
Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

 DOI: 10.24996/ijs.2022.63.11.39

__
*Email: murtadha.jabbar.aasi.karam@gmail.com

5046

Root Cause Analysis And Improvement In Windows System Based On

Windows Performance Toolkit WPT

Murtadha J. Assi*, Assmaa A. Fahad, Basad Al-Sarray

Department of Computer science, University of Baghdad, Baghdad, Iraq

 Received: 15/9/2021 Accepted: 7/4/2022 Published: 30/11/2022

Abstract

 Performance issues could be appearing from anywhere in a computer system,

finding the root cause of those issues is a troublesome issue due to the complexity of

the modern systems and applications. Microsoft builds multiple mechanisms to

make their engineers understand what is happening inside All Windows versions

including Windows 10 Home and the behavior of any application working on it

whether Microsoft services or even third-party applications, one of those

mechanisms is the Event Tracing for Windows (ETW) which is the core of logging

and tracing in Windows operating system to trace the internal events of the system

and its applications. This study goes deep into internal process activities to

investigate root cause analysis on Windows 10 Home 20H2, core i5 processor with 4

cores and 8GB of RAM. After simulating workload to get a performance issue, that

makes the system and application get unresponsive, then using Windows

Performance Toolkit WPT to trace and analyze the event log for root cause

investigation. Our results demonstrate analysis works using WPT for decision

making such as the reasons of underutilization on CPU and disk, labeling the

highlighted patterns, the unbalanced use of system calls in memory, and deciding

that the usage preview is the best way to get an idea about applications behavior

inside Windows systems resources. Overall improving resources utilization usage

and identifying the cause of slowing memory allocation, inefficient disk usage, and

throughput.

Keywords: ETW, WPT, WPA, WPR, trace, provider.

 تحليل اداء نظام وندوز وتحسينه باستخدام أدوات تحليل النظام

 السراي بسعاد, فهد الله عبد أسماء*, عاصي جبار مرتضى
 العراق, بغداد, بغداد جامعة, العلوم كلية, الحاسوب علوم قسم

 الخلاصة
الأنظمة ، ويعد العثور على السبب الجذري من محتويات يمكن أن تظهر مشكلات الأداء من أي مكان

ببناء آليات شركة مايكروسوفت قامتلهذه المشكلات مشكلة مزعجة نظرًا لتعقيد الأنظمة والتطبيقات الحديثة.
وتطبيقاتها ، وإحدى تلك الآليات هي تتبع وندوزمتعددة لجعل مهندسيها يفهمون ما يحدث داخل أنظمة

لتتبع الأحداث الداخلية للنظام وندوزوالتي تعد جوهر التسجيل والتتبع في نظام التشغيل نظام وندوزالأحداث ل
 لمشاكل الاداء فيوتطبيقاته. تتعمق هذه الدراسة في أنشطة العملية الداخلية للتحقيق في تحليل السبب الجذري

 ISSN: 0067-2904

mailto:murtadha.jabbar.aasi.karam@gmail.com

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5047

لأداء ، مما يجعل النظام العمل للحصول على مشكلة في ا توليد عبءبعد محاكاة 10وندوز نظام التشغيل
لتتبع وتحليل سجل الأحداث للسبب تحليل نظام وندوزوالتطبيق لا يستجيبان ، ثم استخدام مجموعة أدوات

الجذري. توضح نتائجنا مهارات التحليل لاتخاذ القرار بشأن أنشطة النظام والتطبيق وتأثيرها على أعراض
موارد وتحديد سبب إبطاء تخصيص الذاكرة ، واستخدام القرص مشكلات الأداء ، لتحسين استخدام استخدام ال

 غير الفعال ، والإنتاجية.

Introduction

 System performance studies the performance of an entire computer system, including all

software and hardware contents from the storage device into the application software because

it could impact the performance[1]. In software engineering terms poor performance can

affect each of product usability, related customer productivity, wall clock time restrictions

(functionality of applications from the start till the completion).

 In the operating systems world performance have multiple areas and concepts like it deal

with resource efficiency and its utilization, how fast tasks are complete, how the system and

its application responsive for the end-user, and how smooth user experiences are. In software

engineering terms the poor performance affects each of product usability, related user

productivity (the monetary value of the time), wall clock time constraints (functionality)

 The growing size and complexity of the recent software systems make the development a

tough challenge. Systems and the performance of their applications are in challenging due to

many reasons including subjectivity, complexity, could not have a single root cause, and it is

frequently associated with multiple reasons. The application today becomes more complex

due to developing over time, which causes difficulties for the performance analyst to

understand the underlying events. So, the analyst needs to capture low-level system activities

to find clues of performance issues and the factors responsible for unexpected behavior.

