Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 723-728 DOI: 10.24996/ijs.2022.63.2.28

ISSN: 0067-2904

On Strong Dual Rickart Modules

Enas Mustafa Kamil

College of pharmacy, AL-Kitab University, Kirkuk, Iraq

Received: 14/9/2021

Accepted: 24/10/2021

Abstract

Gangyong Lee, S. Tariq Rizvi, and Cosmin S. Roman studied Dual Rickart modules. The main purpose of this paper is to define strong dual Rickart module. Let M and N be R- modules, M is called N- strong dual Rickart module (or relatively sd-Rickart to N) which is denoted by M it is N-sd-Rickart if for every submodule A of M and every homomorphism $f \in \text{Hom}(M, N)$, f(A) is a direct summand of N. We prove that for an R- module M, if R is M-sd-Rickart, then every cyclic submodule of M is a direct summand . In particular, if M is projective, then M is Z-regular. We give various characterizations and basic properties of this type of modules.

Keywords: Strong dual Rickart modules, direct summands, semisimple module.

حول المقاسات الربكارتية الرديفة القوبة

ايناس مصطفى كامل

كلية الصيدلة, جامعة الكتاب , كركوك , العراق.

الخلاصة:

1. Introduction.

A module *M* is called dual Rickart module if for every $\varphi \in \text{End}(M)$, then $Im\varphi = eM$, for some $e^2 = e$. Equivalently a module *M* is dual Rickart module if and only if for every $\varphi \in \text{End}(M)$, then $Im\varphi$ is a direct summand of *M*, See [1], [2]. Some generalizations of dual Rickart modules and related concepts are recently introduced in [8], [9] and [10]. A module *M* is *N*d-Rickart (or relatively d-Rickart to *N*) if for every homomorphism $\varphi: M \rightarrow N$, $Im\varphi$ is a direct summand of *N*, where *N* is any *R*-module, see [1]. In this paper, we define strong dual Rickart modules, A module *M* is called *N*- strong dual Rickart module (or relatively sdRickart to N) which is denoted by M it is N-sd-Rickart if for every submodule A of M and every homomorphism $f \in \text{Hom}(M, N)$, f(A) is a direct summand of N. We also give some results on this type of modules.

In section two, we give properties for the relatively strong dual Rickart modules. For example, let M and N be R- modules and let A be a submodule of M. If M is N-sd- Rickart, then A is N-sd- Rickart.

In section three, we give various characterizations of relatively strong dual Rickart module, we show that if *N* and *M* modules, then *M* is *N*-sd- Rickart if and only if every short exact sequence $i = \pi N$

sequence Splits, for every submodi the natural epimorphism. $0 \longrightarrow f(A) \xrightarrow{i} N \xrightarrow{\pi} \frac{N}{f(A)} \longrightarrow 0$ where *i* is the inclusion map and π is

2. Strong dual Rickart.

In this section, we investigate and study the notion of relatively strong dual Rickart modules, and we obtain some of fundamental properties, several relations between sd-Rickart modules, and other classes of modules are obtained in this section.

Definition (2.1): Let M and N be R- modules, M is called N- strong dual Rickart module (or relatively sd-Rickart to N) which is denoted by M it is N-sd- Rickart if for every submodule A of M and every homomorphism $f \in \text{Hom}(M, N)$, f(A) is a direct summand of N, we call M is sd-Rickart if M is M-sd-Rickart.

Remarks and example (2.2):

(1) An R- module M is semisimple if and only if M is sd- Rickart, that is sd-Rickart is reflexive relation if and only if M is semismple. In general, M is semisimple if and only if A is M-sd- Rickar, for every submodule A of M.

(2) Every sd-Rickart module is d-Rickart, the converse is not true in general, for example, Q as Z- module is d-Rickart, by [1] which is not sd- Rickart, because it is not semisemple.

(3) Z_n is not Z-sd-Rickart Z- modules, because there is a homomorphism $\varphi:Z_n \to Z$ defined by $\varphi(Z_n) = nZ$, n > 1, which is not a direct summand of Z.

(4) If N is a semisimple, then M is N-sd- Rickart, for every R- module M.

(5) Note that *M* is Z_6 -sd- Rickart for every *R*- module *M*, by (4). The converse is not true in general for example, Z_6 is not relatively -sd- Rickart to Z_{12} as *Z*- module, hence sd- Rickart is not symmetric property.

