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Abstract
The oscillation property of the second order half linear dynamic equation was

studied, some sufficient conditions were obtained to ensure the oscillation of all
solutions of the equation. The results are supported by illustrative examples.
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1. Introduction
In recent years, the study of dynamic equations on time scales has become an area of

mathematics and has received a lot of attention. It was created to unify the study of
differential and difference equations, and it also extends these classical cases to cases in
between to the so-called g-difference equations. Many results concerning differential
equations carry over quite easily to corresponding results for deference equations while other
results seem to be completely different from their continuous counterparts. Bohner et al.[1],
Peterson [2] and Zhang et al.[3] summarize and organize much of time scale calculus.
Dynamic equations on a time scale. Ahmed et al.[4] investigated third order neutral dynamic
equation and obtain some oscillation conditions for each solution. In [5-9] the author have
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established some new oscillation criteria for second order non-linear neutral delay dynamic
equations of the form

(E®(® +p@OyE—1)") )+ gty -) =0.

Dosly et al.[10] obtained necessary and sufficient condition for oscillation of the Sturm
Liouville dynamic equation on time scales (r(t)x*)? + ¢(t)x° = 0
on a time scale T, where the function ¢(t) is an rd-continuous function such that
c(t) > 0, fort € T. In [11] Tripathy considered the non-linear dynamic equation of the form

MY\2
(50 (6@ +p@®yE-)") ) +q®lyt-a)|’sgn(y(t - a) =0.

On timescale T where &(t) >0, 0 <p(t) <1,g(t,w) = q(t)|w¥|, andy >0 is a
quotient of odd positive integer, such that &(t), p(t) and q(t)are positive real valued
functions defined on T. The aim of this paper is to obtain sufficient conditions to ensure the
oscillation of all solutions of second order half linear dynamic equations.

2. Preliminaries
In this section we will present some definitions and concepts of A derivatives that we will
need in this research.

Definition 2. 1[1]

A time scale is an arbitrary nonempty closed subset of the real numbers. We denote a time
scale by the symbol T [3]. A solution of delay dynamic equation is said to be oscillatory if it
has arbitrarily large zeros, for t € T, hence a nonoscillatory solution is either eventually
positive or eventually negative.

Definition 2.2[1]

1- For t € T ,we define a(t) = inf{r € T:r > t} in the forward jump operator : T —» T
maybe note that a(t) > t forany t € T.

2- If a(t) >t then tis called right-scattered, if t < sup T and a(t) = t, then t is called
right-dense.

3- The graininess function w: T — [0, o) is defined by u(t) = o(t)-tforall t e T

4- Assume that¥: T — R is said to be right-dense continuous if it is right continuous at each
right-dense point andthere exists a finite left limit at all left-dense points. ¥ is said to be
differentiable if its derivative exists. If ¥y is continuous at t, and t is right-scatter then ¥ is

differentiable and yY2(t) = W%)t)—w(t) we call P2 (t) the delta or Hilger derivative of ¥ at

t.We will make use of the following product and quotient rules for the derivatives of the
product ¢ and the quotient%(where PP’ + 0, ¢p° = ¢ o o) of two differentiable function
P and ¢:

W) () = PP () + P(a(D))P* (1) = PP (1) +P* () Pp(o ().
And

(w 4 Y () d) —PD)P* (D)

— t) =
5 © PP
5- Let @: T — R be an antiderivative of ¥: T — R. The Cauchy integral of ¥y is then defined

by: f::p(t)At = ¢@(b) — @(a) wherea,b € T.
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And infinite integrals are defined as

fa oot/)(t)At = lim fa bt[)(t)At.