The ability to trace programs and monitor resource usage becomes an important feature in the

management and development of recent reliable applications. The current big applications

become more complex and hard to manage, analyze, troubleshoot, track internal activities or

predict their execution state and accuracy [2].

 The complexity in the recent applications has been increased nowadays, which makes their

operations cause more challenges on system reliability and performance needs. The

complexity in software operations causes increasing anomalies inside system operations [3].

The ability to log application activities and track its metrics becomes important in the recent

development application, capturing mechanisms in modern systems, to provide rich log files

that contain important system contents such as system performance counters, events tracing,

process activities. Logging represents the fundamental source of wealth information on the

activities of systems that mostly be helpful for its events, resource usage, software, and

system degradation. Logging records runtime information which is helpful for support

engineers, administrators, and developers to analyze their systems to highlight its behaviors

and root cause analysis [4]. Multiple papers on the analysis of Performance representing

problem-align and highlight issues like Software Aging issues [5],[6], detecting malware

attacks on the systems [7], overview on multiple processes on windows event logging

environment [8], etc.

 Tom P. in Intel used windows tools for resources utilization to see if certain resources like

CPU Usage whether 100% utilized or above the threshold values, WPT has been inducted to

record and analyze the related metrics that impact the performance aspect [9].

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5048

In Windows systems, there are two platforms for measuring performance are Performance

counter for Windows (PCW) and Event tracing for Windows (ETW). PCW is a great

platform for monitoring Windows performance, it gives the analyst a sample as taking a

snapshot of performance measurement over time (long period e.g., min. hrs., days), it could

monitor any system counters. ETW is a general-purpose platform for gathering diagnostic

information especially low-level system and application activities, ETW also could be used

for high frequently samples (e.g., sec, min, hrs. like to diagnose what CPU is doing every

millisecond, which process consumes Memory, and for what reason, it could help the analyst

to not back to source code by giving low-level information in the call stack)

The following reminder of the paper is as follows, In Sections I, Fundamental of Windows

Internals. Event tracing for Windows in Section II, Section III represent the Methodology

analysis. Lastly, Section IV the Results

I. Fundamentals to Windows Internals and Performance

 The existence of any Performance issue in a modern big system like Windows OS could

have a practical reason, there should be root causes that make them appear on the user

interface UI. To analyze the performance issues on Windows OS, then it is important to get an

overview of Windows system fundamentals and forward to deeper level knowledge like how

data is coming from, and how it works under the hood to understand the performance issue,

especially when dealing with windows performance analysis.

A. Fundamental to Windows Internals

 It is hard to explain the whole deep windows internals because it is pretty heavy but to

better understanding Windows performance firstly take a look to Internal design and

components of its Architecture from high-level view, on Windows the kernel does not provide

a documented interface to the applications developers, instead Windows provide user space

libraries which have .DLL (Dynamic Link Libraries) extensions, and these libraries provide

various functions and calls which are represent the interface between the application and the

kernel, high level structure view of windows architecture that there are application is services

that calls functions provided by set of DLLs which could be C++ and other libraries that the

apps depend on, and those libraries calls the underlying functions of Win32 API which is the

main application programming interface that Microsoft documents exposes, and it is provided

by standard DLLs which include kernel32, User32 and GDI32 and others, So when a process

need to do activity inside the kernel it use system calls and bunch of subsystem DLLs , and

they mostly call another system wide DLL called NTDLL.DLL which implement the native

windows API which has several uses one of which is to transition the process to the kernel

mode into the system dispatcher which will try to implement the system service that was

requested.

B. Fundamental to System Performance

 Performance represents a crucial part of the functional needs. Ensuring that wall-clock

time (the time taken to perform a job) requirements are met the control over the entire

application and hardware stack. And that task has possible risks and maybe constrain the size

of the system. Building fast and perfect software is a difficult task due to many reasons like

the modern systems and typical performance engineering mistakes which makes the

performance analyst in a tough challenge and open the aspect on this area. So, a performance

issue is a concern that lift by the end-user, it has multiple symptoms like hang, crash,

bottleneck, Resources leaking, software aging, fragmentations, and zombie processes. This

concern represents a function of user insight since not all the issues reported through end-

users could be indicated as a performance problem, and the valid ones could be like launching

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5049

an application could take a long time, system acting slowly, application crash, not responding

software, system hang, etc.