(6) Let *M* and *N* be *R*- modules with Hom(*M*, *N*) = 0, then *M* is *N*-sd- Rickart. For example Hom(Q, Z) = 0 implies Q is *Z*-sd- Rickart. Also, Hom(Z_n, Z) = 0 implies Z_n is *Z*-sd- Rickart.

(7) One can easily show that 0 is M-sd- Rickart and M is 0-sd- Rickart, for every R- module M.

Recall that an *R*- module *M* is said to be coquasi- Dedekind if for every proper submodule *A* of *M*, Hom(M,A) =0.

Equivalently, M is to be coquasi- Dedekind if every nonzero endomorphism of M is an epimorphism [3].

(8) If M is coquasi- Dedekind R- module, then M is A-sd- Rickart for every proper submodule A of M.

Now, we study the properties of the *N*- strong Dual Rickart modules.

Proposition (2.3): Let M and N be R- modules and let A be a submodule of M. If M is N-sd-Rickart, then A is N-sd-Rickart.

Proof: To show that A is N-sd- Rickart, let X be a submodule of A and let $f : A \rightarrow N$ be a homomorphism. Consider the diagram.

Where *i* is the inclusion map. Since *M* is *N*-sd- Rickart module, the $(f \circ i^{-1})(X) = f(X)$ is a direct summand of *N*. Thus *A* is *N*-sd- Rickart.

Proposition (2.4): Let M and N be R- modules and let A be a submodule of N. If M is N-sd-Rickart, then M is A-sd- Rickart.

Proof: Let X be a submodule of M and let $f: M \rightarrow A$ be a homomorphism, consider the following sequence.

$$M \xrightarrow{f} A \xrightarrow{i} N$$

Where *i* is the inclusion map. Since *M* is *N*-sd- Rickart , then $(i \circ f)(X) = f(X)$ is a direct summand of *N*. But $f(X) \leq A$, therefore f(X) is a direct summand of *A*. Thus, *M* is *A*-sd- Rickart. *Proposition (2.5):* Let *M* be an *R*- module and let *N* be any indecomposable *R*- module, if *M* is *N*-sd- Rickart , then either Hom (M,N) = 0 or every nonzero *R*-homomorphism $f: M \rightarrow N$ is an epimorphism.

Proof: Assume that *M* is *N*-sd-Rickart and Hom $(M,N) \neq 0$, let $f: M \rightarrow N$ be a nonzero homomorphism, then f(M) is a direct summand of *N*. But *N* is an indecomposable therefore, *f* is an epimorphism.

Recall that an R- module M is called Z- regular if every cyclic (equivalently, every finitely generated) submodule of M is a projective and a direct summand of M, see [4].

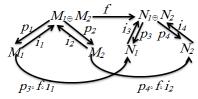
Proposition (2.6): Let M be an R- module such that R is M-sd-Rickart. Then every cyclic submodule of M is a direct summand. In particular, if M is priojective, then M is Z-regular.

Proof: Suppose that *M* is an *R*- module such that *R* is *M*-sd-Rickart and let $0 \neq m \in M$. Define $f: R \rightarrow Rm$ by f(r) = rm, $r \in R$. Let *i*: $Rm \rightarrow M$ be the inclusion map. Consider the map *i* $\circ f: R \rightarrow M$. Clearly that Im $(i \circ f) = Rm$. Since *R* is *M*-sd-Rickart , then Rm is a direct summand of *M*. The last part is clear.

Recall that an *R*- module *M* is called distributive module if for all submodules *A*,*B* and *C* of *M*, $A \cap (B + C) = (A \cap B) + (A \cap C)$ for more details see [6].

Proposition (2.7): Let M_1 be N_1 -sd- Rickart and M_2 be N_2 -sd- Rickart. If $M_1 \oplus M_2$ is distributive module, then $M_1 \oplus M_2$ is $N_1 \oplus N_2$ - sd-Rickart module.

Proof: Let A be a submodule of $M_1 \oplus M_2$ and let $f : M_1 \oplus M_2 \rightarrow N_1 \oplus N_2$. Since $M_1 \oplus M_2$ is distributive, then $A = (A \cap M_1) \oplus (A \cap M_2)$, we have to show that f(A) is a direct summand of $N_1 \oplus N_2$. Consider the following diagram.