3. Oscillation results
In this section, some oscillation results for the second order non-linear neutral delay dynamic
equation

(e (ly@ +p@yE®)]")) +Z aOy(5m) =0 (3.1)

Where y > 0 is a quotient of odd positive integer on T,

T(t),6;(t), p(t),q;(t), i=1,2,..,n are positive real valued functions defined on T,
6;(t) < t, t(t),6;(t)are increasing functions obtained on a time scaleT, in addition to the
following assumption

(Hy) (5(10) At =

(Hy) f(t) >0, 0<p(t)<aand Zn q;(t) = 0.
i=1
(H3)Q(®) = min{q,(t), q:(z(1))}:

w®) =y@® +p®y(r@®). (3.2)

It is noticed that the work in [2] initiates the further study of equation (3.1) in other ranges
of p(t) on a time scale T.

Lemma 3.1. If y(t) is an eventually positive solution of equation (3.1), then there exists

t; = a > 0, such that w?(t) > 0, fort > t;.

Proof. Let y(t) be an eventually positive solution of equation (3.1). Hence there exists

t € Twitht > a such that y(t) > 0 and y(r(t)) > 0, t > tyfrom equation (3.1) we get:

[£(D) @) Zm(t)yms )0, 21t (3.3)

It follows that &(t) (w®(t))Y is nonlncreasmg functlon we claim that
E)(w(t)Y >0, t =ty = t,. Otherwise, &(t)(w?(t))Y <0, fort > t, > t,, hence there
exists L < 0 such that &(t) (w?(t))Y < L < 0fort > t, > t;, whichimplies that

1

w(t) < L11'< 1

f(t)> . t>t, (3.4)

Integrating (3.4) from t, to t we get

w(t) —w(ty) < L% ftt (%)i As

2

ast — oo, the last inequality leads to lim,_,,, @(t) = —oo contradicts the fact that
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w(t) > 0. Hence &(t) (w?(t))Y >0, t >ty and so w’(t) > 0.

Theorem 3.2. Let t € [ty, o)1, (H;) — (H,4) hold and there exists 4 > 0, such that
vW+u > Au+v)Y, u,veER uv>0 (3.5)
Then every solution of equation (3.1) oscillates.

Proof. Assume that equation (3.1) has a nonoscillatory solution y(t). We may assume without
loss of generality that y(¢) > 0, y(z(t)) >0, y(8;(t)) >0, i=1,2,..,n, t >t,.

By Lemma 3.1 it follows that w?(t) >0, t > t;. And &(t) (w”(t))? is eventually non-
negative for t > t;. To find 4 in (3.5), letv = y(t), u = y(z(t)),

n(t) = max{y(t), y(z(t))}, t > t, then there exist 4, > 0 such that

A
Y'(®) +p' (Y (T(®) 2 A" (8) 2 ———— (¥(t) + ay(z()))”

1+ a)y
Aq
> T PO p@y(x(®)) = 2(y® +p©¥(x(®))’,
Whered = (li‘;)y, hence

(@) +p @y (z(®) = A(y(®) + p@y(x(®)) . (3.6)

From equation (3.1) and (3.2) we obtain:

0= GO O+ a®y 80 +aGEO) @ (ZO))?
n ) qie(®)y 8(xw),
0> (@ (®))* + ZJ“”’Y ;) + a? §(t() (" (z())" )"
) Q@®)y 8(x(D)

ED(0 @) )*+a¥ (E(t(®))(w*(t(®)))* + Q) z;(yy(ai(t)
+a’y’(§;(z(®)) <0
E®O(@*®))* + a’[{(t(®) (" (z(®))1]°

FOO Y. [y30) + P (,0)y Gi(x(®)] 0.

Let 6(t) = min{d;(t),i = 1,2 ...,n}, then by using(3. 6) the last inequality reduce to
(@) +a[F(z(0) (" (z())" ]* + AQ(t)Z;wy(c?i(t)) <0

@O (@) 1*+a”[§(z()( @*(z(1))"]* + n1Q (D) (8(1)) < 0,
nAQOW (5(1)) < —(E® (W ) ) — @ [£(z®) (0 (z@®))'| (3.7)

Since w(t)is nondecreasing, we can find a constant k > 0, such that w(t) >k, t > t, >
t,, consequently, it follows that by integrating (3.7) from t, to t we get

t t t A
nakY f Q(s)As < — f [§(s) @°(s))Y |*As — a¥ f [£(29) (0 ()] as,

ty 2

ty t

< E(t) (0" (8))Y + a¥&(T(ty)) [ (T(t)]Y .
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as t — oo, the last inequality leads to ftj Q(s) As < o, which is a contradiction with (H,).