 It is important to know that finding a performance issue is not the main problem,

especially on complex systems like Windows, because there could be many performance

issues, and the real job is to identify and quantify which issue is matter the most [1]. So, for

some issues finding the root cause factors could be requiring a mutual effort from more than

one team, and since the need to use tools that perform sampling (taking a sample of

quantifying to appear a coarse picture of the resource usage) that method of using tools

represent what called profiling, and the affective visualization of resource profiles like

Memory is a flame graphs, which can help the analyst to find more performance meet that any

other tool, after metrics, because they not only show the memory issues but also the footprint

of memory that a process leaves behind. Also, Memory performance issues can be analyzed

by finding excessive CPU time in memory allocation functions (malloc ()), with the code path

that across to them without releasing them, because there could be discording for how much

there are allocations in the code compared with the deallocations, and since the deallocation

part is on the responsibility of the developer, then the existence of the unbalance in those

system calls there could be a significant impact on the performance.

II. Experimentation

 The Experimentation tools which are a part of observability tools most of which are

benchmarking tools, the applying of synthetic load to the system, and measuring its

performance could be used through these benchmarking tools [1]. In Microsoft, there are

multiple tools for Windows systems that it conducted to load and analyze the performance of

windows activities (some of the important tools listed in Table 1) one of the Sysinternals tools

is the command-line utility named testlimit.exe that could be used to make the system work

out of memory in multiple scenarios [10] it could be used to the stress-test system and

or/application by simulating low resource conditions for multiple resources like memory,

handles, processes, threads, and other system objects. Also, simulating load manually by

loading big file size to a 32bit application (e.g., notepad, outlook) to make it unresponsive and

that a good indicator of a performance issue. A system utility called fsutil.exe could be used

to create files with the needed size. Creating 600MB file as below to load 32-bit process:

fsutil file createnew <filename> < filesize>

Table 1.1: Some of Microsoft tools needed for Windows systems and applications [11]

Name Descriptions

Assessment and

Development Kit (ADK)

It is A package that has the tools needed to customize Windows images for

large-scale deployment and to test the quality of the performance of a

Windows system.

Windows Performance

Toolkit (WPT)

It consists of performance monitoring tools that produce in-depth

performance profiles of Windows operating systems and applications

Windows Debugger

(WinDbg)

It is a kernel-mode and user-mode debugger that included in Debugging

Tools for Windows

Sysinternals Utilities that help IT and developers to manage, troubleshoot, and diagnose

Windows systems and applications

Event tracing for Windows ETW

 Microsoft Windows is a complex operating system with a lot of moving parts like

services, and kernel components at the same time, so Microsoft build the ETW mechanism to

understand things such as what is going on at every point of time, why things not going as it

supposed to. So, ETW tries to answer those questions. It is important to trace low-level

information like the stack that contains rich information about the internal activities like

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5050

functions, how much time it spends in the memory usage and other resources and system calls

(the interface between a process and Windows kernel) and its anomalous could be

corresponding CPU, Memory insufficient allocation and lower I/O throughput. It is important

to conduct Event tracing for Windows (ETW) which is a better mechanism for root cause

analysis to trace and log Windows events that could be raised by user-mode applications and

kernel-mode drivers [12]. It comes with very low overhead, so it is possible to get thousands

of events per second using ETW and still not overwhelm the Windows system, by mean the

CPU and I/O performance should be very good, that is one of the goals of building this

infrastructure. And to implement that ETW installs (WPT) which is the parse tool of ETW,

which contains both Windows Performance Recorder (WPR) and Windows Performance

Analyzer (WPA) [13]. As a summary there are several components [2]:

- Providers: the object that generates events for ETW (any recordable activity can be an

event), there are more than thousands of providers inside Windows.

- Controllers: allow us to create a session (identify a set of providers and configure it) to

enable a set of providers into that session and then to start/stop the session, so these providers

send events, to be gathered in some internal ETW mechanism using buffering techniques than

its information provided to the consumers and to get the file that targets all these information,

this is event trace log file with the extension (.etl), then can take the trace file to analyze using

variable tools like WPA of WPT that mentioned above.

- Consumers: it is an application that reads trace files or listens to active trace sessions and

there are two ways for that real-time and offline.