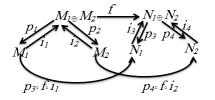
Where i_1 , i_2 , i_3 and i_4 are inclusion maps and p_1 , p_2 , p_3 and p_4 are projection maps. Since $A \cap M_1$ is a submodule of M_1 , $p_3 \circ f \circ i_1 : M_1 \to N_1$ is *R*-homomrphiam and M_1 be N_1 -sd-Rickart , then $(p_1 \circ f \circ i_1)(A \cap M_1)$ is a direct summand of N_1 . Similarly, $(p_4 \circ f \circ i_2)(A \cap M_2)$ is a direct summand of N_2 , hence $(p_3 \circ f \circ i_1)(A \cap M_1) \oplus (p_4 \circ f \circ i_2)(A \cap M_2)$ is a direct summand of $N_1 \oplus N_2$.

. Claim that $f(A) = (p_3 \circ f \circ i_1)(A \cap M_1) \oplus (p_4 \circ f \circ i_2)(A \cap M_2)$. To see this, let $a_1 \in A \cap M_1$ and $a_2 \in A \cap M_2$, then $(p_3 \circ f \circ i_1)(a_1) + (p_4 \circ f \circ i_2)(a_2) = (p_3 \circ f)(a_1, 0) + (p_4 \circ f)(a_2, 0) = p_3(f(a_1), 0) + p_4(0, f(a_2)) = (f(a_1), 0) + (0, f(a_2)) = (f(a_1), f(a_2)) = f(a_1, a_2)$. Thus, f(A) is a direct summand of $N_1 \oplus N_2$.

Let *M* be an *R*- module. Recall that a submodule *A* of *M* is called a fully invariant if $f(A) \le A$, for every $f \in End(M)$ and *M* is called duo module if every submodule of *M* is a fully invariant. See [7]

Proposition (2.8): Let M_1 be N_1 -sd- Rickart and M_2 be N_2 -sd- Rickart. If $M_1 \oplus M_2$ is duo module, then $M_1 \oplus M_2$ is $N_1 \oplus N_2$ - sd-Rickart module.

Proof: Let A be a submodule of $M_1 \oplus M_2$ and let $f: M_1 \oplus M_2 \rightarrow N_1 \oplus N_2$. Since $M_1 \oplus M_2$ is duo module, then $A = (A \cap M_1) \oplus (A \cap M_2)$, we have to show that f(A) is a direct summand of $N_1 \oplus N_2$. Consider the following diagram.



Where i_1 , i_2 , i_3 and i_4 are inclusion maps and p_1 , p_2 , p_3 and p_4 are projection maps. Since $A \cap M_1$ is a submodule of M_1 , $p_3 \circ f \circ i_1 : M_1 \to N_1$ is *R*-homomrphiam and M_1 be N_1 -sd-Rickart , then $(p_1 \circ f \circ i_1)(A \cap M_1)$ is a direct summand of N_1 . Similarly, $(p_4 \circ f \circ i_2)(A \cap M_2)$ is a direct summand of N_2 , hence $(p_3 \circ f \circ i_1)(A \cap M_1) \oplus (p_4 \circ f \circ i_2)(A \cap M_2)$ is a direct summand of $N_1 \oplus N_2$.

3. Characterizations of strong dual Rickart modules.

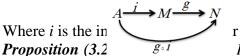
In this section, we give various characterizations of strong dual Rickart modules. We also obtain a characterization for an arbitrary direct sum of relatively sd-Rickart modules.

We start this section by the following proposition.

Proposition (3.1): Let *M* and *N* be *R*- modules , then *M* is *N*-sd- Rickart if and only if for every submodule *A* of *M* and every monomorphism $f: A \rightarrow M$ and homomorphism $g: M \rightarrow N$, $(g \circ f)(A)$ is a direct summand of *N*.

Proof: (\Rightarrow) Let *f*: $A \rightarrow M$ be a monomorphusm and let *g* : $M \rightarrow N$ be a homomorphism , where *A* is a submodule of *M*. Since *f*(*A*) is a submodule of *M* and *M* is *N*-sd- Rickart, then *g*(*f*(*A*)) = ($g \circ f$)(*A*) is a direct summand of *N*.

(\Leftarrow) Let *A* be a submodule of *M* and let $g: M \to N$ be a homomorphism , we have to show that g(A) is a direct summand of *N*. Consider the following diagram.



r assumption, g(A) is a direct summand of N.