Theorem 3.3. Let (H;) — (H,), (3.5) hold and &2(t) > 0 on [ty, o). If T(t) > ¢,
6(t) = min{d;(t), i =1,2...,n}and 6(t) < t. Furthermore,
1 £ Q(s)87(s)
imsu
t—o0 P 5(6) §(8(s))

1
14
As > —y (1+a¥), for ce (0,1). (3.8)

Then every solution of equation (3.1) oscillates.

Proof. Assume without loss of generality equation (3.1) has eventually positive solution y(t),
that is y(t) > 0,y (z(t)) > 0, y(8;(t)) >0, i =1,2,...,n, proceeding as in the proof of
Theorem 3.2, we conclude that (3.3) and (3.7) hold.

Letting x(t) = &(t)(w?(t))?, then (3.7) becomes

AO+a[x ()] + n1Q®)w (8(8)) < 0, (3.9)

for t > t,. Since &(t) > 0 and w(t) is nondecreasing, obviously we can see that
w?(t) <0 for t>1t,. Thus w?(t) is positive nonincreasing function on [ty o) .
Consequently, t > t, it is clear that

w(t) = w(ty) + j

t2

o (s)As > jtwA (s)As > (t — ty) W™ (2).

t2

Then for t; > % ,€ € (0,1)it follows that:
w(t) = (t— t)w(t) > ctw’ (1), t>ts.

Substituting the last inequality in (3.9) to obtain

(O +ar[x(x(©)]" + nacr LOT O

Since x(t) is nonincreasing, then integrating the last inequality from 8(t) to t becomes

x(t) — x(8(0)) + a¥x(z(1)) — a¥x(z(8(t)) + nAcY x(8(1)) th) Q;z;f:)(;)
' Q(s)8"(s)

I A 0,
s €(8(s)) <
x(t) , X(@(®) £ Q(s)d"(s)

Acy | 2227
NOO RGO Ml P )

<0, (3.11)

x(O)+a¥x(z(t)) + x(8(D)) lnlc” As —1—aY

As—1—-a?¥ <0. t2t3

This contradicts with (3.8).Thus every solution of equation (3.1) oscillates. The proof is
complete.

Remark 3.1 A conclusion similar to the Theorem 3.3 can be introduced using the terms
) <t &) >t,t(6(t) >t

Theorem 3.5. Assume that(H;)- (H,) hold, &4(t) > 0, t(t) > t. Furthermore,
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t
lim sup mAS > 0. (3.12)

t—oo 5 5(6(5))
Where 6(t) = min{d;(t),i ,n.Then every solution of equation (3.1) oscillates.
Proof. Suppose to the contrary that equation (3.1) has a nonoscillatory solution y(t).

We may assume without loss of generality that y(t) > O,y(r(t)) > 0,y(6(t)) > 0, for
all t > ty. Set w(t) = y(t) + p(O)y(z(t)), in view of equation (3.1) and (H,) we have,
n

HOICH O IO IO (3.13)

forall t > ty and so &(t) (w?(t))Yis eventually decreasing function. Then from Lemma 3.1 it
follows &(t) (w?(t))Y is eventually non-negative. Therefore, we see that for some t; > t,,
o) >0,w’() =0, ) (W) <0, t>t,. (3.14)
This implies that
y(®) = w@®) - pOyE(®) = 0t) — p(O[w(T®)) — p(t(®))y((z(1)))]
>w() - pHw(() = (1-a)w(t).

Then for t > t, > t, we have
¥ (6:(1) = (1 - )’ (6;(1))) = (1 — a)’w"(8(1))).