 So, at WPR could select the needed profiles to be recorded, CPU usage, Disc I/O activity,

heap usage, and VirtualAlloc usage. Several processes used to load the windows OS and such

as the testlimit.exe . The WPR to trace the events is used as shown in the below Figure 1.

Figure 1: WPR with selected profiles

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5051

II. Analysis Methodology

After getting the .etl file from logging windows trace using WPR, the using WPA to analyze

the collected events. In this scenario analyzing the workflow and assessing the affecting

loading a very large file on windows 32-bit process. This study proposed the below method

diagram to trace and Znalyze the system-wide events traced by the WPR:

Figure 2: Method diagram to analyze events trace

 The synthetical load that is used to simulate by the testlimit process to make the system

under test (SUT) while recording the system internal activities with WPR, the important thing

is to make the performance issue(s) symptoms happens inside the trace interval, to be

analyzed then in WPA. In WPA there are multiple areas and graphs, and to start root cause

analysis of the performance issues (unresponsive case) at first, it is important to indicate

which area of interest in multiple metrics is interested to minimize and demonstrate our

analysis, and according to that should check each area, analyze it, and give it area symbol. as

below:

A. CPU Usage

 One of the key terms for system performance is Utilization, which it is calculating how

busy a resource is, depending on how much time in each interval a resource servicing work.

At WPA starting from Computation section by drag and drop “CPU Usage (Sampled) –

Utilized by process” and from the graph in the below Figure 3.

Figure 3: CPU Usage behavior during the system unresponsive (delay)

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5052

 At the time interval
~
21 to ~41 the CPU utilization is under 20% of 0-100% scale, this

area could be labeled as (A1), and after that interval, it jumped up to around 65% of

utilization till
~
49 seconds, and that area of interest could be labeled as A2, from that behavior

there is something makes CPU busy at the area A2, because the utilization should be at 100%

scale of the CPU or any resource.

Figure 4: Disk Usage Utilization state during system delay

 As a summary of CPU usage, the CPU is utilized through A1 neither A2, as it should be

100% saturations for full utilization. So, it is important to see what Windows do in these two

areas, hence next will go to the Disk Usage to see if Windows get well of Disk’s throughput.

But this is classic behavior of CPU underutilization caused by lack of parallelization with

using of 3 out of 4 cores of CPU in the code like that maybe the source code of the affected

process could be run on one logical processor at a time, and there is an improvement

opportunity of CPU understanding by parallelizing CPU usage in A2, which could increase to

the 100% of utilization and (~ 0.35 seconds) of not benefiting from parallel activity, as below:

CPU activity = [(49.5s – 40.5s) – (~0.25)] / 3 cores = ~ 2.91 seconds

B. Disk Usage and I/O contention

 As we did at CPU usage metric in WPA to investigate in Disk IO, from Storage section

drag and drop the “Disk Usage – Utilization by process, pathName, Stack”, and from the

below graph in Figure 6. there is contention (multiple processes try to access the shared

resource Disk I/O) at the time interval
~
21s to

~
26s and that contention makes the

Unresponsive process get ~60% utilization of the Disk bandwidth. Then this area of interest

could be labeled as A3. After that interval time, the unresponsive process gets utilization of

Disk Usage by itself alone and that causes disk utilization to grow from ~60% (the contention

in A3) to ~80% of the Disk I/O bandwidth. Let be labeled that as A4, so, there is an

improvement opportunity for disk utilization at that A4 as below.

Disk utilization A4 = ~14s * 0.20 = ~2.8 seconds

That means it could speed and end the processing ~20% faster. Also, its utilization improved

through ~80% - ~60% = 20% of unused leaving capacity. At the end of this area, there is no

disk usage by the unresponsive process, and it is possible to make that area of no disk utilized

as A5.

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5053

Figure 5: Throughput of Disk I/O usage

From the above analysis, the throughput of the Disk activity increased from A3 to A4 and end

at A5. and to see that could drag and drop the instance of the Disk Usage at WPA by the

“Throughput by Process, IO Type” as shown in the below Figure 5.