R- modules, then M is N-sd- Rickart if and only if every

splits, for every subn $0 \longrightarrow f(A) \xrightarrow{i} N \xrightarrow{\pi} \frac{N}{f(A)} \longrightarrow 0$ where *i* is the inclusion map and π is the natural epimorphism.

Proof: Assume that M is N-sd-Rickart, it is clear that f(A) is a direct summand of N, for each submodule A of M. Thus we get the result. By the same way, we can prove the converse. **Theorem (3.3):** Let M and N be R- modules, the following statements are equivalent.

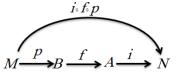
(1) M is N-sd- Rickart.

short exact sequence

- (2) For each direct summand B of M and a submodule A of N, B is A-sd-Rickart
- (3) For each direct summand *B* of *M*, if *L* is a submodule of *N* with $\varphi \in \text{Hom}(M, L)$, then $\varphi(X)$ is a direct summand of *L*, for every submodule *X* of *B*.
- (4) For every submodule L of N, M is L-sd-Rickart.

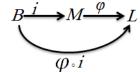
Kamil

Proof: (1) \Rightarrow (2) Suppose that *M* is *N*-sd- Rickart, let *B* be a direct summand of *M* and *A* be a submodule of *N*. To show that *B* is *A*-sd- Rickart, let *X* be a submodule of *B* and let $f: B \rightarrow A$ be an R-homomorphism. Consider the following sequence.



Where *i* is the inclusion map and *p* is the projection map. Since *X* is a submodule of *M* and *M* is *N*-sd- Rickart, then $(i \circ f \circ p)(X) = (f \circ p)(X) = f(X)$ is a direct summand of *N*, hence f(X) is a direct summand of *A*. Thus, we get the result.

 $(2) \Rightarrow (3)$ Let *B* be a direct summand of *M* and let *L* be a submodule of *N*, we have to show that $\varphi(X)$ is a direct summand of *L*, for every submodule *X* of *B* and every $\varphi \in \text{Hom}(M, L)$. By (2) we get *B* is *L*-sd-Rickart. Consider the following sequence.



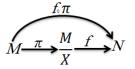
Where *i* is the inclusion map. Clearly that $\varphi(X)$ is a direct summand of *L*.

 $(3) \Rightarrow (4)$ Let *L* be a submodule of *N* and let $f: M \rightarrow L$ be a homomorphism , we have to prove that f(X) is a direct summand of *L*, for every submodule *X* of *M*. Take B = M and $\varphi = f$ and apply (3), we get the result.

 $(4) \Rightarrow (1)$ Clear.

Proposition (3.4): Let M and N be R- modules, then M is N-sd- Rickart if and only if $\frac{M}{X}$ is N-sd- Rickart, for every submodule X of M.

Proof: (\Rightarrow) Suppose that *M* is *N*-sd-Rickart, let $\frac{A}{x}$ be a submodule of $\frac{M}{x}$ and let $f: \frac{M}{x} \to N$ be an *R*- homomorphism. Consider the following sequence.



Where π is the natural epimorphism. Since *M* is *N*-sd-Rickart, then $(f \circ \pi)(A)$ is a direct summand of *N*, so we get the result.

(\Leftarrow) It is clear by taking X = 0.

Corollary (3.5): Let M and N be R- modules, then M is N-sd- Rickart if and only if $\frac{M}{A}$ is K-sd- Rickart, for each submodules A of M and K of N.

Proof: Let *M* be *N*-sd- Rickart and let *A* be a sunmodule of *M*, hence $\frac{M}{A}$ is *N*-sd- Rickart, be proposition (3.4), hence $\frac{M}{A}$ is *K*-sd- Rickart, for each submodule *K* of *N*, by proposition (2.4). For the converse, take A = 0 and K = N.

Theorem (3.6): The following statements are equivalent for a ring *R*.

(1) M is R-sd- Rickart, for every R- module M.

- (2) *M* is *R*-sd- Rickart, for every free (projective) *R* module *M*.
- (3) R is R-sd-Rickart.
- (4) *R* is semisimple ring.

Proof: Clear.

In the next result, we present conditions under which M_i is $\stackrel{n}{\oplus} M_j$ - sd- Rickart.