From (3.13) and the last inequality we obtain
[E@®) (@) +nQ()(1 - a)"w?(8()) <0, t>t,. (3.15)

From &(t) > 0 and (3.13) we can verify that w®(t) < 0 for t >t, and then w?(t)is
positive and nonincreasing. Using this, we have

w(t) = w(t,) + jtwA (s)As > j o’ (s)As > (t — t,) w”(b).

2 2

Hence for t; > ct,, ¢ € (0,1) it follows the last inequality leads to
w(t) > (t—t,)w(t) > ct w’(2t).
w(8(t)) > c 5w (8(D)), t=ts.

Substituting the last inequality in (3.15) to obtain

[E®O@ ()] + 1O - &) (c5®)" (0*(51)) < 0.

t

Let w(t) = &(t) (w())?, that is (w(t)) = %
We have from the last inequality
wi(e) + (1 - ) 2o c56))! < 0,
§6(0))

It is obvious that w?(t) < 0. Integrating the last inequality from &(t) to t for t sufficiently
large to get

0>w(t)—w(8()+ (c(1— a)’w(s()) 8;) E(Qd(( ))) (8Cs )) As
B B £ Qs B
=w(t) + w(8(t))<(c(1 a))’ fs " (6( ) (8(s )) As 1)
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> w(t) + w(t) <(C(1 - L( )$ (Q‘S((SS)))

£ Q(s)
5(s)))Y As < 0.
s £ 5(5))( (s))YAs <

(8(s))" As — 1)

(c(1 = a))'w(D)

As t — oo, by (3.12) the last inequality leads to a contradiction. That means the proof hasbeen
completed.

Theorem 3.6. Let 8(t) < 7(t) <t, t € [ty, o) and E2(t) > 0 on[ty, ). If (Hy) — (Hy)
hold and there exists a positive rd-continuous A differentiable function e(t), such that
t A +32
. §(z()((@(s)™)
limsup | [a(s)Q.(s) — ( ) =
tow ey 4(c6®)" a(s)

]As =, ¢ € (0,0). (3.16)

Where (a*(s))* = max{0, a"(s)} and Q1(t) = Q(t)(1 — p(8(1)))".
Then every solution of equation (3.1) oscillates on [tg, ) .

Proof: Suppose that equation (3.1) possess eventually positive solution, then as in Theorem
3.3, we can get (3.14) and (3.15). Consequently, (3.15) can be rewritten

E® @ ®))"  a® Q@)

y
“® w¥ (8(t)) + w?(6() a®)(p(6()) <0, forall t >ty > t,.
Define:
AC)YY
e - “w%’ =t (3.17)

Then W(t) > 0 and by using the preliminaries in section 2, one can obtain
at) 1°  a()

we @) = (™)’ lwy( 50) + C0) (E® @ )HN*
WA(¢)
OICHOICEOE
B w?(8(1))

A
" (8(0))a’(t) — a(t) (? (8(1)))
A o

+ ¢ (w®)Y) wY(J(t))wl’(6(a(t)) (3.18)

On simplification (3.18) and (3.14) leads to
A
AOWD Ia(t) (@) )7 (w7 (51))

WA(t) < —a(®)Q,(t) + . (3.19)

a(t)’ w? (8(0))w? (8(a(D)))
Since

(w7 @)’ =

w(a(t))-w! (1)

e thus by using the inequality in [10], to obtain
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" (a(8()) - w" (5(5)) B aRG0)

A _ —
(@' (5®)* = a(6) > ) @ @O ~ (0]
> yw?1(8(1) " (8(D))). (3.20)
So it follows from (3.19) and (3.20) that
A w o
WA(t) < —a(t)Q,(t) + “(‘?(7(0

) [aa) E(@ )Ty 1(3(0) @ (5(1)) (3.21)

w! (8())w? (8(a(D)))

It follows from Theorem (3.4), when&2(t) > 0, and (3.13) there exists t > % forc e

(0,1) .So that for te€[ts,©) we have, w(t)=>ctw?() and so
@’ 1(t) = (ct))" Y (w? () 1.