 The size of the process that makes reading service is (~15 MB) let called it area A6, which

it is lower than the same process (~33 MB) let it be the area A7, it could remember at Figure

6. within A3 the leak process has contended with multiple systems and or user processes that

trying to share the Disk IO, where at A4 no contention exists with other processes, and that

what makes the reading utilization increased to ~33 MB, then it could get the average of the

throughput at A6 as below:

AVG throughput at A6 = (~33 MB/s) / (~15MB/s) = ~2.2 sec

 The AVG throughput at A6 is around ~2.2 times smaller than A7, and without the contention,

at A3 it could have a lower delay as below:

 AVG throughput at A6 = (~6.5) / (~2.2) = ~2.95 sec

that means without contention at sub-region A3 it could have ~2.95 seconds delay instead of

~6.5 seconds, which indicates that we lost around ~3.55 seconds due to existing the other

processes trying to access the Disk I/O (contention with testlimit.exe) at the A6. So, the

investigation in the Disk I/O contention of the area A3 showed that identify a slowdown about

~2.95 seconds, and there is an improvement opportunity to get as much as ~3.55 seconds by

reporting the existence of the contention at the area A6.

Results

 As a summary of the above metrics which are CPU usage at the area (A2), Disk usage at

(A4), and I/O contention at (A6), it could speed up that scenario by speeding up the behaviors

as much as declared in the below Table 2:

Table 2: Metrics Observed behavior and the Improvement opportunity

System Metrics Area of

Interest

Time Interval Period in sec Improvement

Opportunities

CPU Usage A1 ~ (40.5s – 49.5s) ~9 sec ~2.91 sec

Disk Usage A4 ~ (26.5s – 40.5s) ~14 sec ~2.8 sec

Throughput A6 ~ (21s – 26.5s) ~6.5 sec ~3.55 sec

Sum ~ (21s – 40.5s) ~29.5 ~9.26 sec (~30%)

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5054

C. Memory Usage

 To add Memory usage activities during the scenario in WPA from Memory group, add

Virtual Memory Snapshots graphs to the analysis, add it under the Disk usage graphs to

understand the whole scenario, as shown in Figure 6.

 From the Figure 6 graph which is related to virtual memory snapshot, observing from the

time interval ~21s to ~26s that there is slow allocation on memory than time interval ~27s to

~41s, then there is a significant drop (deallocation) in the memory exactly at the time ~41.5s,

and depending on the methodology of the analysis it could separate the above graph’s areas

into A8 = ~21s to ~26s (low allocation), A9 = ~27s to ~41.s (High allocation), A10 = ~41.5s

(the significant deallocation) and A9 = the constant footprint of memory after deallocation.

Figure 6: Adding the entire Memory usage graph of the process

Memory leak root cause analysis

 To detect the root cause that keeps allocation on the memory, then it is important to drag

and drop an internal metric called < VirtualAlloc Commit LifeTime Snapshot> section

from the memory section inside the WPA. After applying customizing on the chart and graph

with the related synchronize table on the same analysis region, adding the commit stack and

impacting stack to get the best view for analysis, and after digging into the call stack column

of the code path, we get the below results:

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5055

Figure 7: Digging into the code path stack to find out the reason of the abnormal behavior

 By the way, call stacks help to control and manage the complexity of the code path, it

shows important information for the analyst like function calls, methods, related threads that

are used in a context, etc. From the above Figure 8. And while digging into the call stack

column, it shows that the highgui2413.dll function library has been used for that allocation,

and then keep digging into its stack, it shows that it is called the malloc system call for

deserving and touching memory and it keeps growing till consuming all the available bytes in

its commit virtual size, the reason that shows it never used deallocate or dealloc system call

after completing its reading task.

Results and Discussion

 To estimate the increase in memory allocation it is important to calculate the speed at the

area A8 which is ~60MB/s that comes from ~300MB (allocated during the area) / 5s of the A8.

And at the area A9 which it is 2.2G / 14s which equates to ~157MB/s as the rate of the

allocation at the area A9. The slow memory allocation process rate that happened at A8 which

it is the same as A3 (the area of I/O contentions) and hence observing the reason for the low

memory allocation which impacted by the I/O contention A3, So the I/O contention slowed

the test limit process that becomes unresponsive symptoms. And the higher allocation area A7

which at the same time as area A4 increased memory allocation due to the absence of the

contention in this area.

Allocating on Memory without

free them (unbalance system

calls)

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5056

The entire size that Memory allocated is around ~2.6 GB and the deallocation at ~41.5s

is ~600MB/s. So, from that point, it is clear to see that the memory used 2 GB to read 500MB

data file, and after completing the read service it dropped the size of the reading file and

deallocate it with deserve with the memory footprint as represented in A9 which it is 2 GB.

