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Abstract

This paper deals with a mathematical model of a fluid flowing between two
parallel plates in a porous medium under the influence of electromagnetic forces
(EMF). The continuity, momentum, and energy equations were utilized to describe
the flow. These equations were stated in their nondimensional forms and then
processed numerically using the method of lines. Dimensionless velocity and
temperature profiles were also investigated due to the impacts of assumed
parameters in the relevant problem. Moreover, we investigated the effects of
Reynolds number R,, Hartmann number M, magnetic Reynolds number R,,,
Prandtl number %, Brinkman number ¥, and Bouger number w, beside those of

new physical quantities (N , H'). We solved this system by creating a computer
program using MATLAB.

Keywords: Heat transfer, Porous media, Hartmann number, Magnetic Reynolds
number, Prandtl number, Reynolds number.
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1. Introduction
Because of its vital applications in sciences that influence human life, the flow of
electrically directed liquids across porous parallel plates has become a major issue. This is
evident in food industry, extraction of crude oil from the earth, and the movement of the
blood [1}.Several researchers have looked at transferring the flow of oscillator liquids
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between two parallel plates in various magnetic fields. Under saturated temperature
conditions, Makinde and Mhone [2] used the combined effects of a random magnetic field
and thermal radiation transmission to describe the unstable flow of high-optical fluid
connected through a tube filled with irregular porous walls.

For the magneto hydrodynamic (MHD) oscillatory flow of Williamson fluid across a
porous plate, Khudair and Al- Khafajy [1] devised a heat transfer model for two types of flow
(Couette flow and Poiseuille flow). Al- Khafajy [3] studied the effects of magneto
hydrodynamic (MHD) oscillatory slip flow of Jeffrey fluid with varying viscosity,
temperature, and concentration, on a porous plate. Hanvey et al. [4] studied the effects of an
inclined magnetic field, as well as heat and mass transmission, on two infinite parallel plates
using porous materials. The differential transformation method was used by Sheikholeslami et
al. to investigate the problem of unstable nanofluid flow between parallel plates [5].

In the presence of an inclined magnetic field, , as well as radiative heat flux and heat
source, Mehta et al. [6] explored oscillatory fluid flow and heat transfer via a porous material
between parallel plates. Mukhopadhyay and Mandal [7] looked for numerical solutions for
steady state MHD mixed convective boundary layer flow and heat transfer through a porous
plate in the presence of velocity and thermal slips. Kumari and Gayal [8,9] demonstrated the
effects of mass transfer, viscous suction parameter, and the dissipative impact on a two-
dimensional steady-state hydromagnetic viscous fluid flow between two parallel plates in the
presence of heat radiation. The steady state three-dimensional MHD flow of fluid injected
uniformly into the vertical channel with porous wall through one side of the channel was
solved analytically by Jabr and Abdulhadi [5].Our goal here is to investigate the flow of fluids
in a cross-section under the influence of an electromagnetic field (EMF) and use the method
of lines to solve the partial differential equations that describe the situation. In addition, we
aim to demonstrate the behavior of temperature within the cross-section and the impacts of
physical quantities.

2. Research Method

In the following sections, we try to solve our main equations in a simple way using a
dimensionless approximation, after defining the model under study and the equations that
control it in addition to the boundary conditions of the problem.
2.1. Protection Equation

We consider the magnetic fluid through a porous medium moving between two
horizontally parallel plates with a distance of h* and a cross-section length of :* (Figurel).
The model described by the cartesian coordinate system with x coordinate is parallel to the
channel wall in the flow direction and the y coordinate is in the channel's vertical direction.
The magnetic field B utilized across the channel is parallel to the y —axis, with a component
parallel to the y-axis is fixed and symbolized as B,. The component in the x -axis direction is
B,., which inflows along the channel in the flow direction, while the component in the z-axis
direction is equal to zero.
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Figure 1- Physical Model and System of Coordinates.