Due to (3.13), since(£(t) w?(t))Y )* < 0, we have
0 (02®) > £(0®) @ (@) (3.22)

So it follows from (3.22) and (3.13) that

W 1B (8(D) = ¥(c8(®) ™ (@4 (E(©)"

r-1£(a(6))

> y(cS(t)) W (wA((?(O'(t))))Y
& (o(6®)) (0*(o(®))
= Y(Cs(t))y ' ( f()é‘gt)) ) » 3 = CtZ
5 A '
(wy(ts(t)))A > y(cs@®) £ (o (t?(lgl))) (®)) . (3.23)
Using (3.22) and (3.17), then (3.19) becomes
o A OWO°  (as®)" a®)W(1))?
Wo(t) < - Qa(t) + 2(5(0) (@7 (3D) : (3.24)
Using the fact that x — mx? < ﬁ, the inequality (3.23) become
(a*®)’ (a8(e)"a(®W($)°)?
WA < — Q (D a(t W(t)° —
® Q:(Da(t) + 2(o(D) [ ) ((aA(t))+)a"E(6(t))
((«*®)")e(6)
Wi < - Q(Da(®) + )
4(c6(®)" a(t) ,
[ ((aA(t))+) 60|
-~y @i - |
l” 1 4(ad(t)" 1a(t) J

Then
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| s)") £(60)]
Wi < -y Ql<t>a(t>—((a ) >y_1( il
l 4(c6®)" a(t) J

Integrating the last inequality from t5 to t we obtain

2

t ((aA(s)) ) §(8(s))

W(ts) S WO - Wt < - [ [ Qudals) - R
t3 c a(s

] As.

Hence

|1 As < W(t3)

2
: («*)") £(66)
[ 1@a) -t

3

for all large t, which is a contradiction to (3.16). Then y(t) is oscillates solution of equation
(31) On[to, 00)'11‘.

4. Examples
In this section, we give some examples which illustrate our main results

Example4.1Consider the following dynamic equation:

(% (((®) + e 2ty (e + %))AP)A + Z Kity (e - %) =0teT. -1
i=1

Where T = E,oo)is atime scale, (t) = th p)=e?<1 () =t+ %

. 1 : 1
q;(t) =K;t,K; > 2i andé;(t) =t — =7 6(t) = ming,, 8;(t) =t — =
i=1,2,..,n,y = 3.Clearly, H — Hyare hold for every t > % And

Q(t) = min{zn: qi(t),zn: qi (t+%)} = min zn:K,-t,zn:K,- (t +%)} = Zn:K,-t.
i=1 i=1 i=1 1 i=1

i= i

o [ee] n n (o]
Q(S)As=j E Kl-sAs=z Kij sAs = oo,
1 i=1 l
to 2 i=1 ¢ 2

Then (Hy) is holds for every t > % Recall equation (3.5). There exists A > 0, such that
vW+u' > A(u+v)Y,u,veER, uv>0.

Letu = y(t), v=e y(t+3), Choosed = (1’1— > Othend == > 0,z > 0.By (3.6)

+a)Y

Y(®) + (e X y(t+3))* =5 (y(8) + e Xy(t +))*. Henceall condition of Theorem 3.2

is satisfiesed therefore, according toTheorem 3.2 every solution of equation (3.1) is
oscillatory.

Example 4. 2.Consider the following dynamic equation
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m3\Y n
i 1 K; 1
(o +1>y(t+§))) Y gy r(-g)-oren @

here T = [h,»),h > 1isatime scale &) =1, =(t) = +% , p)=1—-et<

1-eh<1 and g =55 K;27,6,(t) =t—5 ,8(t) =ming, 5(t) =t-
1

E,i= 1,2,..,n. In this case y = 3,/1—2,n— 2,c= Z' Clearly H; — Hzare hold for

everyt > h.
Q(®) = min{¥, (), Ty 4 (£ +3)} = min T, 575 v o) = v

=13’ &i=lp g i=12¢1
then (3.8) becomes

1 32
Y:— 3 = o—
(1+a") - < (1+(1)”) > 1.18.

