and superordinations, Recent Results, House of Scientific Book publ., Cluj-Napoca, 2005.
- [22] W. G. Atshan, R. A. Hiress and S. Altinkaya, On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator, Symmetry, 14(2): 418,1-17, 2022.
- [23] W. G. Atshan, A.H. Battor and A. F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, Journal of Physics: Conference Series, 1664: 012044, 1-19, 2020.
- [24] I. A. Rahman, W. G. Atshan and G. I. Oros, New concept on fourth Hankel determinant of a certain subclass of analytic functions, Afrika Mat., 33(1): 1-15, 2022.
- [25] W. G. Atshan, I. A. R. Rahman and A. A. Lupas, Some results of new subclasses for bi-univalent functions using quasi-subordination, Symmetry, 13(9): 1653, 1-12, 2021.
- [26] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Coefficients estimates of biunivalent functions defined by new subclass function, Journal of Physics: Conference Series, 1530: 012105, 1-8, 2020.
- [27] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Second Hankel determinant for certain subclasses of bi-univalent functions, Journal of Physics: Conference Series, **1664**: 012044, 1-8, 2020.
- [28] W. G. Atshan and E. I. Badawi, Results on coefficient estimates for subclasses of analytic and biunivalent functions, Journal of Physics: Conference Series, 1294: 032025, 1-10, 2019.
- [29] W. G. Atshan, S. Yalcin and R. A. Hadi, Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions, Mathematics for Applications, 9: 83-90, 2020.
- [30] S. Yalcin, W. G. Atshan and H. Z. Hassan, Coefficients assessment for certain subclasses of biunivalent functions related with quasi-subordination, Publications De L'Institut Mathematique, Nouvelle serie, **tome 108(122)**: 155-162, 2020.
- [31] I. A. Kadum, W. G. Atshan and A. T. Hameed, Sandwich Theorems for a New Class of Complete Homogeneous Symmetric Functions by Using Cyclic Operator, Symmetry, 14(10): 2223, 1-16, 2022.
- [32] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, S. Owa, Y. Polatoglu (Eds), Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings, Istanbul, Turkey, 20–24 August 2007, Vol. 91, TC Istanbul Kültür University publications, TC Istanbul Kültür University, Istanbul, Turkey, PP. 241-250, 2008.