The fundamental governing equations, consisting of the mass conservation, momentum, and
energy equations, are given by:
The continuity equation is

du* N av*
dx*  0dy*
=0 (D

The momentum equations are:
in the x direction:

ou* ou* ou*

6t*+u FpE +v* 3y

_16p+ 62*62* v**_l_ [ ] )
- prox* vt 0x (')y*z K*u p* M, [7° oy~ (2)
in the y direction:
av* L ov” av*

T +u 9% -tV 3y
L M azv*+azv* LA [B + (3)
- p*ay* v ax*z ay*z K*v *M p'g
The heat equation is:
«cr 6T*+ 6T*+ aT*]
] T PRl e
0%T* 92T*| [dqk- 0q; 1 [0By]
= Kk* + — x + qy x] (4)
dx*?  dy*? ox*  dy*| o ay*

In these equations, (u*, v*) are the velocity of axial motion, (p*) is the density, (p*) is the
pressure, v*

is the kinematic viscosity, K* is the permeability of medium, (M) is the agnetic permeability
of medium, (§) is the magnetic field vector, (B,+, B,) is the magnetic field component in x*
and y* directions, respectively, g* is a gravitational acceleration constant, C; is the specific
heat at constant volume, x* is the thermal conductivity coefficient, T* is the temperature, and
x> qy+ are the components of radiation in the x™ and y*directions, respectively.
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The associated boundary conditions applied on the top and the bottom of the model are:

uwr=v"=0 at y*=0,h"
T =T; at y* =0 b
aT*—O t x*=0,0"
ox* @ = u L ()
0B, o 0 L vt=0
oy oy T
0By | O By-=0 t y'=h"
T e -

2.2. Method of Solution
For the dimensionalization of the governing equations, we adopt the following
characteristic quantities: [10]

* * * h D P *
ut=ugu, t =—u*t, B = BgM 0 'ugh*b, V= h*V
0

T*=T;0, ¢ = T1*40*§ , X*=h'x, y*=h"y ©)
* * * — CIl
v=17017, p=,0u0p: I= <4
wT;]

where ug is the velocity of mean flow, R, = % is Reynolds number, M = Boh*\g is

p*g*.Bh*z
*u*

0

Hartmann number, R,,, = M,c*uyh™ is the magnetic Reynolds number, G, = is the

Mug

*Cp . . .
thermal Gratshof number, 2. = “K—” is Prantdle number, F_= —x 1S Brinkman number,

y = g—” is the specific heat, and V' = % and H = % (T; — Ty) are new quantities.

By substituting (6) into the equations (1) - (5), we obtain the following non-dimensional
equations:

6u+6v . ;
ax dy ™
(’)u+ 6u+ Ju
ac T Yax " Vay
ap 1 M?R,, db,
- v 2 [, 2 :
6x+Re u ut R, Y 0y ®)
6v+ 6v+ v
ot T Yax " Vay
dp 5 M?R,, db,
_ e - — E_
ay+:Rer Nv + R, [bx 3y + HO 9
where E = Ti +Hand F = glf;’l* Is Froud number.

By deriving the equation (8) with respect to y and the equation (9) with respect to x, and
subtract the resulting equations, the non-dimensional general motion equation can be written
as:
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d [dv Jdu d dv dv d ou Jdu
atlox ~ay [a(“a+ ”ay) _a_( ax ' ”@)]
1 dv Jdu dv Jdu
7V 5 F IR Frar
M2R,, 10 db, 9] db,
S 5) 5 )
R, lox dy/) oy\"” oy
00
—H— (10)
But u = Z—i’ and v = —g—f are the stream functions [11], then the equation (10) becomes:
0 1 M?R,, 10 db, 0 db,
aVZ‘P ::R_e V4LP—NV2LP— .'Re g(bxw>—a(byg)]
00
+ }[a (1)
Put & = V2, then,
2
T~ )
t R R, Llox dy dy dy
00
+ }[a (12)
R, [00 00 00
y [E + Ua + U@
020 0%0] PR, an db,
[axz dy? l Y Ox ] +MEF [ ] (13)

ButV.Q = 16w0 — 12w [10], then the non-dlmensmnal energy equation becomes:
R, [00 90 90
y [E + Ua + ‘U@
920 0%0] P.R,
[E)xz dy? l Y
The non- dimensional boundary conditions become:

db,1°
[16w0 — 12w | + M%F, [a—;] (14)

u=v=0 at y=0,1
=0 at y=0 (15)
0=1 at y=1
b, = K€ at y=0
b, = K, at y=1

X

ab

where € = —=.
ay

2.3. Solution of the Problem

In this section, we try to solve the two-dimensional motion equation (12) with the
boundary equation (15) and energy equation (14) using numerical simulation for 0 < x <
L;and 0 < y < L,, where L;and L,are the arbitrary lengths of the computational domain in
the x -direction and y —direction. respectively. We consider the case where coefficients u and

v are treated as constants at any time step of the competition [12].