Theorem (3.7): Let $\{Mi\}_{i=1}^{n}$ be a family of *R*- modules such that M_i is M_j - projective for all i > n

j. Then *N* is $\bigoplus_{i=1}^{n} M_{j}$ – sd- Rickart if and only if *N* is M_{j} -sd- Rickart , for any *R*- module *N* and all j = 1, 2, ..., n

Proof: The necessity it follows from theorem (3.3). Conversely, suppose that N is M_1 -sd-Rickart for all j = 1, 2, ..., n and M_i is M_j -projective for all i > j, j = 1, 2, ..., n. We will prove that, *N* is $\bigoplus_{j=1}^{n} M_j$ -sd- Rickart by induction on *n*.

Start with n = 2. Suppose that N is M_j -sd-Rickart for j = 1, 2 and M_2 is M_1 – projective. Let A be a submodule of N, and let $\varphi = (\pi_1 \circ \varphi, \pi_2 \circ \varphi)$ be any homomorphism from N to $M_1 \oplus M_2$, where π_i is the projection map from $M_1 \oplus M_2$ to M_i for j = 1,2. We want to prove that $\varphi(A)$ is a direct summand of $M_1 \oplus M_2$. Since $(\pi_2 \circ \varphi)(A)$ is a direct summand of M_2 as N is M_2 -sd-Rickart, then $(\pi_2 \circ \varphi)(A)$ is M_1 – projective. We have also $M_1 + \varphi(A) = M_1 \oplus (\pi_2 \circ \varphi)(A)$ is a direct summand of $M_1 \oplus M_2$, then there exists $L \leq \varphi(A)$ such that $M_1 + \varphi(A) = M_1 \oplus L$, by Lemma 4.47 in [5], we have $\varphi(A) = (M_1 \cap \varphi(A)) \oplus L$. In addition, $(\pi_1 \circ \varphi)(A)$ is a direct summand of M_1 because N is M_1 -sd- Rickart. Hence $\varphi(A) = M_1 \oplus L$ is a direct summand of $M_1 \oplus M_2$. Therefore, N is $M_1 \oplus M_2$ -sd-Rickart.

Now assume that N is $\bigoplus_{i=1}^{n} M_j$ – sd- Rickart, we need to show that N is $\bigoplus_{i=1}^{n} M_j \oplus M_{n+1}$ – sd- Rickart . Note that M_{n+1} is $\bigoplus_{i=1}^{n} M_{j}$ - projective. Also, since N is $\bigoplus_{i=1}^{n} M_{j}$ -sd-Rickart and N is M_{n+1} -sd-

Rickart, so by similar arguments in the previous case for n = 2, *N* is $\bigoplus_{i=1}^{n+1} M_i$ -sd-Rickart.

References

- [1] G. Lee, S.T. Riziv and C. S. Roman, " Dual Rickart modules," *Comm in Algebra*, vol. 39, no. 11, pp. 4036-4058, 2011.
- [2] J. L. Garcia, "Properties of direct summand of modules", *Comm. Algebra*, vol. 17, pp. 73-92, 1989.
- [3] S.Yaseen, "Coquasi-Dedekind modules", Phd. D. Thesis, University of Baghdad, 2003.
- [4] A. G. Naoum and N.S.AL-Mothafar," Anote on Z- regular modules", Dirasat, vol. 22, pp. 25-33, 1995.
- [5] S. H. Mohamed, B. J.Muller, " Continuous and Discrete modules", London Math. Soc. Lecture Note Ser No. 147, Cambridge University Press, 1990.
- [6] V. Erdogdu," Distributive Modules", Can. Math. Bull, pp. 248-254, 1987.
- [7] C. Ozcan, A. Harmanci and P. F. Smith, "Duo Modules", Glasgow Math. Journal Trust, vol. 48, pp. 533-545, 2006.
- [8] I. M. Ali, T. Younis, "On Closed Rickart Modules", Iraqi Journal of Science, vol. 57, no. 4, pp. 2746-2753 ,2017.
- [9] B. H.Al-Bahrani, M. Q. Rahman, "On Y-Closed Dual Rickart Modules", Iraqi Journal of Science, vol. 62, no. 4, pp. 1226-1230, 2021.
- [10] R.Tribak, "On Weak Dual Rickart Modules and Dual Baer Modules", *Comm in Algebra*, 2015.