The ambiguity could be a limitation of this study for further investigation in memory usage to

know the reasons for this memory footprint deserving, which could be solved through

looking into the source code or using the ETW activities to investigate the entire stack.

Conclusion

 As a summary, while increasing the synthetical load using testlimt.ext, when a 32-bit

process tries to read data with size ~600MB it peaks up to ~2.6GB instead of just 600MB of

the file size with unresponsive symptoms, and after reading that file the process released the

600MB (the size of the file as in Figure 8) back to the operating system and leave it with

~2GB of constant leaking as a memory footprint. During the time interval of I/O contentions

(the area A3), there is slower throughput which causes a slow in memory allocation at the area

A6 of the Memory Usage graph. So, the memory utilization is not used in an efficient

behavior in that scenario, despite there being 8GB of Main Memory is installed in the system

configuration of Windows 10. Even when there is is not enough RAM then the system will be

depending on the page file taking from the working set of the process to the page file to free

up the RAM and deserve the hungry 32-bit process, and that may lead to hanging the page file

activity. The call stack column helps us to detect the abnormal behavior by highlighting the

related syscalls which keep allocation on the memory without releasing. According to the

CPU and Dis Usage metrics, and improvement opportunity on the resource is utilization has

been conducted by calculating the losing time for each other, which after adding their values

it shows that it could minimize the time down into ~9.26 sec instead of ~29.5 sec, as shown

above in Table 1, which show around ~30% of utilization.

References
[1] B. Gregg, System Performance Enterprise and the Coud, Second Edi. 2020.

[2] I. Park, “EVENT TRACING FOR WINDOWS : BEST PRACTICES,” http//www.cmg.org

EVENT TRACING Wind. BEST Pract. Microsoft Corp., 2004.

[3] M. Kubacki and J. Sosnowski, “Exploring operational profiles and anomalies in computer

performance logs,” Microprocess. Microsyst., vol. 69, pp. 1–15, 2019, doi: 10.1016/j.micpro.

2019.05.007.

[4] J. Zhu et al., “Tools and Benchmarks for Automated Log Parsing,” Proc. - 2019 IEEE/ACM 41st

Int. Conf. Softw. Eng. Softw. Eng. Pract. ICSE-SEIP 2019, no. March 2020, pp. 121–130, 2019,

doi: 10.1109/ICSE-SEIP.2019.00021.

[5] K. S. Noori and A. A. Fahad, “Factors affecting application launch time with android OS,” Iraqi

J. Sci., vol. 61, no. 7, pp. 1791–1797, 2020, doi: 10.24996/ijs.2020.61.7.28.

[6] K. S. Noori and A. A. Fahad, “Monitoring and enhancement of mobile system performance,”

Iraqi J. Sci., vol. 61, no. 9, pp. 2418–2425, 2020, doi: 10.24996/ijs.2020.61.9.28.

[7] J. Milosevic, M. Malek, and A. Ferrante, “A friend or a foe? Detecting malware using memory

and CPU features,” ICETE 2016 - Proc. 13th Int. Jt. Conf. E-bus. Telecommun., vol. 4, no. Icete,

pp. 73–84, 2016, doi: 10.5220/0005964200730084.

[8] P. K.Sahoo, R. K. Chottray, and S. Pattnaiak, “Research Issues on Windows Event Log,” Int. J.

Comput. Appl., vol. 41, no. 19, pp. 40–48, 2012, doi: 10.5120/5650-8030.

[9] T. Pantels, “Touch Response Measurement , Analysis , and Optimization for Windows *

Applications,” pp. 1–15, 2014, [Online]. Available: https://software.intel.com/content

/www/us/en/develop/articles/touch-response-measurement-analysis-and-optimization-for-

windows-applications.html.

[10] “Testlimit - Windows Sysinternals | Microsoft Docs.” https://docs.microsoft.com/en-

us/sysinternals/downloads/testlimit (accessed Aug. 06, 2021).

Assi et al. Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5046-5057

5057

[11] “Windows Documentation | Microsoft Docs.” https://docs.microsoft.com/en-us/windows/

(accessed Mar. 24, 2022).

[12] “Event Tracing for Windows (ETW) - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--

etw- (accessed Aug. 07, 2021).

[13] “Windows Performance Toolkit | Microsoft Docs.” https://docs.microsoft.com/en-us/windows-

hardware/test/wpt/ (accessed Aug. 07, 2021).