The main equations of the motion and energy, (12) and (14), are solved numerically using the
method of lines [13]. We discretise the domain above into N + 1 points in x -direction and

4957



Hammodat et al. Iragi Journal of Science, 2021, Vol. 62, No. 12, pp: 4953-4963

M + 1 points in y —direction, respectively, where Ax = L;/Nand Ay = Lﬁz using forward and
backward finite difference methods, as follows:

€l+1] fl} EI.] fl 1j
$ij+1— $ij $ij —Sij—1
= =t (17)

Then, keeping the time derivative continuous, the derivatives in equation (12) were
discretised as  follows:

Sy = %[(EHU — 28 + fi—1j> 4 (fijﬂ 28 + &ij- 1)] NEy

Ax? Ay?
_ MPRy 10 ¢, 0b ] 0,41~ 0;_q;
(bx_x)_ ( Y )] w|[ LU =2 N,j
R, Llox dy dy dy 2Ax
=2,.M (18)

We assume the condition &, = 0, then we use this condition to determine the fictitious
points for the main equation (12) of &, 1 and &, y4 .In the same way, we discretised the
energy equation as:

0 =—(w. G)i+1j B G)i—1j + v G)ij+1 B @ij—1 4o
Lij Y 2Ax Y 2Ay

" 14 0111, —20; +0,_y; + Qi1 —20; 0, L
PR, Ax? Ay?
~ (1600, — 120) - Y2 [%]2 i=2,..N,j=2.,M (19)
i PR, s |3y Jd=2,...N,j=2,..,

3. Results and Discussion

In this section, we preesnt the numerical solutions of a magnetized fluid running through
a porous medium between two horizontal plates exposed to a source of disturbance. The finite
difference method (forward and backward) was applied to calculate the results of the
numerical solutions that were obtained graphically. We obtained the numerical results and
illustrations of ordinary differential equations, given by equations (18) and (19), using
MATLAB programme (ODE solver), as shown in Figures 2-12. The energy profiles in
Figures 2, 5, 6, 7 clearly show that the greater Brinkmann number F;, the Bouger number w,
the Prandtl number 2., and the relative temperature y, the closer we get to stability. The effect
of Hartmann number M is diverging from the stability for both of the motion and energy,
when M and temperature increase (Figures 3 and 10).
In Figures 4 and 8, we observe that the higher the Reynolds number R,,, the closer to stability
in both equations (motion and energy). While (Figure 9) shows that the higher magnetized
Reynolds number R,,, the farther from stability. Finally, Figures 11 and 12 show that the
smaller the new quantities of H and N in the motion equation, the further away it is from
stability.
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Figure 4 - Effect of R, on the energy equation for t= 0-20
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Figure 5 — Effects of varying the number of w (between 0.1 and 0.5) on energy equation with
t=0-20
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Figure 6 —Impacts of using different values of . on energy equation with varying time (from
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4960



Hammodat et al. Iraqi Journal of Science, 2021, Vol. 62, No. 12, pp: 4953-4963

2.5 3.5

[N]

0 5 10 15 20
iterations y
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Figure 10 - Effects of varying M between 0.5 and 15 on motion equation
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Figure 11 - Effects of varying H number from # = 0.1 to X = 1 on motion equation for
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3 T T - 3 t:2 4

25,2), N =0.1
25,35), N = 0.1 2.5 ’®

2571

[

Temperature
w

057

iterations

Figure 12 - Impact of N on motion equation for different values with t= 0 — 20.

4. Conclusions

In this section, because of the occurrence of effects on the tested equations, we have
presented some of the results obtained from the calculation done on equations (12) and (14)
for different places in the region of solution. Figures 2-12 show several results. In terms of
the energy equation, we can see that the higher the Brinkmann number, the Bouger number,
the Prandtl number, and the relative temperature, the closer we get to stability, as shown in
Figures 2, 5, 6, and 7. The effect of Hartmann number M is diverging from the stability for
both of the motion and energy when M and temperature are increasing. As illustrated in
Figures 4 and 8, the greater the Reynolds, the closer to stability are both equations (motion
and energy). According to Figure 9, the higher the magnetic Reynolds number, the farther the
system from stability. Figures 11 and 12 indicate that the closer the motion equation gets to
stability, the smaller Hartmann number and the new physical quantity N.
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