Jc
e 202)(3)
_ L3
limsup t MAS = lim sup jt ngs
too  Jg(h) 5(8( ) t—oo _1 _1 1
= lim sup f s—— As—z ﬁlimsupjt (sz—s+1)As
t—>oo i=1 2 =1 2 t—oo t—% 4

t

>ZnK1 A>Z2 Kii A ZZ Ki . 118
= —11Im su S = —11Im su S = — = 1. .
i=1 2 tooo P _%4' i=1 8 tooo P _% i=116

t t

Hence all condition 3.3 satisfies therefore, according toTheorem 3.3 every solution of
equation (3. 1) is oscillatory

Example4.3.Considerthe following dynamic equation:

a

( d 1))A)3)A+Z (t—%) y(t—%)=0, teT. (4.3)

3

Where the time scale T = [e,»), e > 1, &(t) =t, p(t) = t“ <tt(t)=t+1
[24
qi(t) = ki (t=3) @>0,k; 220, 8;(t) =t —3,8(t) = mine,c8;(t), i =1,2,..,n

Clearly H; — Hsare hold such that(t) = t%, for every t > e.

=— and

Q(t) = min {Zn: q:(t), z q:(t + 1)} = min {i kit — %ﬂj ki (t + %)a}
i-1 i=1 i=1 i=1
_ Z K; (t - %)

Then (3.12) becomes

Inthiscasey = 3,=, ¢ =

=-Mw

t . 14
limsup Q(s)(1 - p(8(s))

5(s)) A
too  Jsp) §(8(s)) (co())" as
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wN
| W
W=

k(- () s, g
= limsup —2 (—(s——)) As

t—-oo t—l 1\3 4‘ 2
2 J—
(s-3)
n t n 32/1 1 .
= limsup k; (—)3f As = k; ()3 (—) >—k;>22i=1,2,..,n
tooo i=1 i=1 4 2 e

2
Therefore, according to Theorem 3.5 every solution of equation (3. 1) is oscillatory.

Example4.4. Consider the following second-order neutral non-linear delay dynamic equation

+2Ktl’ (t—%) 0,teT. (4.4)

((

Where T = [2, )is a time scale,é(t) = (t — 2 )2 ,p(t) = Z—t“ <1,7(t) =t+ E
q:(t) = K;tP,B > 0,K; > 3i,8;(t) = t —%,S(t) = mind;(t) = t —i, fori=1,2,..,n. In
this case y =3, A=2,n=2, c= %,B = ; Clearly H; — Hz are hold for every t >
1, a(t) = tand (a®(s))" = max{0,a’(s)} = {0,1} =1,
2 2
Q(®) = min {T 4:(®), ey a; (¢ — 1)} = min {2, Kets, T2, Kt - i} =
2
n, Ki(t —)3. Then
1

+3 34 1.1 13
Q:(t) = Q((1— p(8(®)" = Ty Kyt —3)3 (Z(t__)> = I Kt -3 (e +3)
We will apply Theorem 3.6.
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lil?_iup jt [a(s)Q1(s) _fgiit;2£§;—52233

L
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+— ) K; limsup] (t% — —)3 ——) s < K; limsupJ (t2 —-—)3 )As =
g e, )

tooo t—->oo

| As =

limsu z
t—ooo p :{/_

K;>3i,i=1,2,..,n
Therefore, according to Theorem 3.6.Every solution of equation(3. 1) is oscillatory.

5. Conclusions

Some conditions that guarantee the oscillation of all solutions of second order half linear
neutral dynamic equation obtained. The equation studied in this paper is a generalization of
the equation used in [2] and [8]. The results extracted and obtained are an improvement of the
corresponding results in the two sources mentioned. Some illustrative examples of the
obtained results are given